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Nodes in networks are often of different types, and in this sense networks are differentiated.
Here we examine the relationship between network differentiation and network size in
networks under economic or natural selective pressure, such as electronic circuits (networks
of electronic components), Legost (networks of Legot pieces), businesses (networks of
employees), universities (networks of faculty), organisms (networks of cells), ant colonies
(networks of ants), and nervous systems (networks of neurons). For each of these we find that
(i) differentiation increases with network size, and (ii) the relationship is consistent with a
power law. These results are explained by a hypothesis that, because nodes are costly to build
and maintain in such ‘‘selected networks’’, network size is optimized, and from this the
power-law relationship may be derived. The scaling exponent depends on the particular kind
of network, and is determined by the degree to which nodes are used in a combinatorial
fashion to carry out network-level functions. We find that networks under natural selection
(organisms, ant colonies, and nervous systems) have much higher combinatorial abilities than
the networks for which human ingenuity is involved (electronic circuits, Legos, businesses,
and universities). A distinct but related optimization hypothesis may be used to explain
scaling of differentiation in competitive networks (networks where the nodes themselves,
rather than the entire network, are under selective pressure) such as ecosystems (networks of
organisms).

r 2002 Elsevier Science Ltd. All rights reserved.
1. Introduction

While there is a considerable literature studying
the scaling properties of network connectivity
[e.g. see the literature springing from the papers
by Watts & Strogatz (1997) and Barab!asi &
Albert (1999), and also Changizi (2001a)], there
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has been comparably little attention given to one
of the most important features of networks: that
nodes within networks come in different types.
Our main purpose is to examine the relationship
between network differentiation (i.e. the number
of node types) and network size (i.e. the total
number of nodes) among those kinds of network
that are under selective pressure, whether it be
economic or natural selection. We call such
networks selected networks. Consider two gen-
eral relationships one might a priori expect.
The first is that there is a finite set of node
r 2002 Elsevier Science Ltd. All rights reserved.
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Fig. 1. Illustration of a simple network (edges not
shown) with N ¼ 18 nodes, where there are nodes of C ¼
3 types, and they combine into six expressions of length
L ¼ 3; of which there are E ¼ 5 distinct expression types.
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typesFa universal languageFfrom which any
network of that kind may be built, and thus
differentiation does not increase as a function of
network size. For example, every digital circuit,
no matter its size or function, can be constructed
from just two types of node (an AND gate and
a NOT gate). Thus, differentiation need not
increase as a function of network size for digital
circuits. The second possible relationship is that
there is no universal language, and, instead,
larger networks tend to have more node types.
As we will see below, it is this latter possibility
which appears to hold for a wide variety of
selected networks.

2. Hypothesis and Mathematical Preliminaries

In this section, we present a hypothesis
concerning the relationship between differentia-
tion and size in selected networks, and also
introduce mathematical tools for understanding
the scaling relationships.

2.1. THE INEQUALITY RELATING

COMPLEXITY E AND SIZE N

Employees in a business (a network of
employees) interact for the purpose of doing
something for the business. And cells in an
organism (a network of cells) interact to imple-
ment some useful function for the organism.
More generally, nodes in a (selected) network
interact in order to carry out functions for the
network. We will call such functions expressions:
expressions are a group of nodes that implement
some network-level function. Let the expression
length, L; be the average number of nodes
involved in an expression for a given network.
Figure 1 illustrates a simple network with N ¼
18 nodes in all (edges not shown). There are
three node types: circles, squares, and triangles.
Nodes interact in groups of threeFi.e. expres-
sions are of length L ¼ 3: There are six expres-
sions instantiated in the networkFe1;y; e6F
as shown by the six dotted-line rectangular
groupings. The number of distinct expression
types is E ¼ 5; since e1 and e5 are identical. The
number of expression types, E; is a measure of
the complexity of the network, which fits the
intuition that a network is more complex if it
does more kinds of things.
There must be sufficiently many nodes in a
network to carry out the E different expression
types. Since there are LðEÞ nodes per expression,
a network possessing E expression types must
have at least ELðEÞ many nodes in the network.
That is, NXELðEÞ: (In Fig. 1, N ¼ 18X
15 ¼ EL:) This derivation is insufficiently gen-
eral, however, since it presupposes that each
node can participate in only one expression.
More generally, we allow that each node may
participate in, on average, s expressions, where s
is the participation constant, and whose value will
depend on the particular kind of network. (For
example, employees in businesses may tend to
participate in, say, ten expressions each, whereas
ants in ant colonies may tend to participate in,
say, five each.) In order to accommodate E
expression types, each of length LðEÞ; there must
now be at least ELðEÞ=s nodes in the network.
That is,

NX½LðEÞ=s�E: ð1Þ

For example, if each of the rows in Fig. 1 were
expressions, then s would be two, E ¼ 10; and
N ¼ 18X15 ¼ EL=s:
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2.2. THE OPTIMALITY HYPOTHESIS: RELATING

COMPLEXITY E AND SIZE N

We hypothesize that for selected networks, the
following Minimal N Hypothesis applies: Net-
work size N does not scale up more quickly than

needed to obtain the E expression types. Equiva-
lently, the hypothesis is that network size N is
minimized (or that E is maximized), up to a
constant factor. The motivation behind this is
that nodes in a selected network are costly,
requiring energy of some kind to build and
maintain. [For other applications of volume
optimization, see Cherniak et al. (1999), Chan-
gizi & Cherniak (2000), and Changizi (2001a, d,
in press)]. It follows that NBLðEÞE: Further-
more, to minimize N; LðEÞ must remain
invariant, for if LðEÞ increases with E; then N
scales up faster than needed to obtain the E

expression types. Thus, we may derive from this
hypothesis that

L is invariant; andNBE: ð2Þ

If networks do conform to the Minimal N
Hypothesis, then, within any given kind of
network, network size N may be used as a proxy
for network complexity E:
Note that we do not generally expect the

Minimal N Hypothesis to apply to non-selected
networks. For example, a crystalline structure is
a network: the number of atoms is the network
size, and different expression types are the
different kinds of interacting groups of atoms.
Crystalline structures are not, however, under
any selective pressure, and there is nothing
preventing N from increasing (i.e. a bigger
crystal) without any increase in the number of
expression types (i.e. no increase in network
complexity). The Minimal N Hypothesis there-
fore does not apply to crystals. Another kind of
non-selected network is competitive networks,
which are networks where there is selective
pressure on the nodes themselves, not the
network. Examples are ecosystems (networks of
organisms) and cities (networks of businesses).
Although the Minimal N Hypothesis is not
plausible for competitive networks, there are
sometimes other hypotheses that do plausibly
apply and that serve as a replacement assump-
tion allowing the derivation of eqn (2). We will
discuss this in subsection 3.7 when we take up
ecosystems.

2.3. THE RELATIONSHIP BETWEEN COMPLEXITY

E AND DIFFERENTIATION C

From the above hypothesis, we may derive the
expected relationship between network differen-
tiation and size. As a step toward this, consider
how network complexity, E; relates to the
number of node types, or differentiation, C:
(Some of these notions emanate from Changizi,
2001b; see also Changizi, 2001c, in press.) With C

node types, how many length-L expression types,
E; are possible? The answer is E ¼ CðEÞLðEÞ: For
example, if there are C ¼ 2 node typesFlabeled
A and BFand expression length L ¼ 4; then
there are E ¼ 24 ¼ 16 expression types, namely
AAAA, AAAB, AABA,y, BBBB. However, this
is insufficiently general for two reasons. First,
only some constant fraction a of these expression
types will generally be grammatical, or allowable,
in the network, where this proportionality con-
stant will depend on the particular kind of
network. The relationship is, then, EBCðEÞLðEÞ:
Second, the exponent, L; assumes that all L

degrees of freedom in the construction of expres-
sions are available, when only some fixed fraction
b of the L degrees of freedom may generally be
available due to inter-nodal constraints. Let
dðEÞ ¼ bLðEÞ: Call this variable d the combina-
torial degree. The relationship is, then,

EBCðEÞdðEÞ: ð3Þ

Let us use the same example above, but suppose
now that A’s always occur in pairs, and that B’s
also always occur in pairs. The ‘‘effective
components’’ in the construction of expressions
are now just AA and BB, and the expression
types are AAAA, AABB, BBAA, and BBBB.
The number of degrees of freedom for an
expression is just 2, not 4, and thus E ¼ 22 ¼
4: Via the Minimal N Hypothesis, expression
length, L; was invariant, and thus so is the
combinatorial degree, d: It follows that

EBCðEÞd ; where d is invariant andX1: ð4Þ

It is important to understand the meaning of
‘‘combinatorial degree’’, for it will be much
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discussed later. It is best interpreted as, intui-
tively, the ‘‘effective length of an average
expression’’, or, ‘‘how combinatorial the expres-
sions are’’, or ‘‘the number of degrees of freedom
in an expression.’’ The lowest possible combina-
torial degree is d ¼ 1; and this means that there
is effectively just one node per expression. This,
in turn, means that nodes are not used in a
combinatorial fashion to build expressions (de-
spite the fact that L might be greater than one).
A combinatorial degree greater than one means
that nodes are used in a combinatorial fashion to
construct expressions, and greater values mean
that expressions are more combinatorial, or
‘‘effectively longer’’. [The combinatorial degree
is related to the Shannon–Boltzmann entropy H
as follows: H ¼ �Spi log2ðpiÞ; where i ranges
from 1 to the number of expression types E;
and pi is the probability of expression type i
occurring (Ash, 1965). Assuming that the
probabilities are uniform, p ¼ 1=E; and thus
H ¼ �E½ð1=EÞlog2ð1=EÞ�; or H ¼ log2 E: Recall
that EBCdðEÞ; and so d ¼ ðlog2 EÞ=ðlog2 CðEÞÞ;
and thus it follows that d ¼ HðEÞ=log2 CðEÞ:
That is, the combinatorial degree d is a measure
of the entropy, but relative to a (possibly
increasing) symbol set size C:]

2.4. THE RELATIONSHIP BETWEEN DIFFERENTIATION

C AND SIZE N

At this point, we have related network size N

and network (expressive) complexity E via eqn
(2), and we have related E to differentiation C

via eqn (4). Combining these equations we may
derive

NBCd ; where d is invariant andX1: ð5Þ

That is, we have derived from the Minimal N
Hypothesis that we expect network size, N; to
relate to network differentiation, C; as a power
law with exponent dX1:We will see in Section 3
that this appears to be the case for selected
networks. For each kind of network, we
compute the inverse of the best-fit slope of C

vs. N on a log–log plot, for this provides an
estimate of the combinatorial degree, d: In this
way, (i) we acquire a measure of how combina-
torial that kind of network is, and (ii) the
combinatorial degree provides us with a clue as
to what the expressions might be in that kind of
network. [Note that eqn (5) implies that
CBN1=d ; and thus that the number of compo-
nents of any given type will scale as
N=CBN=ðN1=d Þ ¼ N1�1=d : In non-combinator-
ial organizations where d ¼ 1; the number of
components of any given type is invariant;
whereas as d gets large, N=C approaches
proportionality with N:]

2.5. TYPE-NETWORKS

As just discussed, plots of differentiation C vs.
size N provide us with interesting information
about a kind of network; in particular, from
such plots one is able to measure the combina-
torial degree. One may also extract useful
information via the examination of ‘‘type-net-
works’’. Let u1;y; uC be the C node types in
some network J: A type-network for network J;
labeled Jtype; is built as follows: for each type ui;
a vertex wi is placed into Jtype representing that
type; and, an edge is placed between vertices wi

and wj in Jtype just in case there are nodes in J of
types ui and uj that are connected. (Note that to
help to avoid ambiguities, I am using ‘‘vertex’’ to
refer to nodes in a type-network, and ‘‘nodes’’
for nodes in networks.) Consider electronic
circuits as one example, where the type-network
consists of one vertex for each type of electronic
component in the circuit, and an edge connects
two vertices in the type-network just in case
there exists a physical connection (a wire)
between two individuals of the respective types.
As another example, consider ecosystems (i.e.
networks of organisms), where a type-network
consists of one vertex for each organism type,
and an edge connects two vertices just in case
there is a trophic interaction between themF
that is, a type-network for ecosystems is just a
food web.
Suppose that, for some given kind of network,

the average edge-degree dFi.e. the number of
edges emanating from a vertexFin type-
networks scales as the total number of vertices
C to the power of a constant vFi.e.,
dBCvFwhere v ranges from 0 to 1. If expres-
sions in the network are of length L; then how
many possible expression types E are there? Any
of the C vertices can participate with one of d
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many other vertices, which can, in turn, partici-
pate with one of d others, and so on until L

vertices have participated in the chain. Thus,
there are EBCðdL�1Þ many possible expression
types. Since dBCv; we may write

EBCvL�vþ1: ð6Þ

For selected networks we expect EBN; and thus
NBCvL�vþ1: Furthermore, we expect eqn (5) to
hold, or NBCd with d invariant, and we may
conclude that

d ¼ vL � v þ 1; ð7Þ

where d; L; and v are constants (i.e. not a
function of E). Equation (7) is of interest for two
reasons.
First, it may be used to independently

determine if the network is acting combinato-
rially. If the expression length L ¼ 1; then d ¼ 1;
and thus it is not combinatorial. Since d41 in
the networks we study below, it must be that
L41 (since LXd). If L41; then there are two
possibilities. The first is that v ¼ 0Fi.e. the
edge-degree d does not increase with the size C
of the type-networkFin which case d ¼ 1; and
the system is again not combinatorial. The
second possibility is that v40; in which case
vL � v40; and thus the network is acting
combinatorially since d41:
Second, we may also use eqn (7) to compute

the length of an expression if we already know
the combinatorial degree d: Solving for L in eqn
(7), we get

L ¼ ðd þ v � 1Þ=v: ð8Þ

That is, if we know that the edge-degree dBCv;
where v40; and that the combinatorial degree is
d via a plot of C vs. N; then we may compute the
length L of an expression. For example, if
v ¼ 1Fi.e. if the edge-degree d scales up linearly
with the size C of the type-networkFthen L ¼
d: Intuitively, v ¼ 1 implies that all possible
degrees of freedom are used in expressions; or,
expressions are no longer than absolutely
necessary. Lower values of v; but still with
v40; imply longer expression lengths compared
to the combinatorial degree. For example,
v ¼ 1=2 implies L ¼ 2d � 1; that is, it implies
that, for large d; d is roughly half of L:

3. Results

In this section, we discuss the scaling of
differentation in a number of distinct kinds of
selected network (and two kinds of competitive
network). Differentiation C increases dispropor-
tionately slowly as a function of network size N
in all the kinds of network below, and we
compare the fit under both a power-law assump-
tion ðlogCBlogNÞ and a logarithmic assump-
tion ðCBlogNÞ: The relative magnitude of the
correlations under the two assumptions informs
us as to which is the better fit, but does not serve
as a statistical test for the rejection of a model. A
statistical test for fits under these two models
was carried out by searching for non-random-
ness in the serial dependence of the signs of the
residuals about the best-fit line (see Appendix C
for details). For each kind of network studied
below, we compute the probability under the two
models that there is no serial dependence of the
signs of the residuals; low p values (po0:05)
mean that the residuals do show serial depen-
dence, and thus that the model is not a good fit.
ppower and plog refer to the serial-dependence
probabilities under, respectively, the power-law
and logarithmic models.
We will find that in each kind of selected

network studied, the relationship between differ-
entiation and network size is well described by a
power law, and in most cases a logarithmic
relationship can be discounted. Thus, in every
case the relationship is consistent with the
optimality hypothesis presented earlier, and we
will be able to measure the combinatorial degree
from the inverse of the slope of logC vs. logN:

3.1. ELECTRONIC CIRCUITS: NETWORKS

OF ELECTRONIC COMPONENTS

Electronic circuits are an advantageous start-
ing point because they are very well understood.
The number of component types C and total
number of components N were recorded from
373 electronic circuit diagrams (obtained from
the sources listed in Appendix A), ranging in size
N from 2 to 265, and in differentiation C

from 2 to 26. We treated as a component any



y = 0.5288x + 0.0491
R2 = 0.9259

_0.5

0

0.5

1

1.5

_0.5 0 0.5 1 1.5 2 2.5

Log # of edges in type network

L
og

 #
 o

f 
co

m
po

ne
nt

 ty
pe

s

y = 0.4362x + 0.1243
R2 = 0.7466

0

1

2

0 1 2 3
Log # of components

L
og

 #
 o

f 
co

m
po

ne
nt

 ty
pe

s

y = 5.8519x _ 1.7198
R2 = 0.6019

0

10

20

30

0 1 2 3
Log # of components

# 
of

 c
om

po
ne

nt
 ty

pe
s

(a)

(b)

(c)

Fig. 2. (a) Logarithm (base 10) of the number of
electronic component types vs. the logarithm of the total
number of components (n ¼ 373). To make sure each point
in the plot is visible, x and y values were each perturbed by
adding a random number in the interval [�0.05, 0.05]. (b)
Number of electronic component types vs. the logarithm of
the total number of components (n ¼ 373). y-axis values
were perturbed by adding a random number in the interval
[�1, 1], and x-axis values using the interval [�0.05, 0.05]. (c)
Logarithm of the number of electronic component types
vs. the logarithm of the total number of edges in the type-
network (n ¼ 109). x and y values were each perturbed by
adding a random number in the interval [�0.05, 0.05].
Best-fit line (via linear regression) and correlation
shown for each plot (as is the case in every plot in this
paper).
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pre-fabricated electrical component in a circuit
diagram. Example component types include
resistor, capacitor, inductor, diode, Zener diode,
npn transistor, pnp transistor, MOSFET, NOT
gate, AND gate, op amp, and specialized
microcircuits. Figures 2(a) and (b) show log–
log and semi-log plots of differentiation C vs.
circuit size N: The first observation to make is
that C increases with N: This is surprising, since,
like digital circuits, any circuit can, in principle,
be built from just a small, fixed number of node
types (e.g. resistor, capacitor, inductor, diode,
and transistor). A priori, then, it was possible
that C would remain constant at around, say, 5.
That it does not remain constant is not a fact
implied by any laws of electronics. Rather, the
increase in differentiation with size is probably
due to general organizational principles de facto
followed among circuit designers. The second
observation about Figs 2(a) and (b) is that the
quantitative relationship between differentiation
and size in electronic circuits is best described
by a power law, namely CBN0:44 ( ppower ¼ 0:05
and plog ¼ 4� 10�5). The combinatorial degree
d is therefore invariant, and can be estimated as
the inverse of the power-law exponent, and thus
dE2:3: Because d41; electronic circuits are
combinatorial networks, i.e. they use their nodes
as words, and combinatorially make functional
expressions out of them. The fact that the
combinatorial degree is a little over two means
that, whatever the expressions are, there exists
only around two degrees of freedom in their
construction.
Let us now consider how, for electronic

circuits, the connectivity scales within type-
networks. We built type-networks for 109
circuits in Horowitz & Hill (1989), ranging in
total number of edges G from 1 to 96, and in
total number of component types C from 1 to
14. An edge in the type-network exists between
two types just in case there exists a wire
connecting two components of those respective
types. Figure 2(c) plots logC vs. logG; and one
can see that CBG0:52; or GBC1:92 (where an
exponent of 2 here is the maximum possible).
The average edge-degree (i.e. number of edges
at a vertex) d 	 G=C; and thus dBC0:92: That is,
the exponent relating d and C is v ¼ 0:92: In
other words, the total number of edges scales
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roughly as quickly as is possible (i.e. it is
approximately the case that GBC2), and thus
d scales nearly as fast as possible (i.e. approxi-
mately as dBC). Recall that v40 implies that
the network is acting combinatorially; this
provides another confirmation of this conclusion
made earlier. Also, using eqn (8) we may
compute L from d and v: L ¼ ðd þ v � 1Þ=v;
and thus L ¼ ð2:3þ 0:92� 1Þ=ð0:92ÞE2:43:
Because vE1; it follows that LEd; and both L
and d are a little over 2.
Expressions in electronic circuits therefore

tend to be built out of around two components,
and since the combinatorial degree is also
around two, it means that all the possible
degrees of freedom are utilized. What might
expressions in electronic circuits actually be?
Introductory electronics books spend consider-
able time introducing just such circuits. For
example, functional circuits found in Horowitz
& Hill (1989) include the following (with number
of components and number of component types
within the circuit in parentheses):

resistors in series (2, 1), resistors in parallel (2,
1), voltage divider (2, 1), adjustable voltage
divider (2, 1), Zener regulator (2, 2), tunnel
diode amp (2, 2), RC discharge (2, 2), inte-
grator/low-pass filter (2, 2), differentiator/high-
pass filter (2, 2), LC resonant/bandpass filter (3,
3), LC notch filter (3, 3), half-wave rectifier (1,
1), full-wave bridge rectifier (4, 1), full-wave
rectifier using center-trapped transformer (3, 2),
dual-polarity supply (6, 2), voltage doubler (4,
2), diode voltage clamp (2, 2), dc restoration (2,
2), diode limiter (3, 2), diode drop compensa-
tion (4, 2), blocking inductive kick (2, 2), RC
snubber (3, 3), emitter follower (2, 2), Zener
voltage regulator (2, 2), constant-amplitude
phase shifter (2, 2), common-emitter amp (2,
2), classic bipolar-transistor matched-pair cur-
rent mirror (2, 1), improved current mirror (5,
2), push-pull emitter follower (2, 2), Darlington
transistor configuration (2, 1), Sziklai connec-
tion (2, 2), classic transistor differential amp (7,
2), NMOS logic inverter (2, 2), PMOS logic
inverter (2, 2), CMOS logic inverter (2, 1),
CMOS NAND gate (4, 1), CMOS linear amp A
(3, 3), CMOS linear amp B (5, 3), CMOS linear
amp C (5, 3), inverting amp (3, 2), noninverting
amp (3, 2), Howland current source (5, 2),
classic differential amp (5, 2), op-amp peak
detector (4, 3), integrator with op-amp (3, 3),
negative-impedance converter (3, 2).

One can see that the number of components in
most of these is around two (and that the
number of types never exceeds three). Our claim
is that the combinatorial degree and length of
around two is the fingerprint of the existence in
circuits of these kinds of basic functional entities,
or expression types. In less well-understood
kinds of network, the basic functional entities
may be unknown, and knowing the combinator-
ial degree and length may help to discover what
they are.

3.2. LEGOS: NETWORKS OF ATTACHABLE PARTS

Legos are networks of attachable parts, and
we ask how the number of node types relates to
network size within Legos. Only Lego structures
that are intended to build something particular
were considered (i.e. not buckets of generic
pieces, or sets of replacement parts). Some
examples are ‘‘Santa Claus’’, ‘‘Air Patrol’’,
‘‘Spy Boat’’, and ‘‘Cargo Crane’’. Figure 3 plots
the number of Legot piece types vs. the total
number of pieces in 389 such Legot sets
(obtained from http://www.peeron.com/inv/
sets). The first observation is that the number
of Lego piece types increases as a function of
structure size. Furthermore, a power-law rela-
tionship CBN0:71 appears to fit the data better
than a logarithmic relationship ( ppower ¼ 0:09
and plog ¼ 10�7). The combinatorial degree is
therefore invariant, and is approximately 1.4.
One straightforward hypothesis for what an

expression is in Legos (and assembled structures
more generally) is this: an expression just is a
physical connection between two pieces. For
example, piece A might connect to B, and B
might connect to C. AB and BC would then
be two expressions (recall that a single node
can participate in multiple expressions). The
expression length L would thus be 2. Because
the combinatorial degree d must be less than
or equal to L; dp2: If, up to a constant
factor, any Lego piece is physically connectable
to every other piece, then the combinatorial
degree will equal 2. If, however, the fraction of
pieces a piece may connect with falls in larger
Lego sets, the combinatorial degree may be
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Fig. 3. Log–log (base 10) (left) and semi-log (right) plots of the number of Lego piece types vs. the total number of parts
in Lego structures (n ¼ 391). To help to distinguish the data points, logarithmic values were perturbed by adding a random
number in the interval [�0.05, 0.05], and non-logarithmic values were perturbed by adding a random number in the interval
[�1, 1].
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lower than 2, and this may explain the
lower combinatorial degree of around 1.4.
Via similar reasoning, if a network possessed
attachments for which m (rather than 2) pieces
must simultaneously physically connect, we
would expect a maximum combinatorial degree
of m:

3.3. BUSINESSES AND UNIVERSITIES:

NETWORKS OF PEOPLE

There exists a long tradition of looking at
differentiation as a function of business size (e.g.
Simmel, 1902; Caplow, 1957; Hall et al., 1967;
Pugh et al., 1968; Blau, 1970; Blau & Schoen-
herr, 1971; Childers et al., 1971; and see reviews
by Kimberly, 1976; Slater, 1985), but these
researchers commonly only report the correla-
tion of degree of differentiation and organiza-
tion size. In the few cases where degree of
differentiation is plotted against organization
size (e.g. Blau, 1970; Blau & Schoenherr, 1971;
Childers et al., 1971), log–log plots were not
used, and the possibility that the data may
conform to power laws was not investigated.
Figure 4 shows log–log and semi-log plots of
degree of differentiation vs. organization size:
two are for military organizations [(a) and (b)]
[using data from Childers et al. (1971, Fig. 2)],
one from universities as businesses (c) [using
data we obtained ourselves by going to uni-
versity web sites: total number of employees was
often obtainable from university ‘‘at-a-glance’’
pages; the number of employee types was (less
often) obtainable at human resources sites,
where each job type at the university is listed],
and one from employment insurance companies
(d) [using data from Blau & Schoenherr (1971,
Figs 3-2)]. Differentiation increases in each
kind of network as a function of size. Although
each plot is, in terms of the correlation, better
described by a power law than by a logarithmic
model, the logarithmic model can be rejected
only in military vessels; in the other three kinds
of business, neither the power law nor logarith-
mic model can be rejected. (See ppower and plog

values in Table 1.) The exponents are 0.63 for
military vessels (combinatorial degree d ¼ 1:6),
0.88 for military offices (d ¼ 1:14), 0.73 for
universities (d ¼ 1:37), and 0.33 for employment
insurance companies (d ¼ 3).
We may also look at universities not as

networks of employees generally, but rather as
networks of faculty, where two faculty are
considered the same type if they are members
of the same department. The number of depart-
ments is used as the measure of the number of
faculty types. The number of students is used as
the measure of the number of faculty, since
across universities they scale nearly proportion-
ally; namely, the number of faculty scales against
the number of students as a power law with
exponent 0.987 (n ¼ 89; R2 ¼ 0:743) [this plot is
not shown here; and the data for it are taken
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Fig. 4. Log–log (base 10) (left) and semi-log (right) plots of the number of employee types vs. the total number of
employees for four kinds of business organization. (a) and (b) Trends for, respectively, military vessels (n ¼ 13) and military
offices (n ¼ 8). (c) Trend for universities (n ¼ 9). (d) Trend for employment insurance companies (n ¼ 52).
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from universities listed in World of Learning,
2000]. Log–log and semi-log plots of degree of
differentiation vs. total number of faculty for a
number of colleges and universities reveal that
they are related by a power law with exponent
nearly 1/2 [Fig. 5(a)]. In particular, CBN0:55
( ppower ¼ 0:09 and plog ¼ 0:01). The relationship
also appears to fit a power law with slope of 1/2
for Duke University studied through time
[Fig. 5(b)]; however, the logarithmic relationship
cannot be rejected ( ppower ¼ 0:09 and plog ¼
0:05).



y = 0.5512x _ 0.6548
R2 = 0.6952

0

1

2

3

2 3 4 5

log # students (~ log # faculty)

lo
g 

# 
de

pa
rt

m
en

ts
 

(l
og

 #
 f

ac
ul

ty
 ty

pe
s)

y = 0.4836x _ 0.2884
R2 = 0.9205

1

2

3 4
log # students (~ log # faculty)

lo
g 

# 
de

pa
rt

m
en

ts
 

(l
og

 #
 f

ac
ul

ty
 ty

pe
s)

y = 37.311x _ 100.22
R2 = 0.5486

0

100

200

2 3 4 5
log # students (~ log # faculty)

# 
de

pa
rt

m
en

ts
 

(#
 f

ac
ul

ty
 ty

pe
s)

y = 27.873x _ 71.489
R2 = 0.8919

0

10

20

30

40

50

3 4

log # students (~ log # faculty)

# 
fa

cu
lty

 ty
pe

s

(a)

(b)

Fig. 5. Log–log (base 10) (left) and semi-log (right) plots of the number of faculty types vs. the total number of faculty.
(a) The trend across many different colleges and universities, 89 taken from World of Learning (2000) (and plotted first in
Changizi, 2001b) and 23 from Holdaway et al. (1975). (b) The trend for Duke University for the 46 years from 1924 (when
Duke became a university) to 1971 (which we obtained from the Duke archives).
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3.4. ANT COLONIES: NETWORKS OF ANTS

For ant colonies, how internal complexity
changes with colony size has been studied
(Bonner, 1993; Karsai & Wenzel, 1998; Bourke,
1999; Anderson & McShea, 2001), but the
quantitative manner in which differentiation
scales with colony size has not been considered.
We acquired estimates from the literature of the
number of physical size castes in colonies of 46
species (see Appendix B). Figure 6(a) shows that
differentiation scales as a power law against
colony size ( ppower ¼ 0:11 and plog ¼ 0:04). We
also used the ratio of the worker maximum to
minimum linear size as a second measure of
differentiation [Fig. 6(b)], and it also appears to
fit a power law ( ppower ¼ 0:17 and plog ¼ 0:04),
having similar slope to the physical caste plot,
namely, the slopes are near 0.12. The combina-
torial degree for ant colonies is therefore on the
order of 10, which probably reflects the fact that
ants are highly social, and that colony functional
expressions are carried out by the mutual
cooperation of many (i.e. perhaps around 10 or
more) ants. This is in sharp contrast to the much
lower combinatorial degrees for businesses and
universities, where smaller numbers of employ-
ees (between 1 and 3) are probably sufficient to
implement expressions.

3.5. ORGANISMS: NETWORKS OF CELLS

Using data from Bell & Mooers (1997), Fig. 7
shows that differentiation in organisms scales
up as a power law ( ppower ¼ 0:08 and plog ¼ 0:02)
with an exponent of around 0.06 (see also
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Fig. 6. Log–log (base 10) (left) and semi-log (right) plots of differentiation in ant colonies vs. colony size. (a) The
number of physical castes is used as the measure of differentiation (n ¼ 46). x-axis values were perturbed by adding a
random number in the interval [�0.05, 0.05], (b) The ratio of the maximum to minimum worker head width is used as the
measure of differentiation (n ¼ 22).
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Fig. 7. Log-log (base 10) (left) and semi-log (right) plots of the number of cell types vs. the total number of cells, for 134
species of multicellular organism falling in 31 phyla (plant, animal, fungi, Chlorophyta, Phaeophyta, Rhodophyta, Ciliata,
Acrasiomycota, and Myxomycota) (data from Bell & Mooers, 1997).
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Bonner, 1988, 1993; Changizi, 2001b, c). The
combinatorial degree is therefore on the order
of 15 or so, meaning that the construction of
expressions in organisms occurs via the simulta-
neous action of many (i.e. more than a dozen)
nodes. It was conjectured in Changizi (2001b)
that tissues may be the appropriate component,
not the cell, and that tissues combine in
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Fig. 8. (a) Logarithm (base 10) of the number of genes
vs. the logarithm of the number of cell types. (b) Log–log
(base 10) plot of the number of substrate types involved in
metabolic pathways vs. the number of metabolic pathways
in which they are involved, for 43 organisms (data from
Jeong et al. (2000); only ingoing links are included here, and
plot looks nearly identical for outgoing links).
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conglomerations of roughly a dozen (i.e. in the
range of 10–20). A combinatorial degree this
high for organisms is in marked contrast to
Legost, where expressions may be built by
merely a pair of physically connecting compo-
nents, rather than built by more than a dozen
physically proximal tissues.
It is expected that similar combinatorial

principles apply at the lower hierarchical level
where each cell type within an organism is
considered an expression type built from lower-
level components in a subcellular network
(McShea, 2002; McShea & Anderson, 2002).
Consider gene networks as the subcellular net-
works. If B is the number of genes and C the
number of cell types in an organism, then as in
eqn (3), we expect CBBðCÞdðCÞ (where C now is
playing the role of the number of expression
types, and B the number of node types). How
does the number of genes relate to the number of
cell types across organisms? Gene counts were
obtained from the public domain (see, e.g. Liu &
Rost, 2001, for compilation), and cell types from
Bell & Mooers (1997): Escherichia coli [4285
genes, 1 cell type], Saccharomyces cerevisae
[6307, 3], Caenorhabditis elegans [18 944, 24],
Drosophila melanogaster [14 218, 50], Human
[22 887, 102]. There exist gene counts for many
procaryotes, ranging from about 600 (Ureaplas-

ma urealyticum) to that of E. coli of 4285; only
E. coli is shown in the plot [Fig. 8(a)], but is not
used for the linear regression because (i) it may
be inappropriate to treat procaryotes as single-
cell organisms with which multicellular eucar-
yotic organisms are compared, and (ii) even if it
were appropriate, it is not clear which procar-
yote would be representative. One may, then,
plot the number of genes vs. the number of cell
types, and doing so leads to the preliminary
conclusion that, indeed, proteins act combinato-
rially in the construction of cell types, with a
combinatorial degree on the order of magnitude
of three [Fig. 8(a)]. Although few data points for
multicellular organisms currently exist, the range

of the data is nearly as wide as it will get, and
thus the scaling exponent of around 1/3 is not
likely to drastically change as more genomes are
sequenced (i.e. it is unlikely to be 1/10 or 1).
Thus, although hundreds or thousands of genes
may be simultaneously involved in the construc-
tion of a cell type, there are only on the order of
several degrees of freedom. Because of the
meager number of data points, we cannot
determine whether the combinatorial degree is
invariant (i.e. a power law) or whether it is
decreasing (i.e. a logarithmic). Another way to
confirm that subcellular components are used
combinatorially is by examining type-networks.
Jeong et al. (2000) created type-networks for
substrates involved in metabolic activity for 43
organisms (six archae, 32 bacteria, and five
eucaryotes), where two substrate types are
connected just in case they participate in a
metabolic pathway. Figure 8(b) shows a log–log
plot of the number of vertices in the type-
network vs. the number of edges for each of
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these organisms, and one can see that the
number of subcellular node types B scales as
the number of edges G in the type-network to the
power of 0.78, or GBB1:28 (where, recall, an
exponent of 2 is the maximum possible). The
average edge-degree (i.e. the number of edges at
a vertex) d 	 G=B; and thus dBB 0:28: Therefore,
v ¼ 0:28; and since v40 it implies that metabolic
networks act combinatorially.

3.6. NERVOUS SYSTEMS: NETWORKS OF NEURONS

In an effort to acquire the number of neuron
types in neocortex across a variety of mammals,
it is important to confine oneself to counts
within a single counting methodology. Although
there is a considerable literature concerned with
classifying neurons in neocortex, the primary
effort has been on categorization for mammals
as a whole, not on comparisons between
mammals. One recent exception emanates from
the work of Hof and colleagues, who have used
immunoreactive staining and morphological
criteria to compare the neuron types in mammals
from nine orders (Hof et al., 1999), and in great
ape (Nimchinsky et al., 1999). For each mam-
malian order, indices of encephalization P (i.e.
the brain mass after normalizing for body size)
were computed from brain and body weights
(grams) for all species in that order found in the
following references: Hrdlicka (1907), and Bonin
y = 0.2191x + 1.081
R2 = 0.5204
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Fig. 9. Log–log (base 10) (left) and semi-log (right) plots
defined neuron types as a function of index of neuron encephal
well as great ape (Nimchinsky et al., 1999). Number of neuron
Monotremata (7, 0.0699), Artiodactyla (8, 0.0860), Dasyur
(8, 0.1522), Chiroptera (6, 0.1664), Carnivora (9, 0.1830), Ceta
Ape (11, 0.4968).
(1937), Crile & Quiring (1940) and Hofman
(1982a, b). Since brain mass scales as body mass
to the 3/4 power (Allman, 1999; Changizi,
2001a), P is defined as brain mass divided by
body mass to the 3/4 power. Averages were then
taken within families, and the family averages, in
turn, averaged to obtain the average for an
order. Index of neuron encephalization Q (i.e. the
number of neurons after normalizing for body
size) was computed as Q ¼ P2=3; since the
number of neurons in neocortex scales as brain
volume to the 2/3 power (see Changizi, 2001a).
Figure 9 shows plots of the number of neuron
types as a function of the number of neurons in
the neocortex (after correcting for body size),
and one can see that the number of neuron types
increases in larger brains. We cannot refute
either the power-law model ( ppower ¼ 0:16) or the
logarithmic model (plog ¼ 0:16). (Without the
stray Chiroptera point, the correlations under
log–log and semi-log become identical.) The
combinatorial degree is approximately 5. [One
conjecture for what determines this combinator-
ial degree is that expressions are invariant sized
minicolumns (Mountcastle, 1957; Rockel et al.
(1980); Tommerdahl et al., 1993; Peters, 1994;
Mountcastle, 1997; Jones, 2000), or groups of on
the order of 100 neurons spanning the thickness
of the neocortex. There are five cell-body-rich
neocortical layers (in most mammals), and the
neurons in a minicolumn that fall within each
y = 4.4294x + 11.701
R2 = 0.5838
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of the number of morphologically and immuno-reactivity
ization (see text) in 9 mammalian orders (Hof et al., 1999) as
types and index of neuron encephalizations are as follows:
omorphia (7, 0.1291), Insectivora (8, 0.1339), Rodentia
cea (9, 0.3094), Primate (not great apes) (10, 0.2826), Great
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layer may serve a distinct role in the functioning
of a minicolumn. The conjecture is, then, that
these five layers provide five degrees of freedom
in the construction of a minicolumn, which is
reflected in the way the number of neuron types
scales with brain size.]
Another nervous system for which consider-

able data exist on the number of neuron types is
the vertebrate retina. As was the case for the
neocortex, less attention has been paid to
comparing the number of neuron types across
different animals, but the research of Kalloniatis
and Marc provides a single methodology in
which counts have been made for three animals.
The method uses pattern recognition of amino
acid signals to make the classifications, and
counts are nine neuron types for goldfish
(Carassius auratus) (Marc et al., 1995), 12 for
cat (Marc et al., 1998), and 15 for primate
(Kalloniatis et al., 1996). [These counts do not
include retinal pigment epithelial cells or glial
cells (e.g. Muller cells).] The index of neuron
encephalizations for the three animals are,
respectively, 0.0689, 0.1830, 0.3374 (computed
from data in the sources and in the manner given
above for neocortex). A log–log plot of number
of retinal types vs. index of neuron encephaliza-
tion (not shown) gives a best-fit equation of
y ¼ 0:319x þ 1:322; and R2 ¼ 0:9965: Because
of the small number of data points, and because
index of neocortical neuron encephalization is
not an appropriate measure of the number of
neurons in the retina, we attempt no analysis
of these data, except to say that it is clear
that the number of neuron types does appear
to increase in retina of more complex
animals.

3.7. COMPETITIVE NETWORKS:

ECOSYSTEMS AND CITIES

The scaling of differentiation has received
considerable attention in ecosystems, where
there is a long history of studying how the
number of organism types (i.e. species) scales up
with the area of the land, going back at least to
Watson in 1859 (Williams, 1964; Rosenzweig,
1995). Since land area A scales proportionally to
the number of organisms N; species–area plots
serve as plots of the number of organism types C
vs. the total number of organisms N: There are
many kinds of species–area plot (e.g. see
Rosenzweig, 1995, p. 8), and we are here only
interested in those which study how differentia-
tion scales across networks of different sizes, in
contrast to studies of larger and larger subsets of
a single network (as in quadrat studies) where
the governing principles can be distinct. What is
an ecosystem network? The best candidate is an
island biota, as (i) an island is a well-demarcated
network of organisms, (ii) archipelagos usefully
serve to identify a group of such networks of
similar kind, and (iii) island species–area studies
are not beset with sampling issues as is the case
in some of the other kinds of species–area
studies. Accordingly, we wish to know how the
number of species scales up as a function of
island size among islands within an archipelago.
Many such studies have been carried out, usually
focusing on just one class of organism (e.g.
Wilson, 1961; MacArthur & Wilson, 1963;
Johnson et al., 1968; Brown, 1971; Diamond,
1972, 1974; Power, 1972; Johnson & Simberloff,
1974; Case, 1975; Johnson, 1975; Diamond &
Mayr, 1976; Simberloff, 1976; Connor &
McCoy, 1979; Wright, 1981; Lomolino, 1982;
Heaney, 1984; Losos, 1996; Nieminen, 1996;
Holt et al., 1999; Losos & Schluter, 2000). On
the whole, such species–area plots conform to
power laws with slopes in the approximate range
of 0.2–0.4 (Rosenzweig, 1995). For example,
Connor & McCoy (1979) cataloged 100 such
slopes from the literature, and among the
roughly 60 island slopes, the average is about
0.3.
Why is differentiation and network size

related by a power law in island biota networks?
We explained the power-law relationship for
selected networks via the Minimal N Hypoth-
esis, but as discussed then, the hypothesis is only
plausible for selected networks. Island biota
networks are competitive networks (where selec-
tion acts at the level of the nodes, not at the level
of the entire network), not selected networks,
and the Minimal N Hypothesis is inappropriate.
However, there is another hypothesis that is
plausible for island biota networks. Before
stating the hypothesis, consider that a group of
organisms can interact in such a way as to fill
a habitat. That is, some particular group of
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organisms may be able, by virtue of their
interactions, to invade a certain kind of habitat,
whereas another group of organisms (made up
of different organism types) may not be able to.
These habitat-filling groups of organisms are
expressions in the network. We make the
following Habitat-Filling Hypothesis, which
states that, up to a constant proportion, every
habitat type is filled by an expression type (i.e.

filled by a type of group of interacting organisms).
The motivation for this hypothesis is that,
because of competition in the network, every
kind of habitat will be invaded. From this we
may derive that the number of habitat types, H;
will scale proportionally with the number of
expression types, E (i.e. E is the number of
different ways groups of organisms interact to
fill habitats). That is, HBE: Since islands with
twice the area, A; tend to have roughly twice the
number of habitat types, H; we may derive that
ABE: Recalling that island area, A; is propor-
tional to network size, N; we may conclude that
NBE: (Note also that since NX½LðEÞ=s�E from
eqn (1), it follows that L is invariant.) Recall
that this was eqn (2). In a manner identical to
that in Section 2, we may now go on to derive
that, for island biota networks, eqn (5) holds.
Namely,

NBCd ; where d is invariant andX1:

We have arrived at the same conclusion as we
did for selected networks, but we have done
so using a different explanation. A power-law
relationship holds for island biota networks not
because such networks optimize their size subject
to the ‘‘needed’’ network complexity (as was the
case for selected networks), but, rather, because
these networks maximally fill every available
habitat (up to a constant factor) on the island.
[This explanation of the species–area relation-
ship has certain affinities with Williams (1964)
and Simberloff (1972) in that the number of
organism types is hypothesized to increase
because of the increase in the number of habitat
types.]
Although we have just provided an explana-

tion for why species–area plots conform to
power laws, we have not explained the magni-
tude of the exponent. As mentioned earlier, the
power-law exponents for species–area plots tend
to be approximately 0.3, and thus the combina-
torial degree values are around 3 (ranging from
about 2.5 to 5, depending on the study). We now
put forth an explanation for why combinatorial
degrees are in this range. A combinatorial degree
of around 3 means that there are three degrees of
freedom in expressions, recalling that expres-
sions are habitat-filling groups of organisms. We
hypothesize that such habitat-filling groups are
of the following nature: each group consists of
a predator, a herbivorous prey, and so on down
through the trophic levels. That is, we hypothe-
size that expressions are food chains, and it is
food chains that fill habitats. Furthermore, we
hypothesize that there is a degree of freedom for
each trophic level in the chain, and thus that the
combinatorial degree is determined by food
chain length. This hypothesis makes several
predictions.
One straightforward prediction is that, since

the combinatorial degrees are roughly 3 (i.e.
somewhere between 2.5 and 5), food chain
lengths should also be around 3 on average
(i.e. somewhere between 2.5 and 5). Food chain
lengths have been measured in a variety of kinds
of food web (Pimm & Lawton, 1977; Briand,
1983; May, 1983; Cohen et al., 1986, 1990;
Newman & Cohen, 1986; Schoener, 1989;
Sugihara et al., 1989; Warren, 1989; Martinez,
1991; Pimm et al., 1991; Polis, 1991; Schoenly
et al., 1991; Goldwasser & Roughgarden, 1993,
1997; Cabana & Rasmussen, 1996; Vander
Zanden et al., 1999; Post et al., 2000), and,
indeed, their lengths tend to be in the range of
about 3–5 (for longer estimates see Polis, 1991;
Martinez, 1991). For example, of 113 webs in
Cohen et al. (1990), the average of the average
food chain length within a web is 2.88 (S.D.
0.87), and the average maximum chain length is
4.21 (S.D. 1.51). More recent isotope methods
for determining the number of trophic levels (in
aquatic systems) have concluded that there are
between 3 and 5 (Cabana & Rasmussen, 1996;
Vander Zanden et al., 1999; Post et al., 2000).
These food chain length estimates are, then,
consistent with the hypothesis that it is food
chains that are the expressions, and that the
combinatorial degree is determined by the food
chain length.
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A second prediction of this ‘‘combinatorial
degree dEfood chain length L’’ hypothesis is
that, since the combinatorial degree is invariant,
food chain length should not vary as a function
of island area. Although food chain length does
appear to increase somewhat as a function of
species richness (Briand, 1983; Hall & Raffaelli,
1991; Vander Zanden et al., 1999; Post et al.,
2000), we are unaware of any documented
trend in food chain length as a function of
island size.
We may make a third prediction by recalling

eqn (7) from Subsection 2.5, which stated that
d ¼ vL � v þ 1; where v is the scaling exponent
relating edge-degree d to the number of vertices
C in a type-network. This may be manipulated
to become v ¼ ðd � 1Þ=ðL � 1Þ: Our hypothesis
that dEL (and each is 41) for island biota
networks predicts that v ¼ 1: For ecosystems,
type-networks are food webs, and edges are
trophic links. Our prediction is therefore that, in
food webs, the number of trophic links per
species, or edge-degree d; scales proportionally
with the number of species in the web, C: The
earliest studies of edge-degree scaling argued
that dBC0 (e.g. Pimm, 1982; Cohen & Briand,
1984; Sugihara et al., 1989; Cohen et al., 1990;
Warren, 1990), meaning v ¼ 0: (This would
imply that island biota networks are not
combinatorial at all.) Later researchers, how-
ever, suggested that such edge-degree invariance
may primarily be due to ‘‘artistic convenience’’
in drawing food webs, and that more detailed
food webs reveal that v40: for example, Pimm
et al. (1991) give v ¼ 0:3 or 0.4, Havens (1992)
gives v ¼ 0:4; and Martinez (1992), Deb (1995),
and Havens (1997) argue that v ¼ 1: These most
recent estimates are consistent with our predic-
tion. If, however, v is sometimes lower than 1,
then it would imply that food chain length is
greater than the combinatorial degree [again, as
related by eqn (7)].
Finally, notice that if this ‘‘combinatorial

degree E food chain length’’ hypothesis is true,
then archipelagos with longer food chains are
predicted to have lower species–area slopes, all
things equal. This is because biota with longer
chains have more combinatorial room to build
novel expression types with which to fill new
habitat types without the need for new species;
biota with shorter chains exhaust their possible
expression types more quickly, and a new
organism type (via speciation or invasion) is
needed in order to have new expression types
capable of adjusting to novel habitat types. A
counterintuitive consequence of this is that if
healthier biotas tend to have longer food chains
(e.g. of length 5 rather than, say, 3), then
healthier biotas should scale up the number of
species less quickly than less healthy biota with
shorter chains, all things equal.
Another kind of competitive network is cities,

or networks of businesses. Using web-accessible
business directories (i.e. online yellow pages), for
82 cities we measured the number of businesses
in the city N and the number of types, or
categories, of business C: The cities were chosen
arbitrarily, the only guide being to acquire a
large range of city sizes. Data were obtained via
the online search engine www.superpages.gte.-
net. The search engine allows one to search for
all businesses and all business types among
businesses whose first letter is a certain char-
acter. Searches via very common first-letter
characters lead to too many listings and the
engine responds with an ‘‘error’’, so we carried
out searches using the relatively less common
first-letter characters ‘j’ and ‘k’. Figure 10 shows
the results for ‘j’ (the plots for ‘k’, not shown,
look nearly identical), and the differentiation of
a city increases roughly as CBN0:64: Note that
this kind of scaling law is important to know for
those wishing to use economic diversity mea-
sures to diagnose a city’s economic health: any
good measure of economic diversity would have
to account for the diversity that is due simply to
the city being as large as it is, and an appropriate
measure might accordingly be C=N0:64: We do
not take up here possible explanations for this
scaling relationship.

4. Discussion and Conclusion

Consider some of the generalizations we may
make about the scaling of differentiation in
selected networks. The first, and most central,
generalization is that differentiation increases
with size. This is not some kind of tautology, for
as discussed in Section 1, it is a priori possible
that a fixed set of node types could serve as
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a universal language from which all possible
expression types could be built. If this ‘‘universal
language’’ strategy were taken, increases in
network complexity, E; would be achieved by
increasing the average length of an expression.
Selected networks do not, then, take the ‘‘uni-
versal language’’ approach. Instead, selected
networks appear to be governed by an optimiza-
tion hypothesisFthe Minimal N Hypothe-
sisFso that network complexity is econo-
mically accommodated by the network. Increas-
ing expression length as a function of network
complexity would lead to an unnecessarily large
and costly network size. Therefore, expression
length (and combinatorial degree) is kept invar-
iant in selected networks, and increased com-
plexity must come entirely from increased
differentiation. It follows that selected networks
should not only increase differentiation with
network size, but that they should be related by a
power law. Indeed, we saw that for each of the
12 kinds of selected network studied above,
differentiation fits a power-law relationship (see
Table 1). In a majority of the cases (7 of 12) a
logarithmic relationship could be rejected; and
of the five cases where a logarithmic relationship
could not be rejected, four of the five (all but
nervous systems) had lower correlations under a
power-law model. Furthermore, except possibly
for military offices, the combinatorial degrees
are greater than one in each case, meaning that
each kind of network acts combinatorially. An
alternative optimization hypothesisFthe Habi-
tat-Filling HypothesisFwas used to explain why
differentiation follows a power law in networks
of competing organisms. That is, we explained
why species–area plots follow power laws, and
argued that the power-law exponent in these
plots may be due to the average food chain
length.
Examination of the combinatorial degree

values in Table 1 reveals two starkly distinct
regimes among selected networks: the networks
undergoing natural selection have high combi-
natorial degrees (about 5 for neocortex, 8 for ant
colonies, 17 for organisms), and all the others
have relatively low combinatorial degrees (be-
tween 1 and 3). [It also appears to be low
(around 2) in single-community societies, such
as Tasmanians, Bushmen, and the Maori (see
Carneiro, 1967; Bonner, 1993).] All the low
combinatorial degree selected networks are hu-
man constructionsFcircuits, Legos, businesses,
and universitiesFand we speculate that the
reason for the difference in scaling exponents is
that it is easy to acquire new types among
human-oriented networks. Humans can quickly
build a new electronic component type or Lego
piece type, and humans can themselves quickly
become a new employee or faculty typeF
humans may be trained in a few weeks or years,
and, at worst, in one generation new employee
types or faculty types can be output from the
educational system. In short, humans are plastic
and inventive, and it is thus inexpensive to
increase the number of node types in systems for
which human ingenuity is at the base. For
nervous systems, ant colonies, and organisms,



Table 1
Summary of results*

Network Node No. data
points

Range of
logN

Log–logR2 Semi-logR2 ppower=plog Relationship
between C
and N

Comb.
degree

Exponent v
for type-net
scaling

Figure
in text

Selected networks
Electronic circuits Component 373 2.12 0.747 0.602 0.05/4e�5 Power law 2.29 0.92 2

Legost Piece 391 2.65 0.903 0.732 0.09/1e�7 Power law 1.41 F 3

Businesses
military vessels Employee 13 1.88 0.971 0.832 0.05/3e�3 Power law 1.60 F 4
military offices Employee 8 1.59 0.964 0.789 0.16/0.16 Increasing 1.13 F 4
universities Employee 9 1.55 0.786 0.749 0.27/0.27 Increasing 1.37 F 4
insurance co. Employee 52 2.30 0.748 0.685 0.11/0.10 Increasing 3.04 F 4

Universities
across schools Faculty 112 2.72 0.695 0.549 0.09/0.01 Power law 1.81 F 5
history of Duke Faculty 46 0.94 0.921 0.892 0.09/0.05 Increasing 2.07 F 5

Ant colonies
caste¼ type Ant 46 6.00 0.481 0.454 0.11/0.04 Power law 8.16 F 6
size range¼ type Ant 22 5.24 0.658 0.548 0.17/0.04 Power law 8.00 F 6

Organisms Cell 134 12.40 0.249 0.165 0.08/0.02 Power law 17.73 F 7

Neocortex Neuron 10 0.85 0.520 0.584 0.16/0.16 Increasing 4.56 F 9

Competitive networks
Biotas Organism F F F F F Power law E3 0.3 to 1.0 F

Cities Business 82 2.44 0.985 0.832 0.08/8e-8 Power law 1.56 F 10

*(1) The kind of network, (2) what the nodes are within that kind of network, (3) the number of data points, (4) the logarithmic range of network sizes N (i.e. logðNmax=NminÞ), (5) the log–log
correlation, (6) the semi-log correlation, (7) the serial-dependence probabilities under, respectively, power-law and logarithmic models, (8) the empirically determined best-fit relationship

between differentiation C and organization size N (if one of the two models can be refuted with po0:05; otherwise we just write ‘‘increasing’’ to denote that neither model can be rejected), (9)
the combinatorial degree (i.e. the inverse of the best-fit slope of a log–log plot of C versus N), (10) the scaling exponent for how quickly the edge-degree d scales with type-network size C

(in those places for which data exist), (11) figure in this text where the plots are presented. Values for biotas represent the broad trend from the literature.
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on the other hand, the creation of a new node
type is costly and difficult: natural selection is
required. Having a greater combinatorial degree
drastically reduces the rate at which new node
types must be added. However, this comes with
a cost: each expression itself must be more
complex. That is, more components must inter-
act in a coordinated, or social, manner in order
that an expression be implemented. This is one
reason that even small nervous systems, ant
colonies, and organisms are so much more
difficult to understand than, say, (similarly sized)
electronic circuits: their expressions are longer,
and the rules governing the formation of
expressions are accordingly more difficult to
infer.

The authors thank Drs Daniel McShea, Richard
Burton, Warren G. Hall, and Zhi-Yong Yang for
valuable discussions and comments.
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APPENDIX A

Data for electronic circuits were acquired
from the following places:

* Horowitz & Hill (1989)
* members.aol.com/beacoqui/main/partlist.htm
* members.aol.com/stanpope2/khamm/
parts.html

* optics.caltech.edu/billgr/tec-control/teccparts.
html

* videogames.org/html/PongStuff/PartsList.
html

* www.bloblulent.com/hp300/peripherals
* www.ee.washington.edu/circuit archive/
circuits/

* www.electronics projects.net
* www.hiviz.com/tools/triggers/makeown.htm
* www.interq.or.jp/japan/se inoue/
e sampl1.htm

* www.math.niu.edu/Bbehr/RC/KW/kw-low-
schem.pdf

* www.nostalgiaair.org/NostalgiaAir/Sche-
matics/schem SCT.htm

* www.paia.com
* www.pjrc.com/tech/8051/board3/schema-
tic.html

* www.plitron.com/Pages/Products/Audio/
circuit.htm
* www.portlandrobotics.org
* www.solorb.com/gfc/elect
* www.space-rockets.com/Altparts.html
* www.velleman.be/kits
* www.xs4all.nl/Bsbolt/e-foto

APPENDIX B

Data for 52 species of ants were obtained from
the following sources, where after the citation we
have placed the species name and, in square
brackets, the logarithm of maximum colony size,
the number of castes, and the maximum-
to-minimum head ratio (‘n’ means ‘‘no data’’).
Brandao (1978): Formica perpilosa [2.65, 3, n].
Brandao (1983): Ondontomachus affinis [2.65, 1,
n]. Beshers & Traniello (1994): Trachymyrmex

septentrionalis [3.08, 1, 1.67]. Carlin (1981), Corn
(1980), Franks (1985), Franks & Norris (1986),
Kaspari & Vargo (1995): Orectognathus versico-
lor [2.02, 2, 1.47], Cephalotes atratus [4.05, 2,
2.2], Eciton burchelli [5.92, 4, 3.37], Leptothorax
longispinosus [1.66, 1, 1.66], Pheidole dentata

[2.98, 4, n]. Fowler et al. (1986) and Wilson
(1980): Atta sexdens [6.90, 4, 20]. Jaffe (1987):
Atta laevigata [7, 12, n], Atta cephalotes [7, 10, n],
Acromyrmex octospinosus [5, 4, n], Acromyrmex
landolti [4, 3, n], Trachymyrmex urichi [3, 1, n],
Mycocepurus sp. [2, 1, n], Myrmecocrypta sp. [2,
1], Crematogaster sumichrasti [5, 2, n], Myrmica

rubra [4, 1, n], Leptothorax unifasciatus [2, 1, n],
Eurhopalotrix heliscata [2, 1, n], Novomessor

albisetosus [2, 1, n], Ectatomma ruidum [3, 1, n],
Neoponera apicalis [2, 1, n], Odontomachus bauri

[3, 1, n], Pseudomyrmex triplarinus [4, 1, n],
Pseudomyrmex termitarius [2, 1, n], Oecophylla
longuinoda [5, 2, n], Camponotus rufipes [4, 2, n],
Gigantypos destructor [1, 1, n], Azteca foreli [6, 1,
n], Conomyrma biconis [4, 1, n], Nothomyrmecia

macrops [2, 1, n]. Longhurst & Howse (1979):
Megaponera foetens [2.93, n, 2.13]. Moffett
(1985): Acanthomyrmex notabilis [1.7, 2, n].
Moffet (1986a): Oligomyrmex overbecki [2.60,
2, 1.55]. Moffett (1986b): Proatta butteli [4.00, 1,
1.37]. Moffett (1988): Pheidologeton diversus

[5.40, 4, 3.25]. Traniello (1982): Amblyopone
pallipes [1.54, 1, n]. Traniello & Jayasuriya
(1985): Aneuretus simoni [2.03, 2, n]. Wheeler
(1984): Procryptocerus scabriusculus [1.79, 1,
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1.19], Zacryptocerus christopherseni [3.60, n,
1.87]. Wheeler (1986): Azteca chartifex [2.75,
2.5, 1.65], Azteca trigona [5.70, 2, 2.41]. Wilson
(1978): Solenopsis geminata [6.00, 5, 4.03],
Solenopsis invicta [5.36, 4, 3.33]. Wilson (1985):
Atta cephalotes [6.60, n, 7.14]. Wilson (1986):
Erebomyrma nevermanni [2.26, 2, n]. Wilson
(1987): Formica exsectooides [5.38, n, 1.19],
Prenolepis imparis [3.34, n, 1.54]. Wilson &
Fagen (1974): Leptothorax curvispinosus [2.00,
1, n]. Wilson & Brown (1984): Eurhopalothrix

heliscata [2.67, 1, 1.17]. Wilson & Holldobler
(1986a): Basiceros manni [1.70, n, 1.18]. Wilson
& Holldobler (1986b): Prionopelta amabilis [2.85,
1, 1].

APPENDIX C

In order to distinguish between the power-law
(logCBlogN) and logarithmic (CBlogN)
models, a statistical test was carried out, which
we describe here. If a model fits the data, then
the sign of the residuals about the best-fit line
should not vary in a systematic fashion as a
function of logN: Suppose the data are parti-
tioned into subsets, or groups, of size m of
adjacent data. Thus, suppose that g1 is the first
set of m adjacent residuals (i.e. the m residuals at
the low end of logN), g2 the subsequent set of m
adjacent residuals, and so on. Let ri be the
average value of the residuals in gi: If the model
is a good fit, then the signs of the average
residuals for nearby groups should be indepen-
dent of one another. In particular, the prob-
ability should be 1/2 that ri and riþ1 have the
same sign. Let hi ¼ 0 if ri and riþ1 have the same
sign, and hi ¼ 1 otherwise. The binary sequence
/h1; h2; :::; hk�1S thus summarizes the serial
dependence of the signs of the average residuals
within the k groups. We may then compute the
probability of this sequence being generated at
random. That is, the probability of getting r 0’s
in the binary sequence of length k is Ck

r ð1=2Þ
k:

Because we are primarily interested in identify-
ing large-scale deviations from the models, we a
priori chose to create approximately 40 groups
for each data set. (When the total number of
data points, n; was less than this, n groups of size
one were used.)
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