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Complexity science as order-creation science:
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by classical physics and most obviously carried 
over into social science by neoclassical econom-
ics. Especially because of the increasingly rapid 
change dynamics at the dawn of the 21st century, 
different kinds of foundational assumptions 

-
ogy. Complexity science - really ‘order-creation 
science’ - is particularly relevant because it is 
founded on theories explicitly aimed at explaining 
order creation rather than accounting for classical 
physicists’ traditional concerns about explaining 
equilibrium. This article sets up the rapid change 
problem, and shows why evolutionary theory is 
not the best approach for explaining entrepre-
neurship and organizational change dynamics. 
New theories from order-creation science are 

science is brought to center stage. Agent-based 
computational models are shown to be better 
than math models in playing the role of forcing 
theoretical elegance and continuing the essential 
experimental tradition of effective science.

Introduction

Isabelle Stengers (2004) reminds us that the found-
ing idea of complexity science was Prigogine’s 
juxtapositioning of the 1st and 2nd Laws of Thermo-

dynamics so as to explain the emergence of dissipative 
structures. Implicit in this was his questioning of the 
reversibility of time and the centrality of equilibrium in 
“normal” science (Prigogine & Stengers, 1984). There 
can be no greater foundational challenge to normal 
science, the origin of which was classical physics. 
Sandra Mitchell (2004) reminds us of the centrality of 
idealized, abstract models, one of the enduring lega-
cies of logical positivism (McKelvey, 2002). Ironically, 
if mathematics is taken as the model-technology of 
choice, these two foundational statements can’t be 
joined. Why? Math as the core modeling method of 
modern science originated in Newton’s studies of 
orbital mechanics and was greatly reinforced by the 
Vienna Circle’s founding of logical positivism in 1907 
(Suppe, 1977). Given that the 1st Law is about conser-
vation of energy, and that classical physical dynamics 
is about the translation of matter from one form to 
another, math became the only means of rigorously ac-
counting for the accuracy of the translation, and thereby 

Complexity science as order-creation science: New theory, new method
E:CO Issue Vol. 6 No. 4 2004 pp. 2-27

the proving of theories about what causes what, given 
equilibrium. Simply put, math models can’t handle 
order creation. The methodological invention that does 
allow the joining of the two foregoing foundational 
statements is the agent-based[1] computational model. 

experiments will be seen as the primary contribution 
of the Santa Fe Institute.

The tendency in organization studies so far is 
to focus on explicating the term complexity, seemingly 
in every way possible, and to rush toward offering prac-
tical wisdom, again, seemingly in every way possible. 
Could it be that the science of it all is being ignored in 
the rush toward practical application? My intent is to 
emphasize the science part in two ways. First, calling 
‘it’ complexity science is like calling thermodynamics 
‘hot’ science. Complexity and hot are the outcomes at 
one end of the dynamic scale. More aptly, complexity 
science is order-creation science. This puts focus on the 
fundamental change in the nature of the dynamics in-
volved - from equilibrium dynamics to order-creation 
dynamics. Second, there is the changing role of models. 
Math is good for equilibrium modeling. Agent-based 
computational models are essential for modeling order 
creation.

My objective is to explain why order-creation 
-

ars doing management and organizational studies 
can better understand the modern dynamics of their 
phenomena. I begin with a review of why ‘New Age’ 
economies and organizations in the digital information 
era call for organizational designs in which the collec-
tive intelligences of many employees may be brought to 
bear, quickly, on New Age organization problems and 
strategies. I then discuss why order-creation science 
offers better ways of understanding and researching 
emergent collective phenomena. Foremost among 
these new methods is the use of agent-based com-
putational models. I also outline the epistemological 
reasons why models remain a cornerstone of effective 
science. A short overview of how one might use agent 
models in conducting one’s research on organizations 
and managerial processes follows.

Academic
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Organizational dynamics in the 21st century
‘New age’ economics and increased external 
complexity

Over past centuries, economic life has been 
marked by three revolutions: agricultural, 
industrial, and service. The 21st century brings 

with it a fourth - the digital information age. Nowhere 
are the dynamics characterizing the knowledge era 
more vividly and succinctly portrayed than in a recent 
book edited by Halal and Taylor (1999), 21st Century 
Economics: Perspectives of Socioeconomics for a Chang-
ing World. Their conclusions (paraphrased) are far 
reaching (pp. 398-402):

Economies of the 21st century will be dominated 
by globalization and integrated by sophisticated 
information networks;

Increasingly deregulated economies will mirror 
the textbook ideal of perfect competition (and 

Creative destruction from the transition will create 
social disorder worldwide;

Nearly autonomous entrepreneurial cellular 
networks and fundamentally different ways of 
corporate governance will replace top-down hi-
erarchical control.

Part Two of their book, titled “Emerging 
Models of the Firm,” focuses on the magnitude of the 
problem managers face as they cope with increasing 
competitiveness world-wide while at the same time 
trying to shift from top-down control to the man-
agement of complex new organizational forms using 
radically new approaches of managerial leadership for 
purposes of knowledge creation and the creation of in-
tra-organizational market dynamics. As if this weren’t 

as the driving element[2]:

“The only thing that gives an organization a competitive 
edge - the only thing that is sustainable - is what it knows, 
how it uses what it knows, and how fast it can know something 
new!”

Halal and Taylor say life will be different on 
the other side of the millennium - the New Age:

“Communism has collapsed, new corporate structures 
are emerging constantly, gover nment is being 
‘reinvented’, entirely new industries are being born, 
and the world is unifying into a global market governed 
by the imperatives of knowledge.” (1999: xvii) 

The four conclusions by Halal and Taylor, 
mentioned above, predict economic revolution over 
the next two decades. Given this, what should organi-

1.

2.

3.

4.

clues come from Part II of their book, boiled down in 
their Table 1, which focuses on “Emerging Models of 
the Firm.” Abstracting from this Table, what do the 
various authors in Part II see going on?

New technology, dynamic markets, accelerating 
change, shorter product life cycles, digital infor-
mation revolution, decentralization, globalization, 
environmental decay;

Corporate restructuring focusing on responding to 
hypergrowth, building cellular networks, product-
cycle management, use of internal markets;

Disequilibria rather than optimization, with ef-

from employee empowerment.

The authors in Part II emphasize decentral-
ization, cellular networks, internal markets, and em-

Age economies - all in response to disequilibria and 
new economic trends. Key questions we face are: How 
should we research organizational and/or managerial 
dynamics? How should managers manage? (Drucker, 
1999) 

Also from Halal and Taylor (1999) we learn 
that New Age trends call for dramatically new organi-
zational strategies and designs. Strategy scholars have 
seen this coming. Recent writers about competitive 
strategy and sustained rent generation parallel Prusak’s 

-
edge. Competitive advantage is seen to stem from keep-
ing pace with high-velocity environments (Eisenhardt, 
1989), seeing industry trends (Hamel & Prahalad, 1994) 
and value migration (Slywotzky, 1996), and staying 

of increases in the need for dynamic capabilities, faster 
learning, and knowledge creation there is an increased 
level of causal ambiguity (Lippman & Rumelt, 1982;
Mosakowski, 1997). Learning and innovation are not 
only more essential (Ambrose, 1995), but also more dif-

et al., 1996; ogilvie, 1998). Dynamic 
ill-structured environments and learning opportuni-

can be early in their industry to unravel the evolving 
conditions (Stacey, 1995). Drawing on Weick (1985), 
Udwadia (1990), and Anthony, et al. (1993), ogilvie 
(1998: 12) argues that strategic advantage lies in de-
veloping new useful knowledge from the continuous 
stream of “unstructured, diverse, random, and contra-

•

•

•
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Matching internal to external complexity via
bottom-up emergence
The foregoing trends appear on a CEO’s horizon as 
uncertainties. Uncertainty in organizational environ-
ments is a function of (1) degrees of freedom (generally 

Mann, 1994); (2) the possible nonlinearity of each 
variable comprising each degree of freedom, and (3)
the possibility that each may change. These three envi-
ronmental ingredients give rise to seemingly countless 
strategic options. Long ago, and seemingly in simpler 
times, Ashby characterized environments and possible 
adaptive options using the term “variety.” His classic 
Law of Requisite Variety (1956: 207) holds that:

“only variety can destroy variety”

What does Ashby mean by “destroy”? His 
insight was that a system has to have internal variety, 

external variety so that it can self-organize to deal with 
and thereby “destroy” or overcome the negative effects 
on adaptation of imposing environmental constraints 
and complexity. In biology, this is to say that a species 
has to have enough internal genetic variance to suc-
cessfully adapt to whatever resource and competitor 
tensions imposed by its environment. I update and 
extend Ashby’s Law as follows:

Only internal variety can destroy external variety 
- updates to:

Only internal degrees of freedom can destroy ex-
ternal degrees of freedom - updates to:

Only internal complexity can destroy external 
complexity - updates to:

Only interactive heterogeneous agents can destroy 
external complexity - updates to:

Only distributed intelligence can destroy external 
complexity.

But how is external complexity destroyed 
and internal complexity created? Thompson (1967), 

that variety was reduced from the top. Thus, at each 
level starting with the CEO, some variety is taken out 
of the system so that at the bottom, workers do their 
jobs in a machine-like setting of total certainty. This is 
a top-down approach to uncertainty reduction. Nearly 
a quarter century later, Mélèse (1991) takes the opposite 
view, arguing that variety reduction happens best from 
the bottom up. Simon (1999) observes that it is not just 
variety that is out there to be destroyed but also high 
change-rate effects. Lower level units, therefore, must 
absorb variety, leaving upper managers with less fre-
quent, less noisy, less complex, but weightier decisions. 
By way of expanding on how organizations might go 

1.

2.

3.

4.

5.

four approaches to the bottom-up variety destruction 
problem.

Knowledge creation[3]. Knowledge theory explores 
strategies for effectively utilizing worker intelligence 
(Grant, 1996). According to current literature, the 
wellsprings of knowledge (Leonard-Barton, 1995) 
derive from the connected intelligences of individu-
als (Nonaka & Takeuchi, 1995; Nonaka & Nishiguchi, 

individual intelligences in their production enterprise 
(Burton-Jones, 1999; Davenport & Prusak, 1998; 
Gryskiewicz, 1999), they must develop strategies for 
acquiring, interpreting, distributing, and storing the 
information that individuals possess (Huber, 1996). 
Nonaka and Nishiguchi (2001) describe this knowledge 
management process as the expansion of “individual 
knowledge” into higher-level, “organizational knowl-
edge.”

In social systems, the learning dynamics 
described above occur simultaneously and interac-
tively - it is a connectionist social capital development 
problem (Burt, 1992). Transactive memory (Moreland 
& Myaskovsky, 2000; Wegner, 1987) and situated 
learning studies (Glynn, et al., 1994; Lave & Wenger, 
1991), for example, all show learning as a nonlinear, 
interactive, and coevolving (Lewin & Volberda, 1999) 
process. Even individual cognitive processes are seen 
as socially distributed (Taylor, 1999), with employees 

other (Argote, 1999). Learning, thus, is a recursive 
connectionist process rather than a linear agent-inde-
pendence one.

Recent work now stresses the importance of 
the “collective mind” (Lave & Wenger, 1991; Weick 
& Roberts, 1993). According to Glynn, et al. (1994), 
learning is “best modeled in terms of the organizational 
connections that constitute a learning network” (p. 
56). Wenger (1998) focuses on individual learning in 
“communities of practice,” observing that individual 
learning is inseparable from collective learning. Lant 
and Phelps (1999: 233) hold that learning should be un-
derstood primarily as evolving within “an interactive 
context… embedded in the context and the process of 
organizing.” McKelvey (2001a, 2005) refers to recursive 
vertical and horizontal individual / group learning pro-
cesses in organizations as “distributed intelligence.” 

Distributed Intelligence. Henry Ford’s quote represents 
thinking in the Industrial Age:

“Why is it that whenever I ask for a pair of hands, a brain 
comes attached?” (Ford)[4]
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vs.

“My work is in a building that houses three thousand 
people who are essentially the individual ‘particles’ of the 
‘brain’ of an organization that consists of sixty thousand 
people worldwide.” (Zohar, 1997: xv)

Zohar (1997) starts her book by quoting the 
director of retailing giant, Marks & Spencer. Each 
particle (employee) has some intellectual capability - 
Becker’s (1975) human capital. And some of them talk 
to each other - Burt’s (1992) social capital. Together 
they comprise distributed intelligence. Human capital 
is a property of individual employees. Taken to the 

-
tive capability if they are isolated from everyone else. 

knowledge requisite for competitive advantage increas-
ingly appear as networks of human capital holders. 
These knowledge networks also increasingly appear 

to upper management (Norling, 1996). Employees are 
now responsible for adaptive capability rather than just 
being bodies to carry out orders. Here is where net-
works become critical. Much of the effectiveness and 
economic value of human capital held by individuals 
has been shown to be subject to the nature of the social 
networks in which the human agents are embedded 
(Granovetter, 1973, 1985, 1992).

Intelligence in brains rests entirely on the 
production of emergent networks among neurons 
- “intelligence is the network” (Fuster, 1995: 11). Neu-
rons behave as simple “threshold gates” that have one 

increases, it is represented in the brain as emergent 
connections (synaptic links) among neurons. Human 
intelligence is ‘distributed’ across really dumb agents! 
In computer parallel processing systems, computers 
play the role of neurons. These systems are more ‘node-
based’ than ‘network-based’. Artificial intelligence 
resides in the intelligence capability of the computers 
as agents, with emergent network-based intelligence 
still at a very primitive stage (Garzon, 1995). My focus 
on distributed intelligence places most of the emphasis 
on the emergence of constructive networks. The lesson 
from brains and computers is that organizational intel-
ligence or learning capability is best seen as ‘distributed’ 
and that increasing it depends on fostering network 
development along with increasing agents’ human 
capital. 

Cellular networks: Miles, et al. (1999) offer a second 
approach to variety destruction. They refer to the 21st

century as the era of innovation. They see self-orga-
nizing employee learning networks as essential to 
effective performance in the knowledge economy. It 

takes continuously evolving networks to keep up with 
rapidly evolving elements of the knowledge economy, 
particularly technology, market tastes, and industry 
competitors. Miles, et al. (1999) see entrepreneurship, 
self-organization, and member ownership as the es-
sential ingredients of effective cellular networks. Cells 
consist of self-managing teams of employees - the 
heterogeneous agents governed by what complexity 
scientists term ‘simple rules’. The cells have “…an 
entrepreneurial responsibility to the larger organiza-
tion” (p. 163). Miles, et al. (1999) say that if the cells are 

centers. They emphasize the instability of the cells, 
noting that each cell must reorganize constantly. It 
needs appropriate governance skills to do this. 

For Miles, et al. (1999), the CEO’s approach 
to managing the cells is based on viewing the cells as 

organization. In the other (The Acer Group), the cells 

Details remain vague as to how the cells maintain their 
autonomy in the face of top-down control, or how the 
CEOs assure shareholder value from the cells. Miles, 
et al. (1999) talk about self-organization, learning 
networks, and emergent cells, but, again, how all this 
works is vague. 

Managing appropriate network autonomy. In a recent 
paper Thomas, et al. (2005) remind us that Roeth-
lisberger and Dixon discovered the classic control-
autonomy duality (formal vs. informal organization) 
back in 1939. By now, several dualities have been 
observed: control vs. autonomy, innovation, variety, 
and self-organization, and change rate, among others.
Thomas, et al.’s (2005) review shows that the ‘English’ 
literature tends to persist in looking for bipolar duality 
solutions in which the opposing forces are balanced or 
adjusted to achieve an “optimum mix” (March, 1999: 
5). In contrast, they observe that the ‘French’ literature 
holds that control and autonomy - and other dualities 
- are “entangled.” Even though control might dominate 
(the “englobing” force), for example, circumstances 
are recognized when autonomy can dominate (“inver-
sion”). Further, the French see the rate of “inversion / 
reversion” between which pole of the duality domi-
nates as unstable. The tangled poles - really forces - of 
dualities have to be appropriately “managed” if a CEO 
wishes to create and maintain the “combination of 
independence and interdependence” characterizing 
Miles, et al.’s “cellular network” design. Some 60 years 
of organizational research shows this is much easier 
said than done!
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Based on a twelve-year analysis of a global 
et al. (2005) conclude that:

Any attempt to focus only on the autonomy end 
of a duality likely will fail. 

Effective “leading” of a cellular network requires 
setting in motion the dynamic inversion / rever-
sion of control and autonomy, such that they are 
“entangled” as opposed to “balanced” or “opti-
mized” (March, 1991, 1999). Further, they evolve 
in their interactive dynamics over time.

The ‘rate’ at which the bipoles irregularly oscillate 
is critical. The zero-oscillation periods, whether 
autonomy or control dominated, did not resolve 

The control-pole dominating (englobing), but with 
frequent reversions to autonomy-dominance, ap-
pears as the most successful organizational form, 

In the foregoing section I have built from 
Ashby’s classic Law of Requisite Variety toward the 
idea that adaptive capability in human organizations, 
under conditions of New Age external complexity, 
stems from distributed intelligence built up and held 
collectively by heterogeneous agents (employees). It is 
not just the one brain at the top that counts - it is lots of 
connected brains. This points to the critical importance 
of bottom-up emergent dynamics underlying the cre-
ation of learning and new knowledge, and distributed 
intelligence in organizations and cellular networks. 
Given this, I now turn to the question: Where do we 
draw lessons for better understanding methods for 
creating newly emerging structures? The best place 
right now is from complexity science - which is really 
the science of new order creation.

New theory: Order-creation (complexity) 
science
Theoretical background

All of the foregoing calls for bottom-up emer-
gence call for a science of new order creation 

method in management and organizations and in busi-
ness schools, especially strategy studies, is dominated 
by the epistemology of economics (e.g., Besanko, et al.,
2000). In fact, social science in general is dominated 
by economics. Unfortunately, economics is notorious 
for drawing its epistemology from classical physics 
and the latter’s focus on equilibrium dynamics and the 
mathematical accounting of physical matter transfor-
mations governed by the 1st Law of Thermodynamics 
(Mirowski, 1989, 1994; Ormerod, 1994, 1998; Arthur, 
et al., 1997, Colander, 2000). How to get from equilib-
rium-based to order-creation science?

1.

2.

3.

4.

Nelson and Winter (1982) look to Darwinian 
evolutionary theory for a dynamic perspective useful 
for explaining the origin of order in economic systems; 
so too, does Aldrich (1979, 1999). Leading writers 
about biology, such as Salthe (1993), Rosenberg (1994), 
Depew (1998), Weber (1998), and Kauffman (2000),
now argue that Darwinian theory is, itself, equilibrium 
bound and not adequate for explaining the origin of 
order. Underlying this change in perspective is a shift to 
the study of how heterogeneous bio-agents create order 
in the context of geological and atmospheric dynamics 
(McKelvey, 2004a).

Campbell brought Darwinian selectionist 
theory into social science (Campbell, 1965; McKelvey 
& Baum, 1999). Nelson and Winter (1982) offer the 
most comprehensive treatment in economics; Aldrich 
(1979) and McKelvey (1982) do so in organization 
studies. The essentials are: (1) Genes replicate with 
error; (2) Variants are differentially selected, altering 
gene frequencies in populations; (3) Populations have 
differential survival rates, given existing niches; (4) 
Coevolution of niche emergence and genetic variance; 
and (5) Struggle for existence. Economic Orthodoxy 
develops the mathematics of thermodynamics to 
study the resolution of supply / demand imbalances 
within a broader equilibrium context. It also takes a 
static, instantaneous conception of maximization and 
equilibrium. Nelson and Winter introduce Darwinian 
selection as a dynamic process over time, substituting 
routines for genes, search for mutation, and selection 
via economic competition. 

Rosenberg (1994) observes that Nelson and 
Winter’s book fails because Orthodoxy still holds 
to energy conservation mathematics (the 1st Law of 
Thermodynamics), the prediction advantages of ther-
modynamic equilibrium, and the latter framework’s 
roots in the axioms of Newton’s orbital mechanics, as 
Mirowski (1989) discusses at considerable length. Hin-
terberger (1994) critiques Orthodoxy’s reliance on the 
equilibrium assumption from a different perspective. 
In his view, a closer look at both competitive contexts 
and socioeconomic actors uncovers four forces working 
to disallow the equilibrium assumption:

do not allow the kinds of extended equilibria seen 
in biology and classical physics;

There is more and more evidence that the future is 
best characterized by “disorder, instability, diver-
sity, disequilibrium, and nonlinearity” (p. 37);

Firms are likely to experience changing basins of 
attraction - that is, the effects of different equi-
libria;

1.

2.

3.
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Agents coevolve to create higher level structures 
that become the selection contexts for subsequent 
agent behaviors.

Hinterberger’s critique comes from the per-
spective of complexity science. Also from this view, 
Holland (1988: 117-124) and Arthur, et al.(1997: 3-4)  
note that the following characteristics of economies 
counter the equilibrium assumption essential to pre-
dictive mathematics:

Dispersed interaction: dispersed, possibly hetero-
geneous, agents active in parallel;

No global controller or cause: coevolution of agent 
interactions;

Many levels of organization: agents at lower levels 
create contexts at higher levels;

Continual adaptation: agents revise their adaptive 
behavior continually;

Perpetual novelty: by changing in ways that al-
low them to depend on new resources, agents 
coevolve with resource changes to occupy new 
habitats; and

Out-of-equilibrium dynamics: economies operate 
‘far from equilibrium’, meaning that economies 
are induced by the pressure of trade imbalances 

to-country, etc.

After reviewing all the chapters in their an-
thology, The Economy as an Evolving Complex System 
II, most of which rely on mathematical modeling, the 
editors ask, “…In what way do equilibrium calculations 
provide insight into emergence?” (Arthur, et al., 1997: 
12) The answer is, of course, they don’t. What is miss-
ing? Holland’s elements of complex adaptive systems 
are what are missing: agents, nonlinearities, hierarchy, 
coevolution, far-from-equilibrium, and self-organiza-
tion.

This becomes evident once we use research 
methods allowing a fast-motion view of socioeconomic 
phenomena. The fast-paced technology and market 
changes in the modern knowledge economy - that drive 
knowledge creation and entrepreneurship - suggest 
such an analytical time shift for socioeconomic research 
methods is long over due. The methods of economics 
are based on the methods of physics, which in turn are 
based on very slow motion new order-creation events, 
i.e., planetary orbits and atomic processes that have 
remained essentially unchanged for billions of years. 

Bar-Yam (1997) divides degrees of freedom 
into fast, slow, and dynamic time scales. On a human 
time scale, applications of thermodynamics to the 

4.

1.

2.

3.

4.

5.

6.

phenomena of classical physics and economics assume 

in equilibrium, leaving thermodynamic processes as 
dynamic. Bar-Yam says, “Slow processes establish the 
[broader] framework in which thermodynamics can be 
applied” (1997: 90). Now, suppose we speed up slow 
motion physical processes so that they appear dynamic 
at the human time scale - say to a rate of roughly one 
year for every three seconds. Then about a billion years 
go by per century. It is like looking at a 3.8 billion year 
movie in fast-motion. At this speed we see the dynamic 
effects geological changes have on biological order - the 
processes of Darwinian evolution go by so fast they ap-
pear in equilibrium (elaborated in McKelvey, 2004a)!

If the classical physics, equilibrium-influ-
enced methods of socioeconomic research are viewed 
through the lens of fast-motion science, evolutionary 
analysis shifts into Bar-Yam’s fast motion degrees 
of freedom. Thus, changes attributed to selection 
“dynamics” slip into equilibrium. By this logic, since 
evolutionary analysis is equilibrium-bound, it is ill 
suited for research focusing on far-from-equilibrium 
change. Following Van de Vijver, et al. (1998), dynamic 
analysis, therefore, must focus on agents’ self-organiza-
tion rather than Darwinian selection.

The 1st Law of Thermodynamics has been the 

translation, not order-creation. Elsewhere, I review the 
complexity scientists’ search for the 0th law of thermo-
dynamics, focusing on the root question in complexity 
science: What causes order before 1st Law equilibria take 
hold? (McKelvey, 2004a). How and when does order 
creation occur? Post-equilibrium science studies only 
time-reversible, post 1st Law energy translations - how, 
why, and at what rate energy translates from one kind 
of order to another (Prigogine, 1955, 1997). It invariably 
assumes equilibrium. Pre-equilibrium science focuses 
on the order-creation characteristics of complex adap-
tive systems. Knowledge Era research needs to be based 
on pre-equilibrium science!

Two implications follow from the foregoing 
review: (1) If not equilibrium-based science, we need 

creation instead of equilibrium. This is what complex-
ity science does; and (2) We also need a different kind 
of modeling approach. I will point out later just how 
essential formal modeling is to good science. It also 
turns out that the American School of complexity 
science has developed a New Age modeling approach 

theory.
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Schools of complexity science: Two new theory 
bases
The complexity science view of the origin of order in 
biology is that self-organization - pre 1st Law processes 
- explains more order in the biosphere than Darwin-
ian selection (Kauffman, 1993, 2000; Salthe, 1993;
the many authors in Van de Vijver, et al., 1998). Two 
independently conceived engines of order creation are 

below and conclude with a call for their integration.

The European group consists of Prigogine 
(1955, 1997), Haken (197 7/1983), Cramer (1993),  
Mainzer (1994/2004), among others. The American 
group consists largely of those associated with the 
Santa Fe Institute. While one could gloss over the 
differences, I think it is worth not doing so[5].  For the 
Europeans, it is clear that phase transitions, especially 
at the 1st critical value, are fundamental. Phase transi-

st critical 
value of R, the Reynolds number (from fluid flow 
dynamics, Lagerstrom, 1996). Phase transitions are, 
thus, dramatic events, far removed from the instiga-
tion events the Americans focus on, which are: (1) the 

off “self-organized criticality” and complexity cascades 
(Gleick, 1987; Bak, 1996; Brunk, 2000), and (2) the 
kinds of events or ‘things’ that initiate positive feedback 
mutual causal processes - what Holland (1995) calls 

are essential to social science. To make the differences 

really obvious, I boil them down to bare essentials[6].

European school. The Europeans emphasize the fol-
lowing key elements:

Physical phenomena; 
Phase transitions resulting from external “force-
based” (energy-based) instigation effects;
Independent data points - atoms, molecules, etc.;
Math intensive;

1st and 2nd critical values.

They typically begin with Bénard cells. In a Bénard 
process (1901), ‘critical values’ in the energy differential 
(measured as temperature, DT) between warmer and 
cooler surfaces of the container affect the velocity, R,

DT. Suppose the 
surfaces of the container represent the hot surface of 
the earth and the cold upper atmosphere. The critical 

into three kinds:

Below the 1st critical value (the Rayleigh number), 
heat transfer occurs via conduction - gas molecules 
transfer energy by vibrating more vigorously 
against each other while remaining essentially in 
the same place; 

Between the 1st and 2nd critical values, heat transfer 
occurs via a bulk movement of air in which the 
gas molecules move between the surfaces in a 

•
•

•
•
•

1.

2.

Table 1
Cramer’s ‘subcritical’, ‘stochastic’ instead of ‘fundamental’, and ‘emergent’ instead of ‘critical’ complexity.

Newtonian complexity exists when the amount of information necessary to describe the system is less com-
plex than the system itself. Thus a rule, such as  = ma = md2s/dt2 is much simpler in information terms than 
trying to describe the myriad states, velocities, and acceleration rates pursuant to understanding the force of 
a falling object. “Systems exhibiting subcritical [Newtonian] complexity are strictly deterministic and allow 
for exact prediction” (Cramer, 1993: 213) They are also “reversible” (allowing retrodiction as well as prediction 
thus making the “arrow of time” irrelevant (Eddington, 1930, Prigogine & Stengers, 1984).

At the opposite extreme is stochastic complexity where the description of a system is as complex as the system 
itself - the minimum number of information bits necessary to describe the states is equal to the complexity of 
the system. Cramer lumps chaotic and stochastic systems into this category, although deterministic chaos is 
recognized as fundamentally different from stochastic complexity (Morrison, 1991), since the former is ‘simple 
rule’ driven, and stochastic systems are random, though varying in their stochasticity. Thus, three kinds of 
stochastic complexity are recognized: purely random, probabilistic, and deterministic chaos. For this essay I 

In between, Cramer puts emergent complexity

remain in the stochastically complex category. It is here that natural forces ease the investigator’s problem by 
offering intervening objects as ‘simplicity targets’ the behavior of which lends itself to simple rule explanation. 
Cramer (1993: 215-217) has a long table categorizing all kinds of phenomena according to his scheme.
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circulatory pattern - the emergent Bénard cells. 
We encounter these in aircraft as up- and down-
drafts; and 

Above the 2nd critical value a transition to chaoti-
cally moving gas molecules is observed.

-
strom, 1996) have focused on the 1st critical value, Rc1
- the Rayleigh number - that separates laminar from 

st critical value, viscous 
damping dominates so self-organized emergent (new) 
order does not occur; above the Rayleigh number iner-

Ashby, in his book, Design for a Brain (1960), described 
functions that, after a certain critical value is reached, 
jump into a new family of differential equations, or 
as Prigogine would put it, jump from one family of 
“Newtonian” linear differential equations describing a 
dissipative structure to another family. Lorenz (1963),
followed by complexity scientists, added a second criti-
cal value, Rc2. This one separates the region of emergent 
complexity from deterministic chaos - the so-called 
“edge of chaos.” Together, the 1st and 2nd critical values 

Table 1):

Newtonian " |Rc1| " Emergent " |Rc2| " Chaotic

Elsewhere, I have reviewed a number of 
theories about causes of emergent order in physics 
and biology, some of which have been extended into 
the econosphere (McKelvey, 2001c, 2004a). Kelso[7], 
Ding and Schöner (1992) offer the best synthesis of the 
European school:

“Control parameters, Ri
R > Rc1 -

order parameters appear, resulting in similar patterns 
of order emerging even though underlying generative 
mechanisms show high variance.”

Equilibrium thinking and the 1st Law are en-
demic in evolutionary theory applications to econom-
ics and organization science. Equilibrium thinking, 
central tendencies, and the use of energy dynamics in 
independent variables to predict outcome variables 
is also endemic to organization science empirical 
methods, whether regression or econometric analyses. 
However, there now is a shift from the homogeneous 
agents of physics and mathematics to heterogeneous, 
self-organizing agents. As Durlauf (1997: 33) says, “A 
key import of the rise of new classical economics has 
been to change the primitive constituents of aggregate 
economic models: while Keynesian models employed 
aggregate structural relationships as primitives, in new 
classical models individual agents are the primitives so 

3.

that all aggregate relationships are emergent.” In this 
statement the 0th law is brought in more directly. 

The application of the 0th law in socioeconom-

words in the Kelso, Ding and Schöner statement. The Ri
adaptive tensions (McKelvey, 2004a, 2005) can appear 
in many different forms, from Jack Welch’s famous 
phrase, “Be #1 or 2 in your industry in market share or 

1994: 108; somewhat paraphrased), to narrower ten-
sion statements aimed at technology, market, cost, or 
other adaptive tensions. Schumpeter (1942) long ago 
observed[8] that entrepreneurs are particularly apt at 
uncovering tensions in the marketplace. The applied 
implication of the 0th law is that new order creation is 
a function of (1) control parameters, (2) adaptive ten-
sion, and (3) phase transitions motivating (4) agents’ 
self-organization. Take away any of these and order 
creation stops.

American school. The Americans emphasize the fol-
lowing:

Life and social phenomena;

New order resulting from nonlinear positive 
feedback effects (Young, 1928; Maruyama, 1963;
Arthur, 1988) coupled with small initiating events 
(Holland’s, 1995, “tags”);

Interdependent, connected, interactive data 
points, i.e., biological ‘agents’, though physical 
ones also may be included;

Agent-based computational models;

Fractals, scalability, power laws, and scale-free 
theory (Brock, 2000).

The American complexity literature focuses 
on positive feedback, power laws, and small instigat-
ing effects. Gleick (1987) details chaos theory, its focus 
on the so-called  (the fabled story of a 

in North America), and aperiodic behavior ever since 
the founding paper by Lorenz (1963). Bak (1996) reports 
on his discovery of self-organized criticality - a power 
law event - in which small initial events can lead to 
complexity cascades of avalanche proportions. Arthur 
(1990, 2000) focuses on positive feedbacks stemming 
from initially small instigation events. Casti (1994) 
and Brock (2000) continue the emphasis on power 
laws. The rest of the Santa Fe story is told in Lewin 
(1992/1999). In their vision, positive feedback is the 
‘engine’ of complex system adaptation. American 
complexity scientists tend to focus on Rc2 - the edge of 
chaos (Lewin, 1992; Kauffman, 1993, 2000; Brown & 

the region of emergent complexity. What happens at 

•

•

•

•

•
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Rc1 is better understood; what happens at Rc2 is more 
obscure. The ‘edge of chaos’, long a Santa Fe reference 
point (Lewin, 1992), is now in disrepute, however 
(Horgan, 1996: 197).

In a truly classic paper, Maruyama (1963) dis-
cusses mutual causal processes mostly with respect to 
biological coevolution. He distinguishes between the 
“deviation-counteracting” negative feedback most fa-
miliar to general systems theorists (Buckley, 1967) and 
“deviation-amplifying” positive feedback processes 
(Milsum, 1968). Boulding (1968) and Arthur (1990, 
2000) focus on ‘positive feedbacks’ in economies. 
Negative feedback control systems such as thermo-
stats are most familiar to us. Positive feedback effects 
emerge when a microphone is placed near a speaker, 
resulting in a high-pitched squeal. Mutual causal or 
coevolutionary processes are inherently nonlinear - 
large-scale effects may be instigated by tiny initiating 
events, as noted by Maruyama (1963), Gleick (1987), 
and Ormerod (1998). 

It is not hard to find evidence of positive 
feedback instigating mutual causal behavior in orga-
nizations. The earliest discoveries date back to Roeth-
lisberger and Dixon (1939) and Homans (1950) - both 

of informal groups), the subsequent development of 
groups, and the emergence of strong group norms 
that feed back to sanction agent behavior. Much of the 
discussion by March and Sutton (1997) focuses on the 
problems arising from the use of simple linear models 
for measuring performance - problems all due to mu-

a recent study of advanced manufacturing technology 
(AMT), Lewis and Grimes (1999) use a multiparadigm 
(postmodernist) approach. They study AMT from all 

(1979). With each lens, that is, no matter which lens 
-

tive feedback type coevolutionary)[9] behavior within 
Organization Science

special issue on coevolution (Lewin & Volberda, 1999) 
report evidence of microcoevolutionary behavior in 
organizations. Finally, a number of very recent studies 
of organization change show much evidence of coevo-
lution between organization and environment and 
within organizations as well (Erakovic, 2002; Meyer 
& Gaba, 2002; Kaminska-Labbe & Thomas, 2002;
Morlacchi, 2002; Siggelkow, 2002).

Both European and American perspectives are 
important. Phase transitions are often required to over-
come the threshold-gate effects characteristic of most 
human agents - they don’t interact and react to just 
anything[10].  This in turn requires the adaptive tension 
driver to rise above Rc1

gate. Once these stronger than normal instigation ef-
fects overcome the threshold gates, then, assuming the 
other requirements are present (heterogeneous, adap-
tive learning agents, and so forth), positive feedback 
may start. Neither perspective seems both necessary 

External force effects and internal positive feedback 
processes are “co-producers,” to use Churchman and 
Ackoff’s (1950) term. 

New method: Epistemology of 
computational models

Understanding how and why new structural 
order emerges in social systems has been at the 
core of management studies, sociology, and 

organization science for many decades, as evidenced 
by the following:

Adam Smith’s exploration into the development of 
industrialization through division of labor;

Early studies of bureaucracy (Weber, 1924/1947) 
and the evolution of professional management by 
Barnard (1938);

Research on the impact of internal structure on 
work group behavior (Roethlisberger & Dixon, 
1939);

Studies of bureaucracy (Blau & Scott, 1962; Cro-
zier, 1964; Scott, 1998);

Studies of the relationship between internal and 
external order (Lawrence & Lorsch, 1967; 

Analyses of strategic partnerships (Powell, 1990; 
Yoshino & Rangan, 1995);

Ongoing management studies into the emergence 
of order and structure within entrepreneurial ex-

Many studies of organizational network dynamics 
(Nohria & Eccles, 1992);

Studies of organizations experiencing rapid change 
(Brown & Eisenhardt, 1997);

Studies of Italian industrial districts (Curzio & 
Fortis, 2002).

These “thick-description” studies (Geertz, 
1973) exemplify the enduring importance of emergence 
in the study of organizations. 

In contrast, various kinds of organizational 
order creation have also been studied via agent models 
to explain such phenomena as organizational learning 
(Carley, 1992; Carley & Harrald, 1997; Carley & Hill, 
2001), organization design (Carley, et al., 1998; Levin-
thal & Warglien, 1999), network structuring (Carley, 
1999b), organizational evolution (Carley & Svoboda, 
1996; Morel & Ramanujam, 1999) and strategic adapta-

•

•

•

•

•

•

•

•

•

•
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tion (Carley, 1996; Gavetti & Levinthal, 2000; Rivkin, 
2001), just to name just a few. 

A fundamental difference between virtually all 
of the order-creation studies mentioned in the forego-
ing bullets, as compared with the studies mentioned 
in the previous paragraph is that most of the latter are 
based on computational experimental results whereas 
the former are not. This is just by way of illustrating that 

true about organizational management and design is 
based on site visits (interviews and observations) and 

the fact and then analyzed via some kind of correla-
tional method. Truth claims based on nonexperimental 
methods are notoriously suspect and generally fall 
outside the realm of long-accepted bases for asserting 
truth (Hooker, 1995; McKim & Turner, 1997; Curd & 
Cover, 1998), despite attempts to the contrary (Pearl, 
2000).

In social and organizational science there is 
now a long list of people complaining about the “thin” 
(Geertz, 1973) ontological view of most experiments 
and statistical analyses and the wrong or inappropri-
ate ontological view of organizational phenomena, an 
argument advocated by organizational postpositivists 
(Berger & Luckmann, 1966; Silverman, 1970; Lincoln, 
1985) and more recently postmodernists (Reed & 
Hughes, 1992; Hassard & Parker, 1993; Alvesson & 
Deetz, 1996; Burrell, 1996; Chia, 1996; Marsden & 
Townley, 1996). Postmodernism, however, is now criti-
cized as being anti-science (Holton, 1993; Norris, 1997; 
Gross & Levitt, 1998; Koertge, 1998; Sokal & Bricmont, 
1998; McKelvey, 2003). Much of the fuel feeding the 
anti-experimental perspectives in organization science 

-
rect organizational experiments. This said, there is no 
escaping the centrality of models in effective science. 
Computational agent-based models have the threefold 
advantage that they are models, they are experiments, 
and they allow the study of order creation.

Model-centered science
Much has changed since the ceremonial death of logical 
positivism and logical empiricism at the Illinois Sym-
posium in, 1969, adroitly described in Suppe’s second 
edition of  (1977) 
- the epitaph on positivism. Parallel to the fall logical 
positivism and logical empiricism, we see the emer-
gence of the Semantic Conception of Theories (Suppe, 
1977). Suppe (1989: 3) says, “The Semantic Concep-
tion of Theories today probably is the philosophical 
analysis of the nature of theories most widely held 
among philosophers of science.” Semantic Conception 

represent or explain the full complexity of some phe-

nomenon. A theory (1) “does not attempt to describe all 
aspects of the phenomena in its intended scope; rather 
it abstracts certain parameters from the phenomena 
and attempts to describe the phenomena in terms of 
just these abstracted parameters” (Suppe, 1977: 223);
(2) assumes that the phenomena behave according to 
the selected parameters included in the theory; and (3)

with the full knowledge that no empirical study or 
experiment could successfully and completely control 
all the complexities that might affect the designated 
parameters (see also Mitchell, 2004). Models comprise 
the core of the Semantic Conception. Its view of the 
theory-model-phenomena relationship is: (1) Theory, 
model, and phenomena are viewed as independent 
entities; (2) Science is bifurcated into two related 
activities, analytical and ontological, where theory is 
indirectly linked to phenomena via the mediation of 
models. The view presented here - with models as 
centered between theory and phenomena - that sets 
them up as autonomous agents, follows from Morgan 
and Morrison’s (2000) thesis. The course of science is 
as much governed by its choice of modeling technology 
as it is by theory and data.

Analytical Adequacy focuses on the theory–
model link. It is important to emphasize that in the 
Semantic Conception ‘theory’ is always expressed via 
a model. ‘Theory’ does not attempt to use its ‘If A, 
then B’ epistemology to explain ‘real-world’ behavior. 
It only explains ‘model’ behavior. It does its testing in 
the isolated idealized world of the model (Mitchell, 
2004). A mathematical or computational model is 
used to structure up aspects of interest within the full 

as ‘within the scope’ of the theory. Then the model is 
used to elaborate the ‘If A, then B’ propositions of the 
theory to consider how a social system - as modeled 
- might behave under various conditions.

Ontological Adequacy focuses on the mod-
el–phenomena link. Developing a model’s onto-
logical adequacy runs parallel with improving the 
theory–model relationship. How well does the model 
represent real-world phenomena? How well does 
an idealized wind-tunnel model of an airplane wing 
represent the behavior of a full sized wing in a storm? 
How well might a computational model from biology, 
such as Kauffman’s (1993) NK model, that has been 

competition in, say, the laptop computer industry. It 
therefore involves identifying various coevolution-
ary structures, that is, behaviors that exist in some 
domain and building these effects into the model as 
dimensions of the phase-space. If each dimension in 
the model adequately represents an equivalent behav-
ioral dimension in the real world, the model is deemed 



12
E:CO Vol. 6 No. 4 2004 pp. 2-27

ontologically adequate.

These kinds of coevolution, therefore, result 
in credible, i.e., more probable, science-based truth 
claims: (1) Theory–model coevolution; (2) Model–phe-
nomena coevolution; and (3) The coevolution of both 
1 and 2.

Agent-based computational experiments
Experiments are a continuing legacy of positivism and 

philosophy of science (Bhaskar, 1975/1997). They are 
the standard against which other forms of truth-claims 
are compared (McKim & Turner, 1997), and they remain 
a cornerstone of modern philosophical debate (Curd & 
Cover, 1998). Experiments continue as the fundamental 
method of determining causal relations because they 
are the only method of clearly adding, deleting, or 
otherwise altering a variable to see if results change 
(Lalonde, 1986) - what Bhaskar (1975) calls a “contrived 
invariance” (see also Hooker, 1995).

The problem for organization scientists is that 
‘real’ organizations can seldom if ever be recreated in 
a laboratory. Further, even when such attempts are 
made (Carley, 1996; Contractor, et al., 2000), the ex-
periments are very thin replications of organizational 

not impossible, to delete with certainty potentially 
causal behavioral ‘rules’ that experimental subjects 
might be following. In addition, human organizational 
experiments are usually subject to time, size, number 
of rules actually ‘wiggled’, and organizational realism 
limitations. Finally, and perhaps most importantly, 
the study of emergent order in human experiments 

as environmental context effects and multiple rules 
held by subjects) have to be controlled, organization-
ally relevant path dependencies should be part of the 
experimental design, long enough duration for social 
structural emergence to occur needs to be allowed, a 
statistically relevant number of replications should be 
conducted, and so on.

Agent-based computational experiments offer 
organization scientists a virtual laboratory in which to 
test out theorized causal effects of organizational path 
dependencies, given varying environmental resources 

by known and only these rules, time periods long 
enough to allow agents and rules to change and emer-

number of similar replications so as to allow a statisti-
cally relevant sampling. Needless to say, computational 
experiments have their own set of limitations. Not 
least of these have been the limitations of computers 
for handling large combinatorial spaces, agents with a 

-
signed-in organizational complexities. Furthermore, 
much of the complexity of real organizations and cur-
rent organizational theories does not show up in the 
models, especially earlier ones. One might reasonably 
conclude that most organization-relevant agent-based 
models have little bearing on organizational reality. On 
the other hand, one might also conclude that, appropri-
ately, the models started with simpler, more stylized 
aspects of organizational functioning but that, studied 
over time, there is a progression toward improved 
replicational reality occurring. Math modeling has 
about a 300 year lead over agent-based computational 
modeling!

Agent-based modeling experiments are rela-
tively new to organization studies, though some early 
examples exist (Cohen, et al., 1972; March, 1991). Com-
putational models allow investigators to play out the 
nuances of theories over time. They also allow much 
clearer determinations of causal effects by allowing 
causal variables to be wiggled. Consequently, models 
offer a superb context for theory development. Ilgen 
and Hulin (2000: 7) go so far as to label computational 
modeling experiments as the “third discipline” - hu-

two. 

The use of agent-based models in social science 
has increased over the past decade[11].  Agents can be at 
any level of analysis: atomic particles, molecules, genes, 

feature is that the agents are not uniform. Instead they 
are probabilistically idiosyncratic (McKelvey, 1997). 
Therefore, at the level of human behavior, they fit 
the postmodernists’ ontological assumptions. Using 
heterogeneous agent-based models is the best way to 
‘marry’ postmodernist ontology with model-centered 
science and the current epistemological standards of 

complexity science (Henrickson & McKelvey, 2002;
McKelvey, 2002, 2003). There are no homogeneity, 
equilibrium, or independence assumptions. Agents 
may change the nature of their attributes and capa-
bilities along with other kinds of learning. They may 
also create network groupings or other higher-level 
structures, i.e., new order.

The study by Contractor, et al. (2000) (dis-
cussed later) is a good example demonstrating two 

credentials of agent-based modeling. First, this paper is 
particularly notable because each of its ten agent rules 

-
ings of each body of research, clouded as they are by 
errors and statistics, are reduced to idealized, stylized 

-
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tion approach in this study is that the model parallels a 
real-world human experiment. Their results focus on 
the degree to which the composite model and each of 
the ten agent rules predict the outcome of the experi-
ment - some do, some don’t. Another approach, with a 
much more sophisticated simulation model, is one by 
LeBaron (2000, 2001). In this study, LeBaron shows 
that the baseline model “… is capable of quantitatively 

(p. 19). Here the emphasis is mostly on matching model 
outcome results to real-world data rather than basing 
agent rules on stylized facts. A more sophisticated 
match between agent model and human experiment is 
one designed by Carley (1996). In this study the agent 
model and people were given the same task. While 
the results do offer a test of model vs. real-world data, 
the comparison also suggests many analytical insights 
about organization design and employee training that 
only emerge from the juxtaposition of the two different 
experimental methods.

New ‘autonomous agent’ effects of models on 
the course of science
Models as autonomous agents[12]:  There can be little 
doubt that mathematical models have dominated 
science since Newton. Further, mathematically con-
strained language (logical discourse), since the Vienna 

image of classical physics. Indeed, mathematics is good 
for a variety of things in science, but especially, it plays 
two key roles. In logical positivism - which morphed 
into logical empiricism (Suppe, 1977) - math supplied 
the logical rigor aimed at assuring the truth integrity 
of analytical (theoretical) statements. As Read (1990) 

-
ally is less important in science than its use in testing for 
rigorous thinking. But, as is wonderfully evident in the 
various chapters in the Morgan and Morrison (2000)

for iconic models in building up a ‘working’ model 
valuable for understanding not only how an aspect of 
the phenomena under study behaves (the empirical 
roots of a model) and / or for better understanding 
the interrelation of the various elements comprising 
a transcendental realist explanatory theory (the theo-
retical roots).

Traditionally, a model has been treated as a 
more or less accurate “mirroring” of theory or phenom-
ena (Cartwright, 1983) - as a billiard ball model might 
mirror atoms. In this role it is a sort of ‘catalyst’ that 
speeds up the course of science but without altering 
the chemistry of the ingredients. Morgan and Morrison 
(2000) take dead aim at this view, however, showing 
that models are autonomous agents that can, indeed, 
affect the chemistry. It is perhaps best illustrated in a 

Cartwright, in her classic, 1983 book “…conceive[s] 
models as instruments to bridge the gap between 
theory and data.” Boumans gives ample evidence that 

Ingredients impacting models are metaphors, analo-
gies, policy views, empirical data, math techniques, 
math concepts, stylized facts, and theoretical notions. 
Boumans’s analyses are based on business cycle models 
by Kalecki, Frisch and Tinbergen in the 1930s and Lukas 
(1972) that clearly illustrate the warping resulting from 
‘mathematical molding’ for mostly tractability reasons 

data ingredients.

Models as autonomous agents, thus, become 

all the other ingredients. Since the other ingredients 

as math models - as formal, symbol-based models, 
and since math models dominate formal modeling 
in social science (mostly in economics) - I now focus 
only on the molding effects of math models rooted in 
classical physics. As is evident from the four previ-
ously mentioned business cycle models, Mirowski’s 
(1989) broad discussion (not included here), and 
Read’s (1990) analysis (below), the math molding ef-
fect is pervasive. Much of the molding effect of math 
as an autonomous model / agent, as developed in 
classical physics and economics, makes three heroic 
assumptions: (1) Mathematicians in classical physics 
made the ‘instrumentally convenient’ homogeneity 
assumption. This made the math more tractable; (2)
Science in general, and in the social sciences especially 
econometricians (Greene, 2002), assume independence 
among agents (data points); and (3) Physicists princi-
pally studied phenomena under the governance of the 
1st Law of Thermodynamics and, within this Law, made 
the equilibrium assumption. Here the math model ac-
counted for the translation of order from one form to 
another and presumed all phenomena varied around 
equilibrium points[13].

Math’s molding effects on sociocultural analysis: Read’s 
(1990) analysis of the applications of math modeling in 
archaeology illustrates how the classical physics roots 
of math modeling and the needs of tractability give rise 
to assumptions that are demonstrably antithetical to a 
correct understanding, modeling, and theorizing of hu-
man social behavior. Though his analysis is ostensibly 
about archaeology, it applies generally to sociocultural 

combine to show just how much social phenomena 

of the rate studies framed within math molding pro-
cess of calculus. They focus on universality, stability, 
equilibrium, external forces, determinism, and global 
dynamics at the expense of individual dynamics.
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Given the molding effect of all these assump-
tions it is especially instructive to quote Read, the 
mathematician, worrying about equilibrium-based 
mathematical applications to archaeology and socio-
cultural systems:

In linking “

-
lar, to the ability of human systems to change and 
modify themselves according to goals that change 
through time, on the one hand, and the common 
assumption of relative stability of the structure 

challenge facing effective - mathematical - modeling 
of the human systems considered by archaeologists 
is to develop models that can take into account this 

-
.”

“
reifying the society as an entity that responds to 

responds in its movements to forces acting upon it. 
-

tion are well known and a particular situation can, 
in principle, be examined through the appropriate 
application of mathematical representation of these 
effects along with suitable information on boundary 
and initial conditions. It is far from evident that a 
similar framework applies to whole societies.”

“Perhaps because culture, except in its material 
products, is not directly observable in archaeologi-
cal data, and perhaps because the things observable 
are directly the result of individual behavior, there 
has been much emphasis on purported ‘laws’ of 
behavior as the foundation for the explanatory 
arguments that archaeologists are trying to develop. 
This is not likely to succeed. To the extent that there 
are ‘laws’ affecting human behavior, they must be 
due to properties of the mind that are consequences 

of behavior are inevitably of a different character 

apparently, is fundamental to the universe itself; 
behavioral ‘laws’ such as ‘rational decision making’ 
are true only to the extent to which there has been 
selection for a mind that processes and acts upon 

isomorphic mapping from genetic information to 
properties of the mind, searching for universal laws 

.”

Common throughout these and similar 
statements are Read’s observations about “the abil-

1.

2.

3.

to “forces acting” from outside, “manipulation by 
-

and the “chimera” of searching for “behavioral laws” 

Just as the social sciences lagged behind when 
math was the supreme modeling approach, they are 
also lagging in their transition to agent-based models. 
Though citation rates may have picked up more re-
cently, in 1997 there were some 18,000 natural science 
cites to nonlinear computational modeling, but only 
around 180 in economics and near 40 in sociology 
(Henrickson, 2004). As Henrickson and McKelvey 
(2002: 7288) wonder: 

“How can it be that sciences founded on the mathemati-
cal linear determinism of classical physics have moved 
more quickly toward the use of nonlinear computer 
models than economics and sociology - where those do-
ing the science are no different from social actors - who 
are the Brownian Motion?”

Computational modeling in organization 
science[14]

Lichtenstein and McKelvey (2005) note that there 
are over 300 agent-based models having relevance 
to organization studies. Maguire, et al. (forthcom-

ing) list ~15 applications of just Kauffman’s (1993)
NK model to organizational phenomena. Just to give 
credibility to the idea of agent models being applied to 

As Lichtenstein and McKelvey (2005) observe, most 
models generate emergent networks; some generate 
emergent groups and supervenience effects; even fewer 
generate hierarchies and only two stretch a bit beyond 
these minimal stages of organizational order.

Cellular automata search grids: The oldest agent-based 
model is referred to as a cellular automata (CA) model. 
Agents exist in a search space whose size depends on 
the number of agents and rules. The search space is typ-
ically depicted as consisting of hills and valleys with, 

-

be scattered randomly across the space and separated 

agent, thus, runs the risk of ending up on a suboptimal 
peak during the course of its search attempts over some 
number of time periods. Usually agent interactions are 
limited to their ‘nearest neighbors’ - those agents di-

one output decision, depending on a couple of input 
signals. Often they only have one governing rule. As 
agents and rules increase, the search space grows geo-
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metrically, as does computer processing time. One of 
the most interesting is Kauffman’s NK model.

Modeling tunable NK landscapes: Kauffman’s (1993)
NK Fitness Landscape, a well-known application of 
CA models, simulates a co-evolutionary process in 
which both the individual agents and the degree of 
interdependency between them are modeled over time. 
N refers to the number of agents in the model, and K
refers to the density of agent interactions. According 

its ability to identify and ‘climb to’ the highest level of 

neighbor search limitation, an agent surrounded by 

on a local optimum that may be well below the highest 
system-wide optimum. Note that the agents are not 
independent of each other.

As individual agents change, they affect all 
other agents, thus altering some aspects of the nearest-
neighbor landscape itself. In this way, the level of com-
plexity ‘tunes’ the agents’ search landscape by altering 
the number and height of peaks and depths of valleys 
they encounter. It turns out that the degree of order in 
the overall landscape crucially depends on the level of 
K, the degree of system-wide interdependence, that is, 
complexity (Kauffman, 1993). According to Kauffman, 
as complexity increases, the number of peaks vastly in-
creases in the landscape, while the difference between 
peaks and valleys diminishes, such that even though 
the pressure of Darwinian selection persists, emergent 
order cannot be explained by selection effects. He terms 
it complexity catastrophe. Instead, a moderate amount 
of complexity creates optimal rugged landscapes, which 

Researchers have applied the NK model to 
business settings by exploring ways connectedness will 

-
out locking it into a ‘catastrophe’ of interdependence 
(Levinthal, 1997). Moderate levels of interconnection 
can be achieved through modularization of the produc-
tion process (Levinthal & Warglien, 1999), by keeping 
internal value chain interdependencies to levels just 
below their opponents’ (McKelvey, 1999), or by adopt-

interdependence (Baum, 1999). Rivkin (2000, 2001) 
shows that moderate complexity prevents spillover 

-
ing of new knowledge. In an empirical test of the NK
application to innovation, Fleming and Sorenson (2001: 
1025) show “invention can be maximized by working 
with a large number of components that interact to an 
intermediate degree.”

Design sequencing: Siggelkow and Levinthal (2003) use 
Kauffman’s NK model to tease out some of the dynam-

-
tion or exploration-exploitation designs. They model 
performance results stemming from three structural 
designs: unchanging centralization, unchanging de-
centralization, and “temporary decentralization with 
subsequent reintegration” - the latter termed “reinte-

of freedom and cross-departmental interdepen-
dencies - reintegrators offer performance advan-
tages;

The length of the time of decentralization before 
reintegration has a strong effect - in the model, 
performance peaks when decentralization extends 

Temporary creation of cross-divisional interde-
pendencies - termed “scrambling” in the article 
- produces the highest performance. The authors 
don’t mention it, but this seems like temporary 
creation of weak ties (Granovetter, 1973, 1985), 
which fosters novelty in the short term, while al-

the period of exploration is completed.

In contrast to static “balance” approaches, 
they conclude: “…exploration and stability are not 
achieved simultaneously through distinct organiza-
tional features…but sequentially by adopting different 
organizational structures.” This model supports the 
Thomas, et al. (2005) case study.

Modeling learning rates: Yuan and McKelvey (2004) 
-

man’s prior work, replicating Kauffman’s original 
results to correlations of 0.976. They use his NK model 
to test the hypotheses that communication interac-
tivity is nonlinearly related to both amount and rate 
of group learning over time. Kauffman’s complexity 

amount of group learning is a direct function of size, N,
but is curvilinearly related to K - highest in the middle 

learning is slowest in the middle of a U-shaped curve. 
However, density in communication interactivity is 
not independent of group size. Once they adjust for this 
effect via standardization of K by N
curvilinear effect disappears, but the catastrophe effect 
continues as a function of two linear variables: Rate of 
group learning remains a positive linear function of 
communication interactivity, but amount of learning 
becomes a negative linear function of interactivity den-

•

•

•

•
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the distribution of communication by creating isolates 

on the coevolutionary development of group-level 
learning over time.

Holland’s genetic algorithms: An important advance in 
modeling emergence occurs through the use of genetic 
algorithms (GAs), invented by Holland (1975, 1995). 
GAs allow agents to learn and change over time by 
changing the rules governing their behavior: “Agents 
adapt by changing their rules as experience accumu-
lates” (Holland, 1995: 10). Axelrod and Cohen (2000:
8) broaden the implications of GAs, asserting that:

“
in which the next change will be tried and evaluated. 
When multiple populations of agents are adapting to 
each other, the result is a coevolutionary process.”

In biological GAs, agents appear to ‘mate’ and 
produce ‘offspring’ that have different ‘rule-strings’ 
(genetic codes, blueprints, routines, competencies) as 
compared with their parents. In organizational applica-
tions, agents’ rule-strings change over time (i.e., across 

without having ‘children’. The upward causal effects of 

typically are limited to a relatively few rules and agents 
- because the landscape grows geometrically each time 
each is added - GAs allow many agents to have many 
rules (Macy & Skvoretz, 1998). New rule-strings can 
have varying numbers of rules retained or recombined 
from prior agent’s rules, thus allowing the increased 

-
sion-making and learning, along with recombinations 
of diverse skills. Two organizational GA applications 
are described next.

Simulated coordination models: Paul, et al. (1996) model 
adaptations to organizational structure by examining 

-
ment; they solidify out of networks to consist of from 
1 to 9 constituent agents, and each agent has a different 

doing nothing. Firms may activate or deactivate their 
agents, or form networks of seemingly better perform-

performance climate with a 50% probability of success, 

this model the behavior of agents (components) can be 

perform in the market environment. Further, due to 
the coevolution of up- and downward causality, results 

and rules.

Another model examines the classic proposi-
tion that coordination, while necessary to accomplish 
interdependent tasks, is costly. Crowston’s (1996) GA 
model tests this hypothesis by simulating organiza-
tions consisting of: agents; in subgroups; in a market; 
with variable task interdependency. This results in up-
ward, downward, and horizontal causalities, i.e., causal 
intricacy. Bottom-level agents have to perform their 

may expedite their tasks, but the cost of coordination 
means a lessening of their time allotment according 
to the following rule: if an agent ‘talks’ to all the other 
agents all the time there is no time left to accomplish 
its tasks. Results show that organizations and / or their 
employee agents do in fact minimize coordination costs 
through organizing in particular ways. His study is 
an example of a GA model being used to test a classic 
normative statement by setting up a computational 
experiment that allows groups to emerge as appropri-
ate. It also includes causal intricacy and coevolutionary 
causality (for comparison, see Thomas, et al., 2004).

Multi-level models: Quite possibly the most famous ex-
ample of agent-based modeling is Epstein and Axtell’s 

 (1996). Their model is called 
“Sugarscape.” They boil an agent’s behavior down to 
one simple rule: “Look around as far as your vision per-

the sugar” (p. 6). Agents search on a CA landscape but 
they sort of have sex, reproduce offspring, and begin 

according to a genetic algorithm. This model not only 
builds social networks, but also higher-level groups 
emerge. These groups develop cultural properties; 
once cultures form they can supervene and alter the 
behavior and groupings of agents. Epstein and Axtell’s 
simulation includes four distinct levels: agents, group-
ings, cultures, and the overall Sugarscape environment. 
The Sugarscape elements include agents, emergent 
groups, higher-level groupings, emergent culture, 
multiple causalities, and environmental resources 
and constraints. Though theirs is ostensibly a model 
of an economy, it easily translates into the intraorga-
nizational market economy highlighted in Halal and 
Taylor (1999).

Carley and colleagues have produced some 
of the most sophisticated computational models to 
date. They have been validated against experimental 
lab studies (Carley, 1996), and archival data on actual 
organizations (Carley & Lin, 1995). The most unique 
feature of the Carley models is that agents have cog-
nitive processing ability - individual agents and the 
organization as a whole can remember past choices, 
learn from them, and anticipate and project plans into 
the future. These models combine elements of CA, GA, 
and neural networks (for the latter, see Haykin, 1998), 
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Exogenous Mechanisms

C Ss ijij=D : Cell S  is coded 1 if i is the superior of  (or vice versa) - because supervisors initiate more 
  communication with subordinates than the reverse.
CHLijD : Cell HL  is weighted more if i and  are higher level managers - because coordination oriented 

communication is directly related to level in the hierarchy.
CPijD : Cell P  is weighted to indicate the proximity of i to .
CEijD : Cell E  is coded 1 if i and  email each other.
CWij

D : Cell W i and .
CFijD : Cell  is coded 1 if i reports that  is a friend (or vice versa).
CAijD : Cell A  is indexed to show the number of common activity foci between i and .

Endogenous Mechanisms

Cell C  is indexed upward if i and  both communicate with k
(1958) balance theory.

Cell C  is indexed to show the level of network density of i and ’s group relative 
to the mean of all group network densities - because groups with higher levels 

Homans (1950).

Cell C  is weighted downward to the extent that 
structural equivalence reduced the need for i and 
to communicate directly with each other, follow-
ing Burt’s (1992) structural hole theory.

as does LeBaron’s (2000) stock market model. 

In Carley’s CONSTRUCT (1991) and CON-
STRUCT-O (Carley & Hill, 2001) models, simulated 
agents have a position or role in a social network and 
a mental model consisting of knowledge about other 
agents. Agents communicate and learn from others 
with similar types of knowledge. CONSTRUCT-O 
allows for the rapid formation of subgroups and the 
emergence of culture, which, when it crystallizes, 
supervenes to alter agent coevolution and search for 
improved performance. These models show the emer-
gence of communication networks, the formation of 
stable hierarchical groups and the supervenience of 
group effects on component agent behaviors - net-
work driven, groups solidify, and downward causality 
emerges.

Her four-level simulation (Carley & Lee, 1998; 
Carley, 1999a) consists of small groups of interact-
ing workers (agents) led by an executive team that 

inputs, including decisions about design, workload, 
and personnel. This model allows for both the inter-

supervenience from emergent ‘informal’ norms and 

causal intricacy since agents can be hit with two kinds 
-

sults from both structural and cultural effects - once 
groups emerge, they act to control who agents interact 
with, learn from, and so on, thereby altering subse-
quent coevolutionary emergence by agents. Once there 
is collective agreement on what is appropriate to be 
known, the emergent learning culture then supervenes 
to alter the subsequent knowledge-creation strategies 
of agents. 

Using agent models[16]

To illustrate how an agent-based model-centered 
science works, consider a paper by Contractor, 
et al. (2000) using structuration theory (Gid-

dens, 1984) to explain the origin of self-organizing 
networks. It is not axiomatic nor does it offer more 
than a minimalist iconic model. Neither does it attempt 
to make a direct predictive leap from structuration-
based hypotheses to real-world phenomena, noting 
that there are a “…multitude of factors that are highly 
interconnected, often via complex, non-linear dynamic 
relationships” (Contractor, et al., 2000: 4). Instead, the 
substructure elements are computationally combined 
into a model ‘composite outcome’ and this outcome is 
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predicted to line up with real-world phenomena. The 
model-substructures are shown in Table 2.

There are three key steps in the effective use 
of computational agent-based models:

Step 1: A computational model is developed; 

Step 2: Analytical adequacy is tested - theory and 
model coevolve until such time as the model (in an 
isolated idealized setting such as a lab or computer) 
correctly produces effects predicted by the theory, 
given the model-substructures and various other 
conditions or controls structured into the model; 

Step 3: Ontological adequacy is tested - substruc-
tures are tested against real-world phenomena, 
and if possible, the composite model outcome is 
also tested against predicted real-world behavior, 
i.e., stylized facts. 

The Contractor, et al. (2000), research imple-
ments Step 1 (see Table 2), and begins Steps 2 and 3.

Step 2. The analytical adequacy test: Using the model to 
test out the several causal propositions generated by the 
theory. This involves several elements in the coevolu-
tion of the theory–model link. Contractor, et al. (2000) 
start with structuration theory’s recursive interactions 
among actors and contextual structure. Structuration 
and negotiated order are linked to network dynam-
ics and evolution (Barley, 1990; Stokman & Dore-
ian, 1997). Monge and Contractor (2001) identify ten 
generative mechanisms posited to cause emergent 
network dynamics. Contractor, et al. (2000) end with 
ten model-substructures - each a causal proposition 
- rooted in structuration theory and hypothesized to 
affect network emergence. Each rests on considerable 
research. These reduce to ten equations (Table 2): Seven 
exogenous factors, each represented as a matrix of ac-
tor interactions; and three endogenous factors with 
more complicated formalizations. For example, in the 
equation DCW  = W  the value of DCWi

, “the change in 
communication resulting from interdependencies 

W , “is 
W  indexes the 

level of interdependence between individuals i and 
” (p. 21).

Contractor, et al. (2000) begin the lengthy 
process of theory–model coevolutionary resolution, 
but:

Debate remains over which elements of structur-
ation theory are worth formalizing; 

Not all generative mechanisms thought to cause 
network emergence are represented; additional 
theorizing could mean additions and / or dele-

•

•

•

1.

2.

tions; 

Formalization of model-substructures could take 
a variety of expressions; and 

Their model, “Blanche,” is only one of many 
computational modeling approaches that could 
be used.

In short, it will take a research program it-
eratively coevolving these four developmental process 
elements over some period of time before theory, the 
derived set of formalized causal statements, and model-
ing technology achieve full credibility.

Step 3. The ontological adequacy test: Comparisons of 
model-substructures with functionally parallel real-
world subprocesses. Empiricists are not held to the 
draconian objective of testing model-to-real-world 
isomorphism for all substructures at the same time - 
that is, matching the composite outcome of the model 
against equivalent real-world phenomena. Experience 
in classical physics shows that if each of the substruc-
tures is shown to be representative, then the whole will 
also refer. This means that model–phenomena tests 
may be conducted at the substructure or composite 
outcome levels.

The increased probability of nonlinear sub-
structure effects (individually or in combination) in 
social science, however, demonstrates the increased 
importance of model-centered science. Given non-
linear substructure interactions, it is more likely that 
the model’s composite outcome will fare better in the 
ontological test. Contractor, et al. (2000) actually do 
both kinds of tests. In a quasi-experiment, they col-
lect data pertinent to each of the model-substructures 
and to the composite outcome of the model. Their 
real-world sample consists of 55 employees measured 
at 13 points over two years. They do not test whether 

subcomponent of the emergent network. For example, 
they do not test the relation between the model’s 

real-world matrix. They show, however, that each 
causal substructure has already been well tested in pre-

outcome predicts the empirically observed emergent 
network. Furthermore, four of the ten substructures 

emergent network. 

Testing the model–phenomena link also in-
volves several coevolutionary developments:

Decompose the model into key constituent sub-
structures, which may need further ontological 
testing;

3.

4.

1.
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Identify equivalent generic functions in real-world 
phenomena, perhaps across a variety of quasi-ex-
perimental settings, presumably improving over 
time as well;

real-world operational terms; here, too, improve-
ment over time is expected;

Test to see if (a) the model substructures are 
isomorphic with the real-world functions; and 
(b) if the model’s composite outcome represents 
real-world phenomena - both expected to develop 
interactively over time.

Needless to say, several empirical tests would 
be required before all aspects of the model are fully 
tested. In the Contractor, et al. (2000) study, six of the 
substructure expressions do not separately predict 
the real-world outcome. This could be because of the 
nonlinear interactions or because the substructures do 
not validly represent either theory or real-world phe-
nomena in this instance. Thus, neither analytical nor 
ontological adequacy of the model are fully resolved. 
More generally, sensitivity analyses could test the 

changes in level of ontological adequacy. Furthermore, 
since theory and model coevolve toward analytical 
adequacy, it follows that these tests for ontological ad-
equacy would have to be updated as the theory–model 
link coevolves.

With respect to testing theories bearing on 
knowledge era organizational dynamics, agent-based 
models have much to offer. They allow us to accomplish 
the following objectives:

Formal modeling without having to assume away 
the essential character of postpositivist ontology: 
complexity, diversity, heterarchy (multiple orders 
and constraints), vast networks of connections, 
indeterminate social behaviors, mutual causality, 
and so forth - all the key elements of knowledge 
era dynamics;

Extracting more plausibly true, potentially gener-
alizable, and predictable theories from complicated 
case study narratives bound to a particular locality, 
context, time, and observer;

Reducing initially complicated theories about a 
complex world to agent rules, in abstracted, ideal-
ized, agent-based model form, so as to study and 
model how agent rules lead to order creation and 
the formation of norms, hierarchy, institutional 
structure, supervenience, and the like.;

Seeing whether the analytical truth plausibility 
of theories may be improved by testing which 
of the various proposed elements of the theories 
work best in producing outcomes predicted by the 

2.

3.

4.

1.

2.

3.

4.

theories, thereby leading toward the production 
of more elegant theories composed of fewer, but 
more fruitful, elements;

Aiming for theories that have more empirical truth 
plausibility because they (a) more adequately rep-

have been tested against real-world phenomena.

Forcing elegance on theories by the use of 
models offers simpler, theory-based, more plausibly 
true beliefs, and increasingly crystallized, more easily 
described messages for management researchers to take 
to practicing managers.

I suggest ten steps that researchers may take to 
bridge across the advantages of both thin- and thick-
description research methods, that is, bridging across 
existing ‘thick’ case study narratives and existing ‘thin’ 
empirical approaches using correlation-based, longitu-
dinal, regression or econometric analyses:

Focus on ways to bridge from the richness of 
case-study narratives to more substantiated multi-
causal theories;

Develop order-creation theories incorporating 
multiple causes from various underlying disci-
plines that apply to organizations from inception 
to maturity;

Develop theories allowing for the coevolution of 
causes, as described by Thomas, et al. (2004);

Develop theory direction-and-application ques-
tions that extend theorizing from narrative(s) to 
more generalizable forms;

Translate theories into model form - translate 
causes into agent rules, create agent activation and 
interaction regimens, time and space effects, etc.;

Draw on stylized facts to define agent rules as 
much as possible - following the Contractor, et al.
(2000) approach;

Set up model procedures to explore the theory 
direction-and-application questions: How to 
simplify causes? What are mutual causal effects 
over time? What can be managed? What can be 

and/or generalizable? And so on;

Set up baseline-model outcomes that may be 
compared with real-world experiments and time-
series effects;

then be tried out by managers and entrepreneurs.

Cycle through all of the foregoing steps, taking into 
account the coevolution of: (1) theory–model link; 
(2) model–phenomena link; and (3) coevolution of 
the various model parts.

5.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
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Conclusion

Ibegan this article by pointing out that traditional 

physics and carried over into social science - most 
obviously by neoclassical economics. Classical science 
focused solely on explaining equilibrium under the 1st

Law of Thermodynamics. Especially because of the 
increasingly rapid change dynamics at the dawn of 
the 21st century, the necessity of updating strategies 
and organization designs to keep ahead of competitors 
dominates managers’ and researchers’ attention. This 
article sets up the rapid change problem, and shows 
why even evolutionary theory is not the best approach 
for explaining entrepreneurship and organizational 
change dynamics. We need both new theory and new 
methods.

If the study of biological order creation is put 
into fast motion, it seems clear that the dynamics of 
order creation are the result of geological events and 

toward equilibrium within a context of existing spe-
cies and stable niches. Biological population ecology is 

of existing species and niches - it is even more short 
term than the time horizon of Darwinian selection. 
The new look at biological order-creation dynam-
ics suggests that evolutionary theory is an awkward 
choice of theoretical approaches to apply to the study 
of entrepreneurship and strategic organizing responses 
to changing competitive environments (McKelvey 
2004a,b). The lesson from biology is that most of the 
true order-creation action is over before Darwinian 
theory approaches become relevant. As if this weren’t 
damaging enough, the development of symbiogenesis 
by Lynn Margulis (1981; with Sagan, 2002; Ryan, 2002)
offers a far more relevant nonequilibrium theory for 
organization studies than Darwin’s.

A new kind of science is called for - one based 
on order-creation rather than the equilibrium - and 
mathematics-dominated theories and methods of clas-
sical physics and neoclassical economics. Furthermore, 
different kinds of foundational assumptions are needed 

science - really ‘order-creation science’ - is particularly 
relevant because it is founded on theories explicitly 
aimed at explaining order creation rather than account-
ing for classical physicists’ traditional concerns about 
explaining equilibrium. 

Order creation has become the central focus 
of complexity science. Calling it ‘complexity science’ 
is like calling thermodynamics ‘hot science’ - that is, 
naming it after one extreme of the outcome variable. 
Its real concern is the study of order-creation dynam-
ics. My brief review separates order-creation science 

into two schools, European and American. The former 
focuses on the effects of externally imposed energy 
differentials (adaptive tension) on the production of 
phase transitions. Energy levels above Bénard’s 1st

critical value are important for overcoming the thresh-
old-gate, agent-activation problem. The American 
school focuses on internal positive feedback induced 
nonlinearities stemming from the coevolution of in-
teracting, heterogeneous agents that are set in motion 

chaos theory. The American school, in particular, is 

of a ‘new’ normal science that is based on a localized, 
connectionist ontology similar to that which post-
modernists have concluded is a better representation 
of social ontology. In short, the European school puts 
Bénard’s critical values and phase transition effects at 
the origin of order creation. The American school legiti-
mizes the postmodernists’ ontology but overcomes its 
anti-science rhetoric by using computational models / 
experiments based on heterogeneous agents as a means 
of pursuing model-centered science without assuming 
away the postmodernists’ - correct - representation of 
social ontology. In fact, both European and American 
contributions are needed to explain order creation.

Casti (1997) says that the Santa Fe Institute 
will be remembered principally for its promulgation 
of agent-based computational models. I have outlined 
the several reasons for this. These models offer four 
advantages to theoreticians and researchers by: 

Allowing a modernization of the continuing legacy 
of logical positivism - the centrality of models, 
what I have elsewhere called “model-centered 
science” (McKelvey, 2002). Models are now seen 
as the third force in determining the course of sci-
ence, along with theory and phenomena (Morgan 
& Morrison, 2000);

Introducing virtual experiments so researchers 
can (a) manipulate variables with a surety not 
possible with real-world human experiments; (b) 
run experiments with large numbers of virtual 
subjects; (c) do so over many time periods; and (d) 
replicate the foregoing as many times as deemed 
appropriate;

Fostering the study of interdependence rather than 
avoiding it by assuming independence; further-
more, positive feedback processes are emphasized 
in addition to negative feedback, equilibrium-pre-
serving processes;

Permitting the exploration and study of genuine 
order-creation processes and emergent behaviors 
among interconnected agents. As Andriani and 
McKelvey (2005) observe, for social scientists the 
null assumption about social behavior is one of 

1.

2.

3.

4.
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interdependence not the assumption of indepen-
dence that characterizes most, if not all traditional 
science methodologies and especially the kinds of 
statistics usually applied in the quantitative study 
of organizations (e.g., see Greene, 2002).

Yes, relativists and postmodernists do have 
a legitimate case against the application of ‘physics-
based’ science to organization studies. On the other 
hand, there is no reason why organizational complex-
ity studies should be governed by their ‘anti-science’ 
rhetoric. I have tried to outline the case in favor of 
why complexity science - really order-creation science 
- methods allow organizational researchers to use ef-
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Notes
[1] ‘Agent’ is a general term used to variously designate 
semi-autonomous entities, i.e., ‘parts’ of systems. It 
thus incorporates such entities as atoms, molecules, 
biomolecules, organelles, organs, organisms, species, 

(Ferber, 1999).
[2] See also Fine (1998) as well as Jennings and 
Haughton (2000).
[3] For further elaboration see Yuan and McKelvey 
(2004), from which this portion is drawn.
[4] Quoted in Hamel (2000: 102).
[5] By way of additional background, I note, however, 
that Americans and French join in the Modern 
Interpretation of quantum theory-which is the most 
foundational treatment of order creation. I describe a 
bit of this in McKelvey (2001c).
[6] Peter Allen (1975, 1993, 2001; with McGlade, 1986) 
represents a sort of crossover. A 20 year colleague of 
Prigogine’s, he comes from a physics / chemistry 
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/ math background, but he adds probabilistic noise 
to the linear differential equations he draws from 
systems dynamics. He then applies this method to 

development, and other obviously social science 
applications.
[7] Though publishing in the SFI volume, Kelso was 
a student of, and frequent coauthor with, Hermann 
Haken.
[8] About Schumpeter, Besanko, et al. (2000: 485) 
say: “Schumpeter considered capitalism to be an 
evolutionary process that unfolded in a characteristic 
pattern. Any market has periods of comparative quite, 

technologies, or organizational capabilities earn 
positive economic profits. These quiet periods are 
punctuated by fundamental ‘shocks’ or ‘discontinuities’
that destroy old sources of advantage and replace them 
with new ones. The entrepreneurs who exploit the 
opportunities these shocks create achieve positive 

Schumpeter called this evolutionary process creative 
destruction.” (my italics)
[9] Coevolutionary dynamics can be mutual causal 
and may show positive feedback but usually species 
coevolve into stability after some kind of instigating 
event, given a stable niche.
[10] In most agent models I have studied the agent 
activity is simply coded into the model - hence there 
is no need or recognition of forces needed to overcome 
the threshold gate problem.
[11] For example, see Masuch and Warglien (1992), 
Carley and Prietula (1994), Prietula, Carley, and Gasser 
(1998), Ferber (1999), and Ilgen and Hulin (2000).
[12] See McKelvey (2001b, 2003; Henrickson & 
McKelvey, 2002) for expanded treatments of this 
topic.

in bio- and econospheres are not variances around 
equilibria but are due to the interactions of autonomous, 
heterogeneous agents energized by contextually 
imposed tensions. A review of these causes of emergent 
order in physics, biology, and the econosphere can be 
found in McKelvey (2004a).
[1 4] Parts of this section are quoted, with some 
emendations, from Lichtenstein and McKelvey 
(2003).
[15] ‘Docking’ is a procedure whereby the programming 
code of a model is reproduced by another programmer 
and then tested. If the model is properly described and 
the codes are each correct, they should agree (Axtell, 
et al., 1996). To date, docking is not often done and 
usually the model comparisons fail. See for example, 
Rouchier (2003).
[16] This section draws on McKelvey (2002, 2003,
2004b).
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