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Abstract: Understanding and managing ecosystems as biocomplex wholes is the compelling scientific 
challenge of our times.  Several different system-theoretic approaches have been proposed to study 
biocomplexity and two in particular, Kauffman’s NK networks and Patten’s ecological network analysis, 
have shown promising results.  This research investigates the similarities between these two approaches, 
which to date have developed separately and independently.  Kauffman (1993) has demonstrated that 
networks of non-equilibrium, open thermodynamic systems can exhibit profound order (subcritical 
complexity) or profound chaos (fundamental complexity).  He uses Boolean NK networks to describe system 
behavior, where N is the number of nodes in the network and K the number of connections at each node.  
Ecological network analysis uses a different Boolean network approach in that the pair-wise node 
interactions in an ecosystem food web are scaled by the throughflow (or storage) to determine the probability 
of flow along each pathway in the web.  These flow probabilities are used to determine system-wide 
properties of ecosystems such as cycling index (Finn 1976), indirect-to-direct effects ratio, and synergism.  
Here we use a modified version of the NK model to develop a fitness landscape of interacting species and 
calculate how the network analysis properties change as the model’s species coevolve.  We find that, of the 
parameters considered, network synergism increases modestly during the simulation whereas the other 
properties generally decrease.  This research is largely a proof of concept test and will lay the foundation for 
future integration and model scenario analysis between two important network techniques. 
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1. INTRODUCTION 

One goal of theoretical ecosystem ecology is to 
identify and quantify system-level concepts and 
find general patterns of ecosystem organization.  
One promising method has been to conceptualize 
ecosystems as networks connected by their transfer 
and exchange of energy and matter within and 
across system boundaries.  Several different 
developments of this conceptualization have been 
realized.  Independently, they have added 
significantly to our understanding of ecosystems 
yet there has been a lack of integration with these 
methods because of the different terminology, 
notation, history, disciplinary genesis, emphasis, 
and application.  The main goal of this project is to 
find linkages between two commonly used 
Boolean representations of ecological networks.  
In particular, we link ecosystem theory based on 
network analysis to Kauffman’s theory of self-
organized systems in order to test the hypothesis 

that network properties of homogenization, 
amplification indirect effects, and synergism 
increase as an ecosystem co-evolves to higher 
fitness levels. 
 

2. BACKGROUND 

2. 1 Ecological Network Analysis 

Bernard Patten used mathematical systems theory 
as a foundation for studying ecosystems (Patten et 
al. 1976, Patten 1978, 1981).  He stressed the 
utility of the inclusion-exclusion principle of set 
theory as a way to formalize the transactions that 
naturally occur in food webs.  A binary interaction 
exists in ecological networks, simplified often as a 
question of “who eats whom” , but more broadly as 
the transfer of conservative energy–matter between 
any two entities in the system.  Much of the 
subsequent work in network ecology builds on this 



 

basic premise of direct energy-matter transactions 
between coupled binary pairs.  These transactions 
form the basis of both direct and indirect 
ecological relations, such as predation (direct), 
neutralism (direct), altruism (direct), mutualism 
(indirect) and competition (indirect) that are of 
importance to community ecology.  Some of the 
primary findings of this research include the 
importance of indirect effects as they propagate 
through the myriad of network connections 
(Higashi and Patten 1989) and synergism, 
individual compartments in an ecosystem gaining 
positive value from being embedded in a larger 
network (Patten 1992, Fath and Patten 1998).  
 

2.2 Ecological Network Properties 
 
Several network properties have been developed 
with four in particular: amplification, indirect 
effects, homogenization, and synergism used most 
regularly to investigate ecosystem behavior.  Since 
they have been described elsewhere, only a brief 
description is provided here (see Fath and Patten 
(1999) for the details).  The four properties relate 
the distribution and contribution of conservative 
energy-matter flow through the network’s many 
direct and indirect pathways.  One measure of 
resource distribution is given in the direct flow 
intensity, or transfer efficiency, matrix G, whose 
values, gij=fij/Tj, represent the likelihood of flow 
along a given path, where fij corresponds to the 
flow from compartment j to compartment i, and 
Tj=Σ j(
�
 i)=0,n fij is the total sum of flow through 

compartment j including input and output 
boundary flows (fi0 and f0j, respectively).  Tj

in=Tj
out 

at steady state.  In the direct flow intensity matrix, 
G, all elements have a non-negative value less than 
one (0� gij<1) and can be interpreted as a 
probability of flow along each pathway.  Using 
standard input-output analysis techniques, an 
integral flow intensity matrix, N, is computed from 
the convergent power series: 
N = G0 + G1 + G2 + G3 +...  = (I  – G)–1       (1) 
where I  is the multiplicative identity matrix. 
 
Elements nij in the matrix N include the 
contribution of direct (m=1) and indirect (m>1) 
pathways, and therefore are always greater than or 
equal than the values of G.  The G and N matrices 
are used to define the amplification, 
homogenization, and indirect effects properties A 
specific quantitative test exists to determine each 
property (Figure 1). 
 
Amplification occurs whenever an off-diagonal 
element of the integral flow matrix is greater than 
one (nij>1).  The integral flow from j to i, can 
exceed one when cycling drives more than the 
equivalent of one unit of input flow over the 

pathway.  This property was observed in several of 
the small-scale models but is rare in large-scale 
models (Fath 2004). 
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Figure 1.  Four network properties 
 
The homogenization property compares the 
resource distribution between the direct and 
integral flow intensity matrices.  It was observed 
that, due to the contribution of indirect pathways,  
flow in the integral matrix was more evenly 
distributed or more homogenized than that in the 
direct matrix, meaning that flow is comprised of 
contributions from many parts of the network.  
Network homogenization occurs when the 
coefficient of variation of N is less than the 
coefficient of variation of G because this indicates 
that the network flow is more evenly distributed in 
the integral matrix. 
 
Indirect effects are calculated as the integral 
contributions minus the direct and initial boundary 
input (Indirect = N–I–G).  The indirect to direct 
effects ratio is a measure of the relative strength of 
these two factors.  When the ratio is greater than 
one, then indirect effects are greater than direct 
effects. 
 
The fourth property, network synergism is based 
on a net flow intensity matrix, D, where 
dij=(fij−fji)/Ti.  Unlike the other series in which the 
elements are non-negative, entries in D can be 
positive or negative (−1�  dij<1).  The elements of 
D represent the relative utility between that (i,j) 
pairing.  An integral utility matrix U, is obtained 
from the power series as: 
U = D0 + D1 + D2 + D3 +... = (I  – D)–1      (2) 
 
This methodology is used to determine qualitative 
relations between any two components in the 



 

network such as predation, mutualism, 
competition, etc.  Synergism arises when integral 
positive utility exceeds negative utility because of 
mutualistic relations in the system and is 
calculated as the ratio of the magnitude of the 
positive and negative utilities. 
 

2.3 Kauffman’s NK Model 
Stuart Kauffman uses binary Boolean networks to 
find general laws of system self-organization 
(Kauffman 1993, 1996, 2000).  His main thesis is 
that biological systems are composed of 
autonomous agents, or self-replicating systems that 
perform work, which are “co-constructing and 
propagating organization”  (Kauffman 2000, p. 5).  
An emphasis is placed on co-construction and 
coevolution because of the cybernetic feedback 
that makes agents adapt to other agents at the same 
time they modify their own environment.  There 
recently has been renewed interest in the impact 
species have on each other and on their 
environment (e.g., Jones et al. 1997, Odling-Smee 
et al. 2003).  Coevolution and indirect effects are 
both manifestations of interacting networks. 
 
In his NK model, Kauffman (2000) addresses 
species coevolution by coupling the influence from 
genes of one species to genes of another species.  
The basic module of the NK model represents an 
organism with N genes, each having two alleles, 0 
and 1.  The contribution of each gene to the fitness 
of the organism depends on the allele of that gene 
and the alleles of K other genes in its genome, 
called “epistatic”  inputs.  In this simple model 
there are 2N combinations of alleles that influence 
fitness.  Each allele combination is randomly 
assigned a fitness contribution value.  The average 
fitness of the N genes is taken as the mean of the 
random values.  The result is a fitness landscape, 
such that every allele combination has a specific 
fitness value (Table 1 shows an example for N=3).   
 
When there is a flip in one allele from 0 to 1 or 
vice versa, the fitness contribution of the gene 
changes.  If the result is higher fitness, then the 
allele shift is accepted, if not, then it is not 
accepted.  Kauffman found that when the number 
of connections to other genes, K, is low the system 
quickly evolves to a global fitness maximum.  As 
the number of connections increases there are 
more local peaks until the point when the system is 
completely interconnected (K=N–1) and the 
resulting fitness landscape is fully random.  The 
more local peaks that occur, the more improbable 
it is to “climb”  to the global peak, resulting, on 
average, in an overall lower fitness.  However, 
Kauffman maintains that fitness landscapes are not 
random but instead are generated by the 
coevolutionary interactions of the various species.  

Therefore, the next step is to link NK models of 
various species. 
 
Table 1.  There are eight possible binary 
combinations of 3 genes.  Each is assigned a 
random fitness value between 0 and 1, and the 
fitness for each allele combination is the mean of 
the three values.  This procedure is used to 
construct a fitness landscape.  For example, 
starting with each gene expressing a 0, the fitness 
is 0.37.  If the allele on the first gene flips to “1”  
then fitness increases to 0.43.  This simple model 
has only one fitness peak at (0,1,0). 
1 2 3 fitness 

value 
w1 

fitness 
value 
w1 

fitness 
value 
w3 

Average 
fitness 
w  

0 0 0 0.2 0.5 0.4 0.37 
0 0 1 0.7 0.1 0.2 0.33 
0 1 0 0.5 0.9 0.8 0.73 
0 1 1 0.3 0.3 0.1 0.23 
1 0 0 0.5 0.4 0.4 0.43 
1 0 1 0.1 0.5 0.3 0.30 
1 1 0 0.9 0.2 0.8 0.63 
1 1 1 0.6 0.8 0.4 0.60 
 
 
In the multi-species version of Kauffman’s NK 
model, the fitness value of each allele depends not 
only on the allele of that gene and on the alleles of 
K epistatic genes, but also on the alleles of C other 
genes in each of S other species.  If there are two 
species coupled together, then each gene has K+C 
inputs, and a table of random fitness contributions 
is generated that has 2(K+C) combinations.  A model 
in which each species is connected with S other 
species has 2(K+CS) possible states, so the number of 
possible states grows combinatorically.  The 
fitness of the species is calculated as the mean of 
the fitness values of the alleles in its current 
genotype; each species is assumed to be isogenic.  
Now, when one species evolves (a flipping of an 
allele on a gene) this likely has ramifications for 
the other species by deforming the overall fitness 
landscape.  Kauffman found that in general 
coevolving systems coupled in this manner behave 
either in an ordered or chaotic regime, separated 
by a phase transition depending on the number of 
couplings. 
 
We have recreated Kauffman’s multi-species NK 
model here to investigate the fitness of coevolving 
species with a particular interest in understanding 
how ecosystem properties may be affected by the 
resultant coevolutionary processes.  A few 
modifications to the original model as presented 
above are noted.  Each time step during the 
simulation, any one of four events, randomly 
chosen, may happen.  (1) A randomly-chosen 
species may evolve to a new genotype via 



 

recombination, if the randomly-chosen new 
genotype has a higher fitness value than the current 
genotype.  A randomly-chosen species may be 
replaced by a new species that (2) may have a 
different K than the current species, but has the 
same C and S, (3) may have a different C, but has 
the same K and S, or (4) may have a different S, 
but has the same K and C, if the new species has a 
higher fitness value than the current species.  Thus, 
as species evolve or are replaced by invading 
species, they change their own fitness landscape 
(Kauffman 1996, 2000) as well as the fitness 
landscape of the other species.  The above 
restrictions could be relaxed in future research to 
study more general cases, but for now the model 
was used to generate a time series of connectance 
matrices.  We apply ecological network analysis to 
each matrix.  Eventually, it would be useful to look 
at models that have more realistic ecosystem 
structures by using the methodologies developed 
in Fath (2004) or perhaps to see if over time 
species in the models naturally evolve into a 
configuration similar to a trophic structure.  
However, that is beyond the scope of this paper.  
Here we present the initial results from this 
research, which uses a five species model 
coevolving for 10 time steps under two different 
species coupling regimes. 
 
 
3.     INTEGRATED MODEL   

In the first simulation, all species were initialized 
with S=1 (i.e., each species is connected with one 
other species), and in the second simulation all 
species were initialized with S=4 (connected to all 
other species).  Every time interval during the 
simulation, we generate a connectance matrix 
based on the current fitness and S values of the set 
of species.  Elements of the connectance matrix are 
equal to 0 if the fitness values of the genes of the 
“ to”  species are not affected by the genes of the 
“ from”  species, and diagonal elements are equal to 
0, that is, species are not connected to themselves.  
Values of the other elements of the connectance 
matrix are calculated as the fitness value of the 
“ to”  species divided by its S value, that is, the sum 
of all elements “ to”  a given species is equal to its 
fitness value. 
 
The elements of the connectance matrix represent 
the fitness contribution among connected species.  
In order to apply ecological network analysis to 
these matrices, we assume that elements of the 
connectance matrix represent relative rates of 
energy flow among the set of species.  Obviously, 
fitness is not flow, but in a more general sense the 
fitness represents a measure of influence between 
species.  The flow probability between two 
compartments is the proportion of flow to total 

throughflow (gi j = fij/Tj) where Tj is the total 
throughflow into compartment j.  This could also 
be interpreted as the probability of influence 
between two compartments (Patten et al. 1976).  
Here we assume that the fitness contribution (from 
0 to 1) can be used as a measure of the weighted 
influence.  This allows us to apply ecological 
network analysis to each matrix and calculate the 
cycling index (Finn 1976) as well as the 4 
ecological network properties described above. 
 
We then examined the temporal dynamics of these 
properties as the set of species co-evolve through 
different fitness landscapes to test the hypothesis 
that cycling index, homogenization, amplification, 
indirect effects, and synergism increase as the 
ecosystem co-evolves.  Note, that ecological 
network analysis is a steady-state analysis, 
however we treat the model generated from each 
time step as a snapshot in time.  As the system 
changes over time, we can determine the network 
properties of the system in that particular state.  
One other assumption is needed to run the 
analysis, which is that the model ecosystems, as 
open systems, receive external input.  Energy 
enters the system largely through primary producer 
and lower trophic level species.  Usually, for a 
model this size (5 compartments) external input 
into one compartment is enough, but in some of 
these simulations the first compartment is 
eliminated after which time there would be no 
further input available to higher trophic levels.  
Therefore, a unit of input is given to each of the 
first two compartments.  The other compartments 
receive flow from the network of interactions, 
which subsequently affects their fitness. 

 

4.  NUMERICAL SIMULATION RESULTS  

In the first simulation, each species is connected to 
one other species.  The connectance values can 
change at each time step given the occurrence of a 
randomly chosen event, as described above (Table 
2 shows two matrices generated by the model at 
time steps 2 and 3).  For example, we see that in 
the third time step a new species 2 appears which 
is also dependent on species 4 and the overall 
connectance or fitness from species 2 to species 1 
increases.  Changes such as these continue through 
to the end of the simulation after 10 time steps.  
When the ecological network properties of these 
connectance matrices from each time step are 
calculated we find the following: amplification 
does not occur at any time step; the cycling index, 
homogenization, and ratio of indirect to direct 
effects all decrease over time; and the synergism 
parameter rises steadily until a certain point at 
which it starts to drop (Figure 2). 
 



 

Table 2.  Example of 2 connectance matrices 
generated by the first simulation model.  Reading 
from columns to rows, at time 2, Sp 2 affects Sp 1 
(0.52), Sp 3 affects Sp 2 (0.42), Sp 4 affects Sp 3 
(0.42), Sp 5 affects Sp 4 (0.66), and Sp 1 affects 
Sp 5 (0.61).  At T=3, Sp 2 is replaced by a new Sp 
2 that is affected by Sp 3 and Sp 4 (overall fitness 
is higher (0.46 versus 0.42).  The new Sp 2 also 
has caused a change in the fitness value of Sp 1. 
 
T=2 Sp 1 Sp 2 Sp 3 Sp 4 Sp 5 

Sp 1 0 0.52 0 0 0 
Sp 2 0 0 0.42 0 0 

Sp 3 0 0 0 0.42 0 

Sp 4 0 0 0 0 0.66 

Sp 5 0.61 0 0 0 0 
 

T=3 Sp 1 Sp 2 Sp 3 Sp 4 Sp 5 

Sp 1 0 0.66 0 0 0 

Sp 2 0 0 0.23 0.23 0 

Sp 3 0 0 0 0.42 0 

Sp 4 0 0 0 0 0.66 

Sp 5 0.61 0 0 0 0 
 
 
In the second simulation, each species is initially 
linked to four other species.  Several changes 
occur immediately, most notably, the connection 
between Sp 4 and Sp 5 is lost.  During the 10-step 
simulation the system becomes more articulated, 

meaning there are fewer connections between 
species, but these changes would only be accepted 
if the overall fitness of the species increases.  One 
simple measure to consider is the total number of 
connections in the system during each time step 
(Table 3).  We see a similar pattern in the network 
parameters in the second simulation as well.  
Amplification does not occur at any time step.  
Cycling index and indirect effects ratio decrease, 
while in this simulation homogenization bounces 
around but is fairly flat.  Synergism also oscillates 
reaching a peak in the middle of the simulation and 
dropping again near the end (Figure 3, note in the 
figure that synergism is plotted on the alternate y-
axis). 
 
 
Table 3.  Connections in Simulation A (species 
initially connected to one species) and Simulation 
B (species initially connected to four species) 

T A: # links B: # links 
0 5 20 
1 5 19 
2 5 19 
3 6 19 
4 6 19 
5 5 19 
6 4 19 
7 4 18 
8 4 18 
9 5 18 
10 7 14 
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Figure 2.  Behavior of network properties over time for first simulation. 
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Figure 3.  Behavior of network properties for second simulation.  Synergism is plotted on the alternate y-axis. 
 
 
5.     CONCLUSIONS 

In conclusion, we have recreated Kauffman’s 
multi-species NK model and used it to investigate 
the coevolution of a simple model ecosystem.  
Furthermore, we have used the fitness values 
generated by the model as surrogates for the 
probability of influence between the 
compartments.  This allows the application of 
network analysis techniques to determine the 
values of specific network properties.  In 
particular, we found that network synergism 
appears to respond positively as fitness increases, 
and the other properties respond negatively.  This 
paper represents the first attempt to integrate the 
two Boolean techniques; further research is needed 
to more deeply understand the interrelation 
between them.  Future work along these lines is 
currently underway, in particular to see how 
various network-based ecological goal functions 
(Fath et al. 2001) respond to changes in fitness in 
these coevolutionary models. 
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