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Abstract

Socio-economic networks describe collective phenomena through constraints relat-
ing actions of several agents, coalitions of these agents and multilinear connectionist
operators acting on the set of actions of each coalition. We provide a class of control
systems governing the evolution of actions, coalitions and multilinear connectionist
operators under which the architecture of the network remains viable. The controls
are the “viability multipliers” of the “resource space” in which the constraints are
defined. They are involved as “tensor products” of the actions of the coalitions and
the viability multiplier, allowing to encapsulate in this dynamical and multilinear
framework the concept of Hebbian learning rules in neural networks in the form of
“multi-Hebbian” dynamics in the evolution of connectionist operators. They are also
involved in the evolution of coalitions through the “cost” of the constraints under the
viability multiplier regarded as a price.

Introduction

We begin this paper by quoting the wish J. von Neumann and O. Morgenstern
expressed in 1944 at the end of the first chapter of their monograph “Theory of
Games and Economic Behavior”:

“Our theory is thoroughly static. A dynamic theory would unquestionably be
more complete and therefore, preferable...”
“Our static theory specifies equilibria ... A dynamic theory, when one is found —
will probably describe the changes in terms of simpler concepts.”

∗communication prepared for the Huitièmes Rencontres Internationales Approches Connex-
ionistes en Economie et Sciences de la Gestion, Rennes, November 22-23, 2001.
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One of the economic characteristics is the presence of scarcity constraints, and
more, generally, viability constraints to which a socio-economic system must adapt
during its evolution.

It becomes then natural to specify the “minimal” conditions under which an
economy can work and to specify classes — as large as possible — of reasonable
economies whose evolution does not violate these viability conditions (as well as
other specifications).

In my opinion, when one has to design a mathematical metaphor for an evolution-
ary model of socio-economic variables, one should start by gathering the constraints
of these variables which cannot — or should not — be violated.

This requires first to delineate the endogenous states of the system under study
and to discriminate them from the rest of the variables, regarded as exogenous,
constituting in some sense the “environment” of the system under investigation. This
partition between variables, which dictates the level of abstraction of a particular
investigation, is the first source of constraints that the endogenous variable must
obey.

Usually, there are few disputes among “modelers” when they are listing these con-
straints. Serious disagreements may begin when behavioral assumptions have to be
made.

0.1 Designing Dynamics through Viability Multipliers

In order to weaken such controversies, or to prorogue the ultimate choice of a be-
havioral description of the economic agents, the strategy I suggest is to begin by
characterizing an “envelope” of dynamical systems under which the constraints are
viable, in the sense that starting from any initial state satisfying these constrains, at
least one evolution is viable, i.e., satisfies at each instant these viability constraints.
We shall perform this task here for a class of constraints describing the architecture
of an abstract socio-economic network.

We then can devise general strategies for designing dynamical behaviors of the
economic agents under which the constraints are viable. Now, the problem of choice
of a behavior of the consumers is well circumscribed: one can propose, describe
or suggest such and such shape of a change function and check whether or not a
representative of this class belongs to this “envelope”. Or one can propose a choice
criterion and choose among viable dynamical economies of this “envelope” the ones
which satisfy optimally this criterion.

Given the constraints that a socio-economic system must obey, and given an
initial dynamic system for which these constraints are not viable, a theorem on
viability multipliers allows us to correct the dynamics of the initial system in order that
the constraints become viable under the corrected system. These viability multipliers
play the role of Lagrange or Kuhn-Tucker multipliers in optimization theory, where
an optimal solution of the problem of maximization of a utility function under
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constraint is obtained by maximizing without constraints a corrected utility function
involving Lagrange multipliers. Both the viability and Lagrange multipliers belong
to the same space (the dual of the resource space), and are usually interpreted as
virtual prices as well as other regulatory controls, called regulons.

Therefore viability multipliers provide one way (but not the unique one) allowing
to design dynamical economies for which the constrained set is viable, that should be
familiar to economists, since it amounts to use for (virtual) prices the very same
multipliers — viability multipliers instead of Lagrange ones — that are used in
optimization under constraints for relaxing the constraints. In this respect, viability
theory can be regarded as an evolution theory under (viability) constraints.

For example, ever since Adam Smith’s invisible hand, what we call nowadays
decentralization is justified by the need of agents to behave in a decentralized way
for complying to scarcity constraints, using for this purpose “messages” such as
prices or “rationing” mechanisms which involve shortages (and lines, queues, un-
employment), or “frustration” of consumers, or “monetary” mechanisms, or others.
“Prices” constitute the main examples of messages, actually, the messages with the
smallest dimension (see for instance an introduction to this issue in [62, Saari]). Such
prices appear here as viability multipliers emerging when allocations of commodities
satisfy the scarcity constraints.

The next task is to derive from the confrontation of the (corrected) dynamics
and the constraints the concealed regulation mechanisms governing viable evolutions,
and to select some of them according to some further principle. This allows us to
derive “adjustment laws” instead of founding the modelization process based on such a
law. This goes against the tradition of theoretical economy, where the adjustment
of some variables for reaching an equilibrium plays a basic and prominent role.
The so–called “law of supply and demand” states that prices react in a determined
direction in response to a difference between supply and demand in the market: the
price of a particular commodity is assumed to vary according to the sign of the excess
demand of this commodity. Instead of reasoning with a law of adjustment a priori
given, and which does not produce viable evolutions, we shall build “dedicated”
laws of supply and demand which shall provide viable solutions. In some way, this
reverse approach allows us to “explain” a posteriori the role of such an adjustment
law instead of scrutinizing the consequences of an a priori given law for possible
justifications.

In summary, the main purpose of the viability approach to dynamical economics is
to explain the evolution of a system, governed by given nondeterministic dynamics
and viability constraints, to reveal the concealed regulation laws which allow the
system to be regulated and provide selection mechanisms for implementing them.

It assumes implicitly an “opportunistic” and “conservative” behavior of the sys-
tem: a behavior which enables the system to keep viable solutions as long as its
potential for exploration (or its lack of determinism) — described by the availability
of several evolutions — makes possible its regulation.
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Therefore, using this viability approach, the modeling difficulty is confined to
the elaboration of the list of constraints that the state of the system must obey and
to use the above theory to suggest dynamics and study their properties.

0.2 Complex Economic Systems

This is at this level that the concept of “connectionist complexity” — to make more
precise a meaning of such a polysemous concept as “complexity” — comes into the
picture. The complexity of dynamic socio-economic systems stems from such a non
teleological collective evolution of the set of agents, even though many individual
economic agents think of themselves as being pursuing definitive and rational aims,
instead of adapting permanently to the many viability constraints (among which
scarcity constraints) they face under uncertainty, either contingent, stochastic or
tychastic1. This theme has been introduced and studied in economic theory un-
der the name of “bounded rationality”. Indeed economic agents are humans, not
computers, are seldom rational, obey inertia principles, are poor forecasters, actu-
ally very myopic. They base many decisions not on rational grounds, but on faith,
beliefs and bets, rules of thumb, moods, rumors, and the like. They are more in-
ductive than deductive in their learning processes. Actually, we can adopt Peirce’s
terminology and look at them as “abductive”, i.e., as making conjectures rather
than predictions2. They are most often more conservative than innovative, afraid
of changes when they are not perceived as improving their situation. They may
prefer to adopt a herd — or panurgean — behavior instead of choosing dissident
ways opening new avenues.

Social (and living) systems are “complex”, although there is no consensus on
the definition of complexity. Reading the literature on complexity, and quoting
George Cowan, the founder of the Santa Fe Institute, “in the universe, everything is
connected with every thing” seems to be the consensual agreement of the members of
this Institute. However, Seth Loyd had found 31 different definitions of complexity
at the beginning of the 90’s. This number increased a lot since. Complexity is indeed
a polysemous word, that tries to embrace too many distinct phenomenon of interest
in social and biological sciences3.

1The theory of tychastic control (or “robust control”) can be studied in the framework of dy-
namical games, when one player plays the role of Nature that chooses — plays — perturbations.
These perturbations, disturbances, parameters that are not under the control of the controller or
the decision-maker, could be called “random variables” if this vocabulary was not already confis-
cated by probabilists. We suggest to borrow to Charles Peirce the concept of tyche, one of the three
words of classical Greek meaning “chance”, and to call in this case the control system as a tychastic
system. See [22, Aubin, Pujal & Saint-Pierre]) for more details.

2Non mathematical accounts of such questions can be found in [15, Aubin].
3Physicists and computer scientists have attempted to measure it in various ways, through the

concept of Clausius’s entropy, Claude Shannon’s information, Gilbert Chauvet’s nonsymmetric in-
formation, the degree of regularity instead of randomness, “hierarchical complexity” in the display
of level of interactions, Andrei Kolmogorov, Gregory Chaitin & Ray Solomonoff “algorithmic in-
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Since at least the works [42, Elton] of Charles Elton and [47, Hutchinson] of
George Hutchinson at the end of the fifties, the conventional wisdom of biologists
proposes in some loose ways that complexity, regarded as the number of variables
of the systems and their links — is justified for maintaining “stability” — a fuzzy
word, meaning confinement, or rather, viability as it was proposed to single out this
meaning from the numerous intendments of “stability” in mathematics. Biodiversity
is presently and actually championed on the basis of this objective. In a series of
papers summarized in [52, May], Robert May and his collaborators disclaimed this
proposition by showing that the higher the dimension, the less stable were dynamical
models of Lotka-Volterra types. Therefore, either the biologists’ assumption was
false, or such mathematical connotation of complexity — the dimension of the state
space — or the chosen mathematical model is inadequate. This is a suggestion
made by John-Maynard Smith in [67, Smith], when he concluded that stability of
ecosystems is due to some specific interactions.

Here, we retain the following features:

1. complexity means in the day-to-day language not only the number of variables
of a system, but also and above all the labyrinth of connections between the
components of an organization or a “system” (or, for that matter, of a living
organism),

2. the purpose of complexity to sustain the “stability” — another polysemous is
word — or more precisely the viability constraints set by an organization,

3. the increase of complexity is parallel to the growth of the web of constraints
whenever the system cannot comply to them in an autonomous or decentralized
way,

4. the organization of organisms as a hierarchical structure of relatively “au-
tonomous” organs is due to “cycles” involved in the viability constraints or
multi-stage production processes,

5. the organization in organisms or subsystems is rooted in the need to offer them
slowly evolving partial environments to specialize them in specific activities.

formation contents” (see [34, Chaitin] for instance) and other temporal or spatial computational
complexity indices measuring the computer time or the amount of computer memory needed to
describe a system, “grammatical complexity” measuring the language to describe it, etc. Some
economists link complexity issues with chaos theory as in [39, 40, Day] for instance. Other investi-
gators link complexity issues with catastrophe theory, or fractals. See among many references [58,
Peliti & Vulpiani].

Physicists — and among them, specialists of “spin glasses” such as Giorgio Parisi — propose the
number of equilibria of a dynamical system as a characteristic of complexity. Or, even more to the
point, “quasi equilibria”, that are “small” areas of the state space in which the evolution remains
a “long time”, before “jumping quickly” to another quasi equilibrium (see [55, 56, 57, Parisi]).

The concept of static and dynamical “connectionist complexity” indices when connectionist ma-
trices are used as regulons to regulate viable solutions and to the search of evolution minimizing at
each instant those indices was introduced in [11, Aubin].
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However, these attempts did not answer directly the question that some economists
or biologists asked: Complexity and hierarchical organization, yes, but for what
purpose?

This growth of “structural” complexity is the legacy that Jean-Baptiste de
Monet, chevalier de Lamarck, offered to us, the backbone of his theory of evolu-
tion which was forgotten ever since, overshadowed as it was by other aspects of the
evolution of species, such as the Darwinian natural selection or genetics. The Claude
Bernard’s “constance du milieu intérieur”, the “homeostasis’ of Walter Cannon, vi-
ability constraints to which dynamical systems must comply, later contributed to
single out the crucial role of constraints as a key for explaining this aspect of com-
plexity.

In this framework of adaptation to viability constraints, the evolution of the state
no longer derives from intrinsic dynamical laws valid in the absence of constraints,
but from some “organization” that evolves together with the state of the system in
order to adapt to the viability constraints. This attempt to sustain the viability of
the system by connecting the dynamics or the constraints of its agents may be a
general feature of “complex systems”.

We regard here connectionism — a less normative and more neutral term than
cooperation whenever the system, the organ, the organism or the organization arise
in economics, social sciences or biology— as an answer to adapt to more and more
viability constraints, which implies the emergence of links between the components
of a dynamical system and their evolution.

0.3 Connectionist Complexity of the Architecture of Networks

We shall restrict our study to the case when the organization is described by a
“network” we now define.

A purpose of an organization is to the coordinate the actions of a finite number
n of agents labelled i = 1, . . . , n. It is descried here by the architecture of a network
of agents, such as

1. socio-economic networks (see for instance [48, Ioannides], [11, 9, Aubin], [19,
Aubin & Foray], [28, 27, Bonneuil].

2. neural networks (see for instance [8, 7, 12, Aubin]),

3. genetic networks (see for instance [?, 30, Bonneuil], [32, Bonneuil & Saint-
Pierre])).

This coordinated activity requires a network of communications of actions xi ∈ Xi

ranging over n finite dimensional vector spaces Xi.
The simplest general form of coordination is to require that a relation between

actions of the form g(A(x1, . . . , xn)) ∈ M must be satisfied. Here
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1. A :
∏n

i=1 Xi 7→ Y is a connectionist operator relating the individual actions in a
collective way,

2. M ⊂ Y is the subset of the resource space Y and g is a map, regarded as a
resource map.

We shall study this coordination problem in a dynamic environment, by allow-
ing actions x(t) and connectionist operators A(t) to evolve4 according to dynamical
systems we shall construct later. In this case, the coordination problem takes the
form

∀ t ≥ 0, g(A(t)(x1(t), . . . , xn(t))) ∈ M

However, in the fields of motivation under investigation, the number n of vari-
ables may be very large. Even though the connectionist operators A(t) defining the
“architecture” of the network are allowed to operate a priori on all variables xi(t),
they actually operate at each instant t on a coalition S(t) ⊂ N := {1, . . . , n} of such
variables, varying naturally with time according to the nature of the coordination
problem (see [14, Aubin], [59, Petrosjan], [60, Petrosjan & Zenkevitch] and [43, Filar
& Petrosjan]) for closely related issues in dynamic cooperative game theory).

Therefore, our coordination problem in a dynamic environment involves the evo-
lution

1. of actions x(t) := (x1(t), . . . , xn(t)) ∈
∏n

i=1 Xi,

2. of connectionist operators AS(t)(t) :
∏n

i=1 Xi 7→ Y ,

3. acting on coalitions S(t) ⊂ N := {1, . . . , n} of the n agents

and requires that
∀ t ≥ 0, g

(
{AS(t)(x(t))}S⊂N

)
∈ M

where g :
∏

S⊂N YS 7→ Y .

The question we raise is the following : Assume that we may know the intrin-
sic laws of evolution of the variables xi (independently of the constraints), of the
connectionist operator AS(t) and of the coalitions S(t), there is no reason why col-
lective constraints defining the above architecture are viable under these dynamics,
i.e, satisfied at each instant.

One may be able, with a lot of ingeniosity and the intimate knowledge of a
given problem, and for “simple constraints”, to derive dynamics under which the
constraints are viable.

4For simplicity, the set M(t) is assumed to be constant. But they could also evolve through
mutational equations and the following results can be adapted to this case. Curiously, the overall
architecture is not changed when the set of available resources evolves under a mutational equation.
See [13, Aubin] for more details on mutational equations.
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However, we can use the kind of “mathematical factory” providing classes of
dynamics “correcting” the initial (intrinsic) ones through viability multipliers q(t)
ranging over the dual Y ∗ of the resource space Y in such a way that the viability of
the constraints is guaranteed.

This may allow us to provide an explanation of the formation and the evolution of
the architecture of the network and of the active coalitions as well as the evolution of
the actions themselves.

The results presented here use this approach in the case of the above specific
constraints. We show that by doing so, the dynamics of the evolution of connectionist
operators and coalitions present some interesting features.

In order to tackle mathematically this problem, we shall

1. restrict the connectionist operators to be multiaffine, the sum over all coalitions
of multilinear operators AS , also called (or regarded) as tensors5, and thus,
involve tensor products,

2. next, allow coalitions S to become fuzzy coalitions so that they can evolve
continuously.

Fuzzy coalitions χ = (χ1, . . . , χn) are defined by memberships χi ∈ [0, 1] between
0 and 1, instead of being equal to either 0 or 1 as in the case of usual coalitions.
The membership γS(χ) :=

∏
i∈S χi is by definition the product of the memberships

of the members i ∈ S of the coalitions. Using fuzzy coalitions allows us to define
their velocities and study their evolution.

The viability multipliers q(t) ∈ Y ∗ can be regarded as regulons, i.e., regulation
controls or parameters, or virtual prices in the language of economists. They are
chosen adequately at each instant in order that the viability constraints describing
the network can be satisfied at each instant, and the main theorem of this paper
guarantees that it is possible. Another one tells us how to choose at each instant
such regulons (the regulation law).

The main theorem asserts that for each agent i, the velocities x′i(t) of the state
and the velocities χ′i(t) of its membership in the fuzzy coalition χ(t) are corrected
by adding

1. the sum over all coalitions S to which he belongs of adequate functions weighted
by the membership γS(χ(t)),

2. the sum over all coalitions S to which he belongs of the costs of the con-
straints associated with connectionist tensor AS of the coalition S weighted
by the membership γS\i(χ(t)). This type of dynamics describes a panurgean

5that are nothing other than matrices when the operators are linear instead of multilinear.
Tensors are the matrices of multilinear operators, so to speak, and their “entries” depend upon
several indexes instead of the two involved in matrices.
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effect . The (algebraic) increase of agent i’s membership in the fuzzy coalition
aggregates over all coalitions to which he belongs the cost of their constraints
weighted by the products of memberships of the agents of the coalition other
than him.

As for the correction of the velocities of the connectionist tensors AS , their cor-
rection is a weighted “multi-Hebbian” rule: for each component of the connectionist
tensor, the correction term is the product of the membership γS(χ(t)) of the coali-
tion S, of the components xik(t) and of the component qj(t) of the regulon. This
is a generalization of the celebrated Hebbian rule proposed by Hebb in his classic
book The organization of behavior in 1949 as the basic learning process of synaptic
weight in neural networks (see [8, 7, 12, Aubin]) for more details). Mathematically
speaking, we recognize tensor products of vectors that boil down to matrices when
only two vectors are involved.

In other words, the viability multipliers appear in the regulation of the multiaffine
connectionist operators under the form of a “multi-Hebbian” rules, as in [16, Aubin &
Burnod] where they were introduced for the fist time, compounded with the presence
of the membership coalitions γS(χ(t)) when coalitions of agents are allowed to form
and to evolve.

Even though viability multipliers do not provide all the dynamics under which
a constrained set is viable, they provide classes of them exhibiting interesting struc-
tures that deserve to be investigated and tested in concrete situations.

Remark: Learning Laws and Supply and Demand Law — It is cu-
rious that both the standard supply and demand law, known as the Walrasian
tâtonnement process, in economics and the Hebbian learning law in cognitive sci-
ences were the starting points of the Walras general equilibrium theory and of learn-
ing processes in neural networks. In both theories, this choice of putting such adap-
tation laws as a prerequisite led to the same cul de sacs. As we alluded to above,
starting instead from dynamic laws of agents, viability theory provides “dedicated
adaptation laws”, so to speak, as the conclusion of the theory instead as the primi-
tive feature. In both cases, the point is to maintain the viability of the system, that
allocation of scarce commodities satisfy the scarcity constraints in economics, that
the viability of the neural network is maintained in the cognitive sciences. For neu-
ral networks, this approach provides learning rules that possess the features meeting
the Hebbian criterion. For the general networks studied here, these features are still
satisfied in spirit. 2

These modeling challenges raised by the study of the evolution of socio-economic
networks require not necessarily more difficult mathematical techniques, but new
ones motivated by these questions. If we accept that physics studies much simpler
phenomena than the ones investigated by social and biological sciences, and that for
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this very purpose, they motivated and used a more and more complex mathematical
apparatus, we have to accept also that social sciences require a new and dedicated
mathematical arsenal which goes beyond what is presently available. Paradoxically,
the very fact that the mathematical tools useful for social sciences are and have
to be quite sophisticated impairs their acceptance by many social scientists and
economists, and the gap menaces to widen.

0.4 Outline

We present examples of network structures in order of increasing difficulty. We begin
with results (already) obtained for affine constraints (case of one agent), and expose
them in details when there are only two agents and when bilinear constraints are
involved.

In the next section, we exhibit the results for n agents for multiaffine constraints
without evolving coalitions, whereas in the last section, we introduce fuzzy coalitions
and show how they may evolve for maintaining the viability of the architecture of
the network.

1 Examples of Architectures Involving Linear and Bi-
linear Connectionist Maps

1.1 Case of Affine Constraints

For simplicity, we summarize the case when there is only one agent and when the
operator A : X 7→ Y is affine studied in [12, 9, 11, Aubin]:

∀ x ∈ X, A(x) := Wx + y where W ∈ L(X, Y ) & y ∈ Y

The coordination problem takes the form:

∀ t ≥ 0, W (t)x(t) + y(t) ∈ M

where both the state x, the resource y and the connectionist operator W evolve.
These constraints are not necessarily viable under an arbitrary dynamic system of
the form 

i) x′(t) = c(x(t))
ii) y′(t) = d(y(t))
iii) W ′(t) = α(W (t))

We can reestablish viability by involving multipliers q ∈ Y ∗ ranging over the dual
Y ∗ := Y of the resource space Y . We denote by W ∗ ∈ L(Y ∗, X∗) the transpose of
W :

∀ q ∈ Y ∗, ∀ x ∈ X, 〈W ∗q, x〉 := 〈q, Wx〉
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by x⊗ q ∈ L(X, Y ∗) the tensor product defined by

x⊗ q : p ∈ X∗ := X 7→ (x⊗ q)(p) := 〈p, x〉q

the matrix of which is made of entries (x⊗ q)j
i = xiq

j .
The contingent cone TM (x) to M ⊂ Y at y ∈ M is the set of directions v ∈ Y

such that there exist sequences hn > 0 converging to 0 and vn converging to v
satisfying y+hnvn ∈ M for every n. The (regular) normal cone to M ⊂ Y at y ∈ M
is defined by

NM (y) := {q ∈ Y ∗ | ∀ v ∈ TM (y), 〈q, v〉 ≤ 0}

(see [20, Aubin & Frankowska] and [61, Rockafellar & Wets] for more details on
these topics).

We can prove that the viability of the constraints can be reestablished when the
initial system is replaced the above system by the control system

i) x′(t) = c(x(t))−W ∗(t)q(t)
ii) y′(t) = d(y(t))− q(t)
iii) W ′(t) = α(W (t))− x(t)⊗ q(t)

where q(t) ∈ NM (W (t)x(t) + y(t))

where NM (y) ⊂ Y ∗ denotes the normal cone to M at y ∈ M ⊂ Y and x ⊗ q ∈
L(X, Y ∗) denotes the tensor product defined by

x⊗ q : p ∈ X∗ := X 7→ (x⊗ q)(x) := 〈p, x〉q

the matrix of which is made of entries (x⊗q)j
i = xiq

j (see [8, Aubin] for more details
on the relations between Hebbian rules and tensor products in the framework of
neural networks).

In other words, the correction of a dynamical system for reestablishing the via-
bility of constraints of the form W (t)x(t)+y(t) ∈ M involves the celebrated Hebbian
rule proposed by Hebb in 1949 as the basic learning process of synaptic weight: Tak-
ing α(W ) = 0, the evolution of the synaptic matrix W := (wj

i ) obeys the differential
equation

d

dt
wj

i (t) = −xi(t)qj(t)

It states that the velocity of the synaptic weight is the product of the presynaptic
activity and the postsynaptic activity. This intuition of a neurobiologist is confirmed
mathematically by the above result. Such a learning rule “pops up” (or, more
pedantically, emerges) whenever the synaptic matrices are involved for regulating
the system in order to maintain the “homeostatic” constraint W (t)x(t) + y(t) ∈ M .
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We may enrich this problem by introduced a coefficient χ(t) ∈ [0, 1] aimed at
“tuning” the action x(t) regarded as a potential action that is not wholly imple-
mented. In this framework, the constraint becomes

∀ t ≥ 0, W (t)χ(t)x(t) + y(t) ∈ M

Again, one can correct a differential system of the form
i) x′(t) = c(x(t))
ii) y′(t) = d(y(t))
iii) χ′(t) = κ(χ(t))
iv) W ′(t) = α(W (t))

by introducing viability multipliers as controls in a system of the form

i) x′(t) = c(x(t))−W ∗(t)q(t)
ii) y′(t) = d(y(t))− q(t)
iii) χ′(t) = κ(χ(t))− 〈q(t),W (t)x(t)〉
iv) W ′(t) = α(W (t))− x(t)⊗ q(t)

where q(t) ∈ NM (W (t)χ(t)x(t) + y(t))

The correction term is the “cost of the linear constraint” 〈q(t),W (t)x(t)〉 in the law
of evolution of χ(t).

1.2 Case of Bi-Affine Constraints

Before investigating the general case and confronting notational difficulties, let us
explain how we go from the affine case to the bi-affine case.

Here, we assume now that X := X1 × X2 is the product of two vector spaces.
Affine constraints takes the form

∀ t ≥ 0, A1(t)x1(t) + A2(t)x2(t) + A∅(t) ∈ M

where Ai ∈ L(Xi, Y ) (i = 1, 2) and A∅ ∈ Y . But we can also involve a bilinear
operator A{1,2} ∈ L2(X1 ×X2, Y ) and consider bi-affine constraints of the form:

∀ t ≥ 0, A{1,2}(t)(x1(t), x2(t)) + A1(t)x1(t) + A2(t)x2(t) + A∅(t) ∈ M

We introduce the linear operators A{1,2}(xi) ∈ L(X−i, Y ) defined by

A{1,2}(x1) : x2 7→ A{1,2}(x1)x2 := A{1,2}(x1, x2)

and
A{1,2}(x2) : x1 7→ A{1,2}(x2)x1 := A{1,2}(x1, x2)

We shall prove that when these constraints are not viable under an arbitrary dynamic
system of the form
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

i) x′i(t) = ci(x(t)), i = 1, 2
ii) A′

∅(t) = α∅(A∅(t))
iii) A′

1(t) = α1(A1(t))
iv) A′

2(t) = α2(A2(t))
v) A′

{1,2}(t) = α{1,2}(A{1,2}(t))

we can still reestablish viability by involving multipliers q ∈ Y ∗ and correct the
above system by the control system

i) x′1(t) = c1(x(t))−A1(t)∗q(t)−A{1,2}(t)(x2(t))∗q(t)
ii) x′2(t) = c2(x(t))−A2(t)∗q(t)−A{1,2}(t)(x1(t))∗q(t)
iii) A′

∅(t) = α∅(A∅(t))− q(t)
iv) A′

1(t) = α1(A1(t))− x1(t)⊗ q(t)
v) A′

2(t) = α2(A2(t))− x2(t)⊗ q(t)
vi) A′

{1,2}(t) = α{1,2}(A{1,2}(t))− x1(t)⊗ x2(t)⊗ q(t)
where q(t) ∈ NM (A{1,2}(t)(x1(t), x2(t)) + A1(t)x1(t) + A2(t)x2(t) + A∅(t))

Hence, the structure of this control system involves the transposes A∗
i (t)q(t) and

A{1,2}(t)(xj(t))∗(t)q(t) (i = 1, 2) in the evolution of the variables xi(t), and the
tensor products xi(t)⊗ q(t) (Hebbian rules) in the evolution of the linear operators
Ai(t), and the tensor product x1(t) ⊗ x2(t) ⊗ q(t) in the evolution of the bilinear
form A{1,2}.

The tensor product x1 ⊗ x2 ⊗ q is a bilinear operator from X∗
1 × X∗

2 to Y ∗

associating with any pair (p1, p2) ∈ X∗
1 ×X∗

2 the element

(x1 ⊗ x2 ⊗ q)(p1, p2) := 〈p1, x1〉〈p2, x2〉q

If the vector spaces are supplied with bases, the components of this bilinear form —
the “tensors” — can be written

(x1 ⊗ x2 ⊗ q)j
i1,i2

= x1i1
x2i2

qj

as the products of the components of the three fagents of this tensor product. Tak-
ing α1,2(A) = 0, the evolution of the bi-synaptic tensor A{1,2} := (aj

i1,i2
) obeys the

differential equation
d

dt
aj

i1,i2
(t) = − x1i1

(t)x2i2
(t)qj(t)

It states that the velocity of the synaptic tensor is the product of the presynap-
tic activities of the neurons arriving at the synapse (i1, i2, j) and the postsynaptic
activity (see [16, Aubin & Burnod]).
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We may enrich this problem by introduced coefficients χi(t) ∈ [0, 1] aimed at
tuning the action xi(t) (i = 1, 2) that we shall regard as the components of a fuzzy
coalition later. In this framework, the constraint becomes: ∀ t ≥ 0,

χ1(t)χ2(t)A{1,2}(t)(x1(t), x2(t)) + χ1(t)A1(t)x1(t) + χ2(t)A2(t)x2(t) + A∅(t) ∈ M

If we assume that the evolutions of these χi(t) are governed by differential equations

χ′i(t) = κi(χi(t)), i = 1, 2

we shall prove that the above constraints are viable under the control system

i) x′1(t) = c1(x(t))− χ1(t)A1(t)∗q(t)− χ1(t)χ2(t)A{1,2}(t)(x2(t))∗q(t)
ii) x′2(t) = c2(x(t))− χ2(t)A2(t)∗q(t)− χ1(t)χ2(t)A{1,2}(t)(x1(t))∗q(t)
iii) χ′1(t) = κ1(χ1(t))− 〈q(t), A1(t)x1(t) + χ2(t)A{1,2}(t)(x1(t), x2(t))〉
iv) χ′2(t) = κ2(χ2(t))− 〈q(t), A2(t)x2(t) + χ1(t)A{1,2}(t)(x1(t), x2(t))〉
v) A′

∅(t) = α∅(A∅(t))− q(t)
vi) A′

1(t) = α1(A1(t))− χ1(t)x1(t)⊗ q(t)
vii) A′

2(t) = α2(A2(t))− χ2(t)x2(t)⊗ q(t)
viii) A′

{1,2}(t) = α{1,2}(A{1,2}(t))− χ1(t)χ2(t)x1(t)⊗ x2(t)⊗ q(t) where
q(t) ∈ NM (χ1(t)χ2(t)A{1,2}(t)(x1(t), x2(t)) + χ1(t)A1(t)x1(t)
+χ2(t)A2(t)x2(t) + A∅(t))

2 Regulation by Connectionist Tensors

2.1 Connectionist Tensors

In order to handle more explicit and tractable formulas and results, we shall assume
that the connectionist operator A : X :=

∏n
i=1 Xi ; Y is multiaffine.

For defining such a multiaffine operator, we associate with any coalition S ⊂ N
its characteristic function χS : N 7→ R associating with any i ∈ N

χS(i) :=

{
1 if i ∈ S
0 if i /∈ S

It defines a linear operator χS◦ ∈ L (
∏n

i=1 Xi,
∏n

i=1 Xi) that associates with any
x = (x1, . . . , xn) ∈

∏n
i=1 Xi the sequence χS ◦ x ∈ Rn defined by

∀ = 1, . . . , n, (χS ◦ x)i :=

{
xi if i ∈ S
0 if i /∈ S

We associate with any coalition S ⊂ N the subspace

XS := xS ◦
n∏

i=1

Xi =

{
x ∈

n∏
i=1

Xi such that ∀ i /∈ S, xi = 0

}

14



since xS◦ is nothing other that the canonical projector from
∏n

i=1 Xi onto XS . In
particular, XN :=

∏n
i=1 Xi and X∅ := {0}.

Let Y be another finite dimensional vector space. We associate with any coalition
S ⊂ N the space LS(XS , Y ) of S-linear operators AS . We extend such a S-linear
operator AS to a n-linear operator (again denoted by) AS ∈ Ln (

∏n
i=1 Xi, Y ) defined

by:

∀ x ∈
n∏

i=1

Xi, AS(x) = AS(x1, . . . , xn) := AS(χS ◦ x)

A multiaffine operator A ∈ An (
∏n

i=1 Xi, Y ) is a sum of S-linear operators AS ∈
LS(XS , Y ) when S ranges over the family of coalitions:

A(x1, . . . , xn) :=
∑

S⊂N

AS(χS ◦ x) =
∑

S⊂N

AS(x)

We identify A∅ with a constant A∅ ∈ Y .
Hence the collective constraint linking multiaffine operators and actions can be

written in the form
∀ t ≥ 0,

∑
S⊂N

AS(t)(x(t)) ∈ M

For any i ∈ S, we shall denote by (x−i, ui) ∈ XN the sequence y ∈ XN where
yj := xj when j 6= i and yi = ui when j = i.

We shall denote by AS (x−i) ∈ L(Xi, Y ) the linear operator defined by ui 7→
AS(x−i)ui := AS(x−i, ui). We shall use its transpose AS (x−i)

∗ ∈ L(Y ∗, X∗
i ) defined

by
∀ q ∈ Y ∗, ∀ ui ∈ Xi, 〈AS (x−i)

∗ q, ui〉 = 〈q, AS (x−i) ui〉

We associate with q ∈ Y ∗ and elements xi ∈ Xi the multilinear operator6

x1 ⊗ · · · ⊗ xn ⊗ q ∈ Ln

(
n∏

i=1

X∗
i , Y ∗

)

associating with any p := (p1, . . . , pn) ∈
∏n

i=1 X∗
i the element

(
n∏

i=1

〈pi, xi〉
)

q:

x1⊗· · ·⊗xn⊗q : p := (p1, . . . , pn) ∈
n∏

i=1

X∗
i 7→ (x1⊗· · ·⊗xn⊗q)(p) :=

(
n∏

i=1

〈pi, xi〉
)

q ∈ Y ∗

6We recall that the space Ln

(∏n

i=1
Xi, Y

)
of n-linear operators from

∏n

i=1
Xi to Y is isomet-

ric to the tensor product

n⊗
i=1

X∗
i ⊗ Y , the dual of which is

n⊗
i=1

Xi ⊗ Y ∗, that is isometric with

Ln

(∏n

i=1
X∗

i , Y ∗).
15



This multilinear operator x1 ⊗ · · · ⊗ xn ⊗ q is called the tensor product of the xi’s
and q.

We recall that the duality product on Ln (
∏n

i=1 X∗
i , Y ∗) × Ln (

∏n
i=1 Xi, Y ) for

pairs (x1 ⊗ · · · ⊗ xn ⊗ q, A) can be written in the form:

〈x1 ⊗ · · · ⊗ xn ⊗ q, A〉 := 〈q, A(x1, . . . , xn)〉

2.2 Multi-Hebbian Learning Process

Assume that we start with intrinsic dynamics of the actions xi, the resources y, the
connectionist matrices W and the fuzzy coalitions χ:{

i) x′i(t) = ci(x(t)), i = 1, . . . , n
ii) A′

S(t) = αS(A(t)), S ⊂ N

Using viability multipliers, we can modify the above dynamics by introducing
regulees that are elements q ∈ Y ∗ of the dual Y ∗ of the space Y :

Theorem 2.1 Assume that the functions ci, κi and αS are continuous and that
M ⊂ Y are closed. Then the constraints

∀ t ≥ 0,
∑

S⊂N

AS(t)(x(t)) ∈ M

are viable under the control system

i) x′i(t) = ci(xi(t))−
∑
S3i

AS(t)(x−i(t))∗q(t), i = 1, . . . , n

ii) A′
S(t) = αS(A(t))−

⊗
j∈S

xj(t)

⊗ q(t), S ⊂ N

where q(t) ∈ NM (
∑

S⊂N AS(t)(x(t)))

Remark: Multi-Hebbian Rule — When we regard the multilinear operator
AS as a tensor product of components Aj

SΠi∈Sik
, j = 1, . . . , p, ik = 1, . . . , ni, i ∈ S,

differential equation ii) can be written in the form: ∀ i ∈ S, j = 1, . . . , p, k =
1, . . . , ni,

d

dt
Aj

SΠi∈Sik
= αSΠi∈Sik

(A(t))−
(∏

i∈S

xik(t)

)
qj(t)

The correction term of the component Aj
SΠi∈Sik

of the S-linear operator is the
product of the components xik(t) actions xi in the coalition S and of the component
qj of the viability multiplier. This can be regarded as a multi-Hebbian rule in neural
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network learning algorithms, since for linear operators, we find the product of the
component xk of the pre-synaptic action and the component qj of the post-synaptic
action. 2

Indeed, when the vector spaces Xi := Rni are supplied with basis eik , k =
1, . . . , ni, when we denote by e∗ik their dual basis, and when Y := Rp is supplied
with a basis f j , its dual supplied with the dual basis f∗j , then the tensor products(⊗

i∈S

eik

)
⊗ f∗j (j = 1, . . . , p, k = 1, . . . , ni) form a basis of LS

(
XS∗ , Y ∗

)
.

Hence the components of the tensor product

(⊗
i∈S

xi

)
⊗ q in this basis are the

products

(∏
i∈S

xik

)
qj of the components qj of q and xik of the xi’s, where qj :=

〈q, f j〉 and xik := 〈e∗ik , xi〉. Indeed, we can write(⊗
i∈S

xi

)
⊗ q =

p∑
j=1

∑
i∈S

ni∑
k=1

(
〈q, f j〉

∏
i∈S

〈e∗ik , xi〉
)(

n⊗
i=1

eik

)
⊗ f∗j

3 Regulation Involving Fuzzy Coalitions

3.1 Fuzzy Coalitions

This first definition of a coalition which comes to mind being that of a subset of play-
ers S ⊂ N is not adequate for tackling dynamical models of evolution of coalitions
since the 2n coalitions range over a finite set, preventing us from using analytical
techniques.

One way to overcome this difficulty is to embed the family of subsets of a (dis-
crete) set N of n players to the space Rn through the map χ associating with any
coalition S ∈ P(N) its characteristic function7 χS ∈ {0, 1}n ⊂ Rn, since Rn can be
regarded as the set of functions from N to R.

By definition, the family of fuzzy sets8 is the convex hull [0, 1]n of the power set
7This canonical embedding is more adapted to the nature of the power set P(N) than the

universal embedding of a discrete set M of m elements to Rm by the Dirac measure associating
with any j ∈ M the jth element of the canonical basis of Rm. The convex hull of the image of M by
this embedding is the probability simplex of Rm. Hence fuzzy sets offer a “dedicated convexification”
procedure of the discrete power set M := P(N) instead of the universal convexification procedure
of frequencies, probabilities, mixed strategies derived from its embedding in Rm = R2n

.
8This concept of fuzzy set was introduced in 1965 by L. A. Zadeh. Since then, it has been

wildly successful, even in many areas outside mathematics!. Lately, we found in “La lutte finale”,
Michel Lafon (1994), p.69 by A. Bercoff the following quotation of the late François Mitterand,
president of the French Republic (1981-1995): “Aujourd’hui, nous nageons dans la poésie pure des
sous ensembles flous” ... (Today, we swim in the pure poetry of fuzzy subsets)!
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{0, 1}n in Rn. Therefore, we can write any fuzzy set in the form

χ =
∑

S∈P(N)

mSχS where mS ≥ 0 &
∑

S∈P(N)

mS = 1

The memberships are then equal to

∀ i ∈ N, χi =
∑
S3i

mS

Consequently, if mS is regarded as the probability for the set S to be formed,
the membership of the player i to the fuzzy set9 χ is the sum of the probabilities of
the coalitions to which player i belongs. Player i participates fully in χ if χi = 1,
does not participate at all if χi = 0 and participates in a fuzzy way if χi ∈]0, 1[. We
associate with a fuzzy coalition χ the set P (χ) := {i ∈ N | χi 6= 0} ⊂ N of agents i
partipating to the fuzzy coalition χ.

We also introduce the membership

γS(χ) :=
∏
j∈S

χj

of a coalition S in the fuzzy coalition χ as the product of the memberships of agents i
of the coalition S. It vanishes whenvever one the membership of one agent does and
boils down to individual memberships for one agent coalitions. when two coalitions
are disjoint (S ∩ T = ∅), then γS∪T (χ) = γS(χ)γT (χ). In particular, for any agent
i ∈ S, γS(χ) = χiγS\i(χ)

Let A ∈ An (
∏n

i=1 Xi, Y ), a sum of S-linear operators AS ∈ LS(XS , Y ) when S
ranges over the family of coalitions, be a multiaffine operator.

When χ is a fuzzy coalition, we observe that

A(χ ◦ x) =
∑

S⊂P (χ)

γS(χ)AS(x) =
∑

S⊂P (χ)

∏
j∈S

χj

AS(x)

We wish to encapsulate the idea that at each instant, only a number of fuzzy
coalitions χ are active. Hence the collective constraint linking multiaffine operators,
fuzzy coalitions and actions can be written in the form

∀ t ≥ 0,
∑

S⊂P (χ(t))

γS(χ(t))AS(t)(x(t)) =
∑

S⊂P (χ(t))

∏
j∈S

χj(t)

AS(t)(x(t)) ∈ M

9Actually, this idea of using fuzzy coalitions has already been used in the framework of cooperative
games with and without side-payments (see [2, 3, Aubin], [1, Aubin, Chapter 12] and [10, Aubin,
Chapter 13],the books [51, Mares] and [54, Mishizaki & Sokawa], [24, 25, 26, Basile], [23, Basile, De
Simone & Graziano], [44, Florenzano]). Fuzzy coalitions have also been used in dynamical models
of cooperative games in [17, Aubin & Cellina, Chapter 4] and of economic theory in [9, Aubin,
Chapter 5].
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3.2 Constructing Viable Dynamics

Assume that we start with intrinsic dynamics of the actions xi, the resources y, the
connectionist matrices W and the fuzzy coalitions χ:

i) x′i(t) = ci(x(t)), i = 1, . . . , n
ii) χ′i(t) = κi(χ(t)), i = 1, . . . , n
iii) A′

S(t) = αS(A(t)), S ⊂ N

Using viability multipliers, we can modify the above dynamics by introducing
regulees that are elements q ∈ Y ∗ of the dual Y ∗ of the space Y :

Theorem 3.1 Assume that the functions ci, κi and αS are continuous and that
M ⊂ Y are closed. Then the constraints

∀ t ≥ 0,
∑

S⊂P (χ(t))

AS(t)(χ(t) ◦ x(t)) =
∑

S⊂P (χ(t))

∏
j∈S

χj(t)

AS(t)(x(t)) ∈ M

are viable under the control system

i) x′i(t) = ci(xi(t))−
∑
S3i

∏
j∈S

χj(t)

AS(t)(x−i(t))∗q(t), i = 1, . . . , n

ii) χ′i(t) = κi(χ(t))−
∑
S3i

 ∏
j∈S\i

χj(t)

 〈q(t), AS(t) (x(t))〉 , i = 1, . . . , n

iii) A′
S(t) = αS(A(t))−

∏
j∈S

χj(t)

⊗
j∈S

xj(t)

⊗ q(t), S ⊂ N

where q(t) ∈ NM (
∑

S⊂P (χ(t))

(∏
j∈S χj(t)

)
AS(t)(x(t))))

Let us comment these formulas. First, the viability multipliers q(t) ∈ Y ∗ can be
regarded as regulons, i.e., regulation controls or parameters, or virtual prices in the
language of economists. They are chosen adequately at each instant in order that
the viability constraints describing the network can be satisfied at each instant, and
the above theorem guarantees that it is possible. The next section tells us how to
choose at each instant such regulons (the regulation law).

For each agent i, the velocities x′i(t) of the state and the velocities χ′i(t) of its
membership in the fuzzy coalition χ(t) are corrected by subtracting

1. the sum over all coalitions S to which he belongs of the AS(t)(x−i(t))∗q(t)
weighted by the membership γS(χ(t)):

x′i(t) = ci(xi(t))−
∑
S3i

γS(χ(t))AS(t)(x−i(t))∗q(t)
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2. the sum over all coalitions S to which he belongs of the costs 〈q(t), AS(t) (x(t))〉
of the constraints associated with connectionist tensor AS of the coalition S
weighted by the membership γS\i(χ(t)):

χ′i(t) = κi(χ(t))−
∑
S3i

γS\i(χ(t)) 〈q(t), AS(t) (x(t))〉

This type of dynamics describes a panurgean effect . The (algebraic) increase
of agent i’s membership in the fuzzy coalition aggregates over all coalitions
to which he belongs the cost of their constraints weighted by the products of
memberships of the agents of the coalition other than him.

As for the correction of the velocities of the connectionist tensors AS , their
correction is a weighted “multi-Hebbian” rule: for each component Aj

SΠi∈Sik
of AS ,

the correction term is the product of the membership γS(χ(t)) of the coalition S, of
the components xik(t) and of the component qj(t) of the regulon:

d

dt
Aj

SΠi∈Sik
= αSΠi∈Sik

(A(t))− γS(χ(t))

(∏
i∈S

xik(t)

)
qj(t)

3.3 The Regulation Map

Actually, the viability multipliers q(t) regulating viable evolutions of the actions
xi(t), the fuzzy coalitions χ(t) and the multiaffine operators A(t) obey the regulation
law (an “adjustment law”, in the vocabulary of economists) of the form

∀ t ≥ 0, q(t) ∈ RM (x(t), χ(t), A(t))

where RM : XN × Rn × An(XN , Y ) ; Y ∗ is the regulation map RM that we can
compute.

For that purpose, we introduce the operator h : XN ×Rn ×An(XN , Y ) defined
by

h(x, χ,A) :=
∑

S⊂N

AS(χ ◦ x)

and the linear operator H(x, χ,A) : Y ∗ := Y 7→ Y defined by:
H(x, χ,A) :=

∑
S⊂N

∏
j∈S

χ2
j‖xj‖2

 I

+
∑

R,S⊂N

∑
i∈R∩S

(
γR(χ)γS(χ)AR(x−i)AS(x−i)∗ + γR\i(χ)γS\i(χ)AR(x)⊗AS(x)

)
Then the regulation map is defined by
RM (x, χ,A) := H(x, χ,A)−1(∑

S⊂N

(
αS(A)(x) +

∑
i∈S

(
γS(χ)AS(x−i, ci(x)) + γS\i(χ)κi(χ)AS(x)

))
− TM (h(x, χ,A))

)
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[17] AUBIN J.-P. & CELLINA A. (1984) Differential Inclusions, Springer-Verlag

[18] AUBIN J.-P. & DORDAN O. (1996) Fuzzy Systems, Viability Theory and Toll Sets,
In Handbook of Fuzzy Systems, Modeling and Control, Hung Nguyen Ed.,
Kluwer, 461-488

21



[19] AUBIN J.-P. & FORAY D. (1998) The emergence of network organizations in pro-
cesses of technological choice: a viability approach, in The economics of networks,
COHENDET P., LLERENA P., STAHN H. & UMBHAUER G. Eds., Springer, 283-
290

[20] AUBIN J.-P. & FRANKOWSKA H. (1990) Set-Valued Analysis,

[21] AUBIN J.-P., LOUIS-GUERIN C. & ZAVALLONI M. (1979) Comptabilité entre con-
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