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Abstract

It is believed that almost any pair of people in the world
can be connected to one another by a short chain of inter-
mediate acquaintances, of typical length about six. This
phenomenon, colloquially referred to as the “six degrees of
separation,” has been the subject of considerable recent in-
terest within the physics community. This paper provides a
short review of the topic.

1 Introduction

The United Nations Department of Economic and Social
Affairs estimates that the population of the world exceeded
six billion people for the first time on October 12, 1999.
There is no doubt that the world of human society has be-
come quite large in recent times. Nonetheless, people rou-
tinely claim that, global statistics notwithstanding, it’s still
a small world. And in a certain sense they are right. Despite
the enormous number of people on the planet, the struc-
ture of social networks—the map of who knows whom—is
such that we are all very closely connected to one another
(Kochen 1989, Watts 1999).

One of the first quantitative studies of the structure of so-
cial networks was performed in the late 1960s by Stanley
Milgram, then at Harvard University (Milgram 1967). He
performed a simple experiment as follows. He took a num-
ber of letters addressed to a stockbroker acquaintance of his
in Boston, Massachusetts, and distributed them to a random
selection of people in Nebraska. (Evidently, he considered
Nebraska to be about as far as you could get from Boston,
in social terms, without falling off the end of the world.)
His instructions were that the letters were to be sent to their
addressee (the stockbroker) by passing them from person to
person, and that, in addition, they could be passed only to
someone whom the passer new on a first-name basis. Since
it was not likely that the initial recipients of the letters were
on a first-name basis with a Boston stockbroker, their best
strategy was to pass their letter to someone whom they felt
was nearer to the stockbroker in some social sense: perhaps
someone they knew in the financial industry, or a friend in
Massachusetts.

A reasonable number of Milgram’s letters did eventually

reach their destination, and Milgram found that it had only
taken an average of six steps for a letter to get from Ne-
braska to Boston. He concluded, with a somewhat cavalier
disregard for experimental niceties, that six was therefore
the average number of acquaintances separating the pairs
of people involved, and conjectured that a similar separa-
tion might characterize the relationship of any two people
in the entire world. This situation has been labeled “six de-
grees of separation” (Guare 1990), a phrase which has since
passed into popular folklore.

Given the form of Milgram’s experiment, one could be
forgiven for supposing that the figure six is probably not
a very accurate one. The experiment certainly contained
many possible sources of error. However, the general re-
sult that two randomly chosen human beings can be con-
nected by only a short chain of intermediate acquaintances
has been subsequently verified, and is now widely accepted
(Korte and Milgram 1970). In the jargon of the field this
result is referred to as thesmall-world effect.

The small-world effect applies to networks other than
networks of friends. Brett Tjaden’s parlor game “The Six
Degrees of Kevin Bacon” connects any pair of film ac-
tors via a chain of at most eight co-stars (Tjaden and Was-
son 1997). Tom Remes has done the same for baseball play-
ers who have played on the same team (Remes 1997). With
tongue very firmly in cheek, theNew York Timesplayed a
similar game with the the names of those who had tangled
with Monica Lewinsky (Kirby and Sahre 1998).

All of this however, seems somewhat frivolous. Why
should a serious scientist care about the structure of so-
cial networks? The reason is that such networks are
crucially important for communications. Most human
communication—where the word is used in its broad-
est sense—takes place directly between individuals. The
spread of news, rumors, jokes, and fashions all take place
by contact between individuals. And a rumor can spread
from coast to coast far faster over a social network in which
the average degree of separation is six, than it can over
one in which the average degree is a hundred, or a million.
More importantly still, the spread of disease also occurs by
person-to-person contact, and the structure of networks of
such contacts has a huge impact on the nature of epidemics.
In a highly connected network, this year’s flu—or the HIV
virus—can spread far faster than in a network where the
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paths between individuals are relatively long.
In this paper we outline some recent developments in the

theory of social networks, particularly in the characteriza-
tion and modeling of networks, and in the modeling of the
spread of information or disease.

2 Random graphs

The simplest explanation for the small-world effect uses the
idea of a random graph. Suppose there is some numberN
of people in the world, and on average they each havez
acquaintances. This means that there are1

2
Nz connections

between people in the entire population. The numberz is
called thecoordination number of the network.

We can make a very simple model of a social network by
taking N dots (“nodes” or “vertices”) and drawing1

2
Nz

lines (“edges”) between randomly chosen pairs to repre-
sent these connections. Such a network is called arandom
graph (Bollobás 1985). Random graphs have been studied
extensively in the mathematics community, particularly by
Erdös and Rényi (1959). It is easy to see that a random
graph shows the small-world effect. If a person A on such a
graph hasz neighbors, and each of A’s neighbors also hasz
neighbors, then A has aboutz2 second neighbors. Extend-
ing this argument A also hasz3 third neighbors,z4 fourth
neighbors and so on. Most people have between a hundred
and a thousand acquaintances, soz4 is already between
about108 and1012, which is comparable with the popu-
lation of the world. In general the numberD of degrees
of separation which we need to consider in order to reach
all N people in the network (also called thediameter of
the graph) is given by settingzD = N , which implies that
D = log N/ log z. This logarithmic increase in the number
of degrees of separation with the size of the network is typ-
ical of the small-world effect. Sincelog N increases only
slowly with N , it allows the number of degrees to be quite
small even in very large systems.

As an example of this type of behavior, Al-
bert et al. (1999) studied the properties of the network
of “hyperlinks” between documents on the World Wide
Web. They estimated that, despite the fact there were
N ≃ 8 × 108 documents on the Web at the time the study
was carried out, the average distance between documents
was only about 19.

There is a significant problem with the random graph as a
model of social networks however. The problem is that peo-
ple’s circles of acquaintance tend to overlap to a great ex-
tent. Your friend’s friends are likely also to be your friends,
or to put it another way, two of your friends are likely also
to be friends with one another. This means that in a real
social network it is not true to say that person A hasz2 sec-
ond neighbors, since many of those friends of friends are
also themselves friends of person A. This property is called
clustering of networks.

Network N ℓ C Crand

movie actors 225 226 3.65 0.79 0.00027
neural network 282 2.65 0.28 0.05
power grid 4941 18.7 0.08 0.0005

Table 1: The number of nodesN , average degree of separa-
tion ℓ, and clustering coefficientC, for three real-world net-
works. The last column is the value whichC would take in
a random graph with the same size and coordination num-
ber.

A random graph does not show clustering. In a random
graph the probability that two of person A’s friends will
be friends of one another is no greater than the probabil-
ity that two randomly chosen people will be. On the other
hand, clusteringhas been shown to exist in a number of
real-world networks. One can define aclustering coeffi-
cient C, which is the average fraction of pairs of neigh-
bors of a node which are also neighbors of each other. In a
fully connected network, in which everyone knows every-
one else,C = 1; in a random graphC = z/N , which is
very small for a large network. In real-world networks it
has been found that, whileC is significantly less than 1, it
is much greater thanO(N−1). In Table 1, we show some
values ofC calculated by Watts and Strogatz (1998) for
three different networks: the network of collaborations be-
tween movie actors discussed previously, the neural net-
work of the wormC. Elegans,and the Western Power Grid
of the United States. We also give the valueCrand which
the clustering coefficient would have on random graphs of
the same size and coordination number, and in each case the
measured value is significantly higher than for the random
graph, indicating that indeed the graph is clustered.

In the same table we also show the average distanceℓ
between pairs of nodes in each of these networks. This is
not the same as the diameterD of the network discussed
above, which is themaximumdistance between nodes, but
it also scales at most logarithmically with number of nodes
on random graphs. This is easy to see, since the average
distance is strictly less than or equal to the maximum dis-
tance, and soℓ cannot increase any faster thanD. As the
table shows, the value ofℓ in each of the networks con-
sidered is small, indicating that the small-world effect isat
work. (The precise definition of “small-world effect” is still
a matter of debate, but in the present case a reasonable defi-
nition would be thatℓ should be comparable with the value
it would have on the random graph, which for the systems
discussed here it is.)

So, if random graphs do not match well the properties
of real-world networks, is there an alternative model which
does? Such a model has been suggested by Duncan Watts
and Steven Strogatz. It is described in the next section.
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(b) (c)(a)

Figure 1: (a) A one-dimensional lattice with each site connected to itsz nearest neighbors, where in this casez = 6. (b) The
same lattice with periodic boundary conditions, so that thesystem becomes a ring. (c) The Watts–Strogatz model is created
by rewiring a small fraction of the links (in this case five of them) to new sites chosen at random.

3 The small-world model of Watts
and Strogatz

In order to model the real-world networks described in the
last section, we need to find a way of generating graphs
which have both the clustering and small-world properties.
As we have argued, random graphs show the small-world
effect, possessing average vertex-to-vertex distances which
increase only logarithmically with the total numberN of
vertices, but they do not show clustering—the property that
two neighbors of a vertex will often also be neighbors of
one another.

The opposite of a random graph, in some sense, is a com-
pletely ordered lattice, the simplest example of which is
a one-dimensional lattice—a set of vertices arranged in a
straight line. If we take such a lattice and connect each ver-
tex to thez vertices closest to it, as in Fig. 1a, then it is
easy to see that most of the immediate neighbors of any site
are also neighbors of one another, i.e., it shows the cluster-
ing property. Normally, we apply periodic boundary con-
ditions to the lattice, so that it wraps around on itself in
a ring (Fig. 1b), although this is just for convenience and
not strictly necessary. For such a lattice we can calculate
the clustering coefficientC exactly. As long asz < 2

3
N ,

which it will be for almost all graphs, we find that

C =
3(z − 2)

4(z − 1)
, (1)

which tends to3

4
in the limit of largez. We can also build

networks out of higher-dimensional lattices, such as square
or cubic lattices, and these also show the clustering prop-
erty. The value of the clustering coefficient in general di-
mensiond is

C =
3(z − 2d)

4(z − d)
, (2)

which also tends to3
4

for z ≫ 2d.
Low-dimensional regular lattices however do not show

the small-world effect of typical vertex–vertex distances

which increase only slowly with system size. It is straight-
forward to show that for a regular lattice ind dimensions
which has the shape of a square or (hyper)cube of sideL,
and therefore hasN = Ld vertices, the average vertex–
vertex distance increases asL, or equivalently asN1/d. For
small values ofd this does not give us small-world behav-
ior. In one dimension for example, it means that the average
distance increases linearly with system size. If we allow the
dimensiond of the lattice to become large, thenN1/d be-
comes a slowly increasing function ofN , and so the lattice
does show the small-world effect. Could this be the expla-
nation for what we see in real networks? Perhaps real net-
works are roughly regular lattices of very high dimension.
This explanation is in fact not unreasonable, although it has
not been widely discussed. It works quite well, provided the
mean coordination numberz of the vertices is much higher
than twice the dimensiond of the lattice. (If we allowz to
approach2d, then the clustering coefficient, Eq. (2), tends
to zero, implying that the lattice loses its clustering proper-
ties.)

Watts and Strogatz (1998) however have proposed an al-
ternative model for the small world, which perhaps fits bet-
ter with our everyday intuitions about the nature of social
networks. Their suggestion was to build a model which is,
in essence, a low-dimensional regular lattice—say a one-
dimensional lattice—but which has some degree of ran-
domness in it, like a random graph, to produce the small-
world effect. They suggested a specific scheme for doing
this as follows. We take the one-dimensional lattice of
Fig. 1b, and we go through each of the links on the lattice
in turn and, with some probabilityp, we randomly “rewire”
that link, meaning that we move one of its ends to a new
position chosen at random from the rest of the lattice. For
smallp this produces a graph with is still mostly regular but
has a few connections which stretch long distances across
the lattice as in Fig. 1c. The coordination number of the
lattice is still z on average as it was before, although the
number of neighbors of any particular vertex can be greater
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or smaller thanz.
In social terms, we can justify this model by saying

that, while most people are friends with their immediate
neighbors—neighbors on the same street, people that they
work with, people that their friends introduce them to—
some people are also friends with one or two people who
are a long way away, in some social sense—people in other
countries, people from other walks of life, acquaintances
from previous eras of their lives, and so forth. These long-
distance acquaintances are represented by the long-range
links in the model of Watts and Strogatz.

Clearly the values of the clustering coefficientC for the
Watts–Strogatz model with small values ofp will be close
to those for the perfectly ordered lattice given above, which
tend to 3

4
for fixed smalld and largez. Watts and Stro-

gatz also showed by numerical simulation that the average
vertex–vertex distanceℓ is comparable with that for a true
random graph, even for quite small values ofp. For ex-
ample, for a random graph withN = 1000 andz = 10,
they found that the average distance was aboutℓ = 3.2 be-
tween two vertices chosen at random. For their rewiring
model, the average distance was only slightly greater, at
ℓ = 3.6, when the rewiring probabilityp = 1

4
, compared

with ℓ = 50 for the graph with no rewired links at all. And
even forp = 1

64
= 0.0156, they foundℓ = 7.4, a little

over twice the value for the random graph. Thus the model
appears to show both the clustering and small-world prop-
erties simultaneously. This result has since been confirmed
by further simulation as well as analytic work on small-
world models, which is described in the next section.

4 Analytic and numerical results for
small-world models

Most of the recent work on models of the small world
has been performed using a variation of the Watts–Strogatz
model suggested by Newman and Watts (1999a). In this
version of the model, instead of rewiring links between sites
as in Fig. 1c, extra links, often calledshortcuts, are added
between pairs of sites chosen at random, but no links are re-
moved from the underlying lattice. This model is somewhat
easier to analyze than the original Watts–Strogatz model,
because it is not possible for any region of the graph to be-
come disconnected from the rest, whereas this can happen
in the original model. Mathematically a disjoint section of
the graph can be represented by saying that the distance
from any vertex in that section to a vertex somewhere on
the rest of the graph is infinite. However, this means that,
when averaged over all possible realizations of the graph,
the average vertex–vertex distanceℓ in the model is also in-
finite for any finite value ofp. (A similar problem in the
theory of random graphs is commonly dealt with by aver-
aging the reciprocal of vertex–vertex distance, rather than

the distance itself, but this approach does not seem to have
been tried for the Watts–Strogatz model.) In fact, it is pos-
sible to show that the series expansion ofℓ/L in powers of
p aboutp = 0 is well-behaved up to orderpz−1, but that
the expansion coefficients are infinite for all higher orders.
For the version of the model where no links are ever re-
moved, the expansion coefficients take the same values up
to orderpz−1, but are finite for all higher orders as well.
Generically, both versions of the model are referred to as
small-world models, or sometimessmall-world graphs.

Many results have been derived for small-world models,
and many of their other properties have been explored nu-
merically. Here we give only a brief summary of the most
important results. Barthélémy and Amaral (1999) conjec-
tured that the average vertex–vertex distanceℓ obeys the
scaling formℓ = ξG(L/ξ), whereG(x) is a universal
scaling function of its argumentx andξ is a characteris-
tic length-scale for the model which is assumed to diverge
in the limit of smallp according toξ ∼ p−τ . On the basis
of numerical results, Barthélémy and Amaral further con-
jectured thatτ = 2

3
. Barrat (1999) disproved this second

conjecture using a simple physical argument which showed
thatτ cannot be less than 1, and suggested on the basis of
more numerical results that in fact it was exactly 1. New-
man and Watts (1999b) showed that the small-world model
has only one non-trivial length-scale other than the lattice
spacing, which we can equate with the variableξ above,
and which is given by

ξ =
1

pz
(3)

for the one-dimensional model, or

ξ =
1

(pzd)1/d
(4)

in the general case. Thusτ must indeed be 1 ford = 1, or
τ = 1/d for generald and, since there are no other length-
scales present,ℓ must be of the form

ℓ =
L

2dz
F (pzLd), (5)

whereF (x) is another universal scaling function. (The ini-
tial factor of(2d)−1 before the scaling function is arbitrary.
It is chosen thus to giveF a simple limit for small values
of its argument—see Eq. (6).) This scaling form is equiv-
alent to that of Barthélémy and Amaral by the substitution
G(x) = xF (x) if τ = 1. It has been extensively con-
firmed by numerical simulation (Newman and Watts 1999a,
de Menezeset al. 2000) and by series expansions (New-
man and Watts 1999b) (see Fig. 2). The divergence ofξ
asp → 0 gives something akin to a critical point in this
limit. (De Menezeset al. (2000) have argued that, for tech-
nical reasons, we should refer to this point as a “first or-
der critical point” (Fisher and Berker 1982).) This allowed
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Figure 2: Scaling collapse of average vertex–vertex dis-
tances ond = 1 small-world graphs according to Eq. (5).
Points are numerical data forz = 2 (circles) andz = 10
(squares), for a variety of values ofp andL. The solid line
is a Padé approximant derived from series expansions of
the scaling function, while the dotted line is the mean-field
solution, Eq. (8). Inset: the number of people infected as
a function of time by a disease which starts with a single
person and spreads through a community with the topology
of a small-world graph. After Newman and Watts (1999b)
and Newmanet al. (2000).

Newman and Watts (1999a) to apply a real-space renormal-
ization group transformation to the model in the vicinity of
this point and prove that the scaling form above is exactly
obeyed in the limit of smallp and largeL.

Eq. (5) tells us that although the average vertex–vertex
distance on a small-world graph appears at first glance to
be a function of three parameters—p, z, andL—it is in
fact entirely determined by a single scalar function of a sin-
gle scalar variable. If we know the form of this one func-
tion, then we know everything. Actually, this statement is
strictly only true ifξ ≫ 1, when it is safe to ignore the other
length-scale in the problem, the lattice parameter of the un-
derlying lattice. Thus, the scaling form is expected to hold
only whenp is small, i.e., in the regime where the majority
of a person’s contacts are local and only a small fraction
long-range. (The fourth parameterd also enters the equa-
tion, but is not on an equal footing with the others, since the
functional form ofF changes withd, and thus Eq. (5) does
not tell us howℓ varies with dimension.)

Both the scaling functionF (x) and the scaling variable
x ≡ pzLd have simple physical interpretations. The vari-
ablex is two times the average number of shortcuts on the
graph for the given value ofp, andF (x) is the average frac-
tion by which the vertex–vertex distance on the graph is re-
duced for the given value ofx. From the results shown in
Fig. 2, we can see that it takes about5 1

2
shortcuts to reduce

the average vertex-vertex distance by a factor of two, and
56 to reduce it by a factor of ten.

In the limit of largep the small-world model becomes a
random graph or nearly so. Hence, we expect that the value
of ℓ should scale logarithmically with system sizeL when
p is large, and also, as the scaling form shows, whenL is
large. On the other hand, whenp or L is small we expect
ℓ to scale linearly withL. This implies thatF (x) has the
limiting forms

F (x) =

{

1 for x ≪ 1
(log x)/x for x ≫ 1.

(6)

In theory there should be a leading constant in front of the
large-x form here, but, as discussed shortly, it turns out that
this constant is equal to unity. The cross-over between the
small- and large-x regimes must happen in the vicinity of
L = ξ, sinceξ is the only length-scale available to dictate
this point.

Neither the actual distribution of path lengths in the
small-world model nor the average path lengthℓ has been
calculated exactly yet; exact analytical calculations have
proven very difficult for the model. Some exact results have
been given by Kulkarniet al. (2000) who show, for exam-
ple, that the value ofℓ is simply related to the mean〈s〉 and
mean square〈s2〉 of the shortest distances between two
points on diametrically opposite sides of the graph, accord-
ing to

ℓ

L
=

〈s〉
L − 1

− 〈s2〉
L(L − 1)

. (7)

Unfortunately, calculating the shortest distance between
opposite points is just as difficult as calculatingℓ directly,
either analytically or numerically.

Newmanet al. (2000) have calculated the form of the
scaling functionF (x) for d = 1 small-world graphs using
a mean-field-like approximation, which is exact for small
or large values ofx, but not in the regime wherex ≃ 1.
Their result is

F (x) =
4√

x2 + 4x
tanh−1 x√

x2 + 4x
. (8)

This form is also plotted on Fig. 2 (dotted line). Since this
is exact for largex, it can be expanded about1/x = 0 to
show that the leading constant in the large-x form of F (x),
Eq. (6), is1 as stated above.

Newmanet al. also solved for the complete distribu-
tion of lengths between vertices in the model within their
mean-field approximation. This distribution can be used
to give a simple model of the spread of a disease in a
small world. If a disease starts with a single person some-
where in the world, and spreads first to all the neighbors
of that person, and then to all second neighbors, and so on,
then the number of peoplen who have the disease after
t time-steps is simply the number of people who are sep-
arated from the initial carrier by a distance oft or less.
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Newman and Watts (1999b) previously gave an approx-
imate differential equation forn(t) on an infinite small-
world graph, which they solved for the one-dimensional
case; Moukarzel (1999) later solved it for the case of gen-
eral d. The mean-field treatment generalizes the solution
for d = 1 to finite lattice sizes. (A similar mean-field re-
sult has been given for a slightly different disease-spreading
model by Kleczkowski and Grenfell (1999).) The resulting
form for n(t) is shown in the inset of Fig. 2, and clearly
has the right general sigmoidal shape for the spread of an
epidemic. In fact, this form ofn is typical also of the
standard logistic growth models of disease spread, which
are mostly based on random graphs (Sattenspiel and Si-
mon 1988, Kretschmar and Morris 1996). In the next sec-
tion we consider some (slightly) more sophisticated models
of disease spreading on small-world graphs.

5 Other models based on small-
world graphs

A variety of authors have looked at dynamical systems de-
fined on small-world graphs built using either the Watts–
Strogatz rewiring method or the alternative method de-
scribed in Section 4. We briefly describe a number of these
studies in this section.

Watts and Strogatz (1998, Watts 1999) looked at cellular
automata, simple games, and networks of coupled oscilla-
tors on small-world networks. For example, they found that
it was much easier for a cellular automaton to perform the
task known as density classification (Daset al. 1994) on a
small-world graph than on a regular lattice; they found that
in an iterated multi-player game of Prisoner’s Dilemma, co-
operation arose less frequently on a small-world graph than
on a regular lattice; and they found that the small-world
topology helped oscillator networks to synchronize much
more easily than in the regular lattice case.

Monasson (1999) investigated the eigenspectrum of the
Laplacian operator on small-world graphs using a transfer
matrix method. This spectrum tells us for example what the
normal modes would be of a system of masses and springs
built with the topology of a small-world graph. Or, perhaps
more usefully, it can tell us how diffusive dynamics would
occur on a small world graph; any initial state of a diffusive
field can be decomposed into eigenvectors which each de-
cay independently and exponentially with a decay constant
related to the corresponding eigenvalue. Diffusive motion
might provide a simple model for the spread of information
of some kind in a social network.

Barrat and Weigt (2000) have given a solution of the fer-
romagnetic Ising model on ad = 1 small-world network
using a replica method. Since the Ising model has a lower
critical dimension of two, we would expect it not to show
a phase transition whenp = 0 and the graph is truly one-

dimensional. On the other hand, as soon asp is greater
than zero, the effective dimension of the graph becomes
greater than one, and increases with system size (Newman
and Watts 1999b). Thus for any finitep we would expect
to see a phase transition at some finite temperature in the
large system limit. Barrat and Weigt confirmed both ana-
lytically and numerically that indeed this is the case. The
Ising model is of course a highly idealized model, and its
solution in this context is, to a large extent, just an inter-
esting exercise. However, the similar problem of a Potts
antiferromagnet on a general graph has real practical ap-
plications, e.g., in the solution of scheduling problems. Al-
though this problem has not been solved on the small-world
graph, Walsh (1999) has found results which indicate that it
may be interesting from a computational complexity point
of view; finding a ground state for a Potts antiferromagnet
on a small-world graph may be significantly harder than
finding one on either a regular lattice or a random graph.

Newman and Watts (1999b) looked at the problem of dis-
ease spread on small-world graphs. As a first step away
from the very simple models of disease described in the
last section, they considered a disease to which only a cer-
tain fractionq of the population is susceptible; the disease
spreads neighbor to neighbor on a small-world graph, ex-
cept that it only affects, and can be transmitted by, the sus-
ceptible individuals. In such a model, the disease can only
spread within the connected cluster of susceptible individ-
uals in which it first starts, which is small ifq is small,
but becomes larger, and eventually infinite, asq increases.
The point at which it becomes infinite—the point at which
an epidemic takes place—is precisely the percolation point
for site percolation with probabilityq on the small-world
graph. Newman and Watts gave an approximate calcula-
tion of this epidemic point, which compares reasonably fa-
vorably with their numerical simulations. Moore and New-
man (2000a, 2000b) later gave an exact solution.

Lago-Fernándezet al. (2000) investigated the behavior
of a neural network of Hodgkin–Huxley neurons on a va-
riety of graphs, including regular lattices, random graphs,
and small-world graphs. They found that the presence of
a high degree of clustering in the network allowed the net-
work to establish coherent oscillation, while short average
vertex–vertex distances allowed the network to produce fast
responses to changes in external stimuli. The small-world
graph, which simultaneously possesses both of these prop-
erties, was the only graph they investigated which showed
both coherence and fast response.

Kulkarni et al. (1999) studied numerically the behavior
of the Bak–Sneppen model of species coevolution (Bak and
Sneppen 1993) on small-world graphs. This is a model
which mimics the evolutionary effects of interactions be-
tween large numbers of species. The behavior of the model
is known to depend on the topology of the lattice on which
it is situated, and Kulkarni and co-workers suggested that
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Figure 3: An alternative model of a small world, in which
there are a small number of individuals who are connected
to many widely-distributed acquaintances.

the topology of the small-world graph might be closer
to that of interactions in real ecosystems than the low-
dimensional regular lattices on which the Bak–Sneppen
model is usually studied. The principal result of the sim-
ulations was that on a small-world graph the amount of
evolutionary activity taking place at any given vertex varies
with the coordination number of the vertex, with the most
connected nodes showing the greatest activity and the least
connected ones showing the smallest.

6 Other models of the small world

Although most of the work reviewed in this article is based
on the Watts–Strogatz small-world model, a number of
other models of social networks have been proposed. In
Section 2 we mentioned the simple random-graph model
and in Section 3 we discussed a model based on a regular
lattice of high dimension. In this section we describe briefly
three others which have been suggested.

One alternative to the view put forward by Watts and
Strogatz is that the small-world phenomenon arises not be-
cause there are a few “long-range” connections in the other-
wise short-range structure of a social network, but because
there are a few nodes in the network which have unusually
high coordination numbers (Kasturirangan 1999) or which
are linked to a widely distributed set of neighbors. Perhaps
the “six degrees of separation” effect is due to a few people
who are particularly well connected. (Gladwell (1998) has
written a lengthy and amusing article arguing that a septua-
genarian salon proprietor in Chicago named Lois Weisberg
is an example of precisely such a person.) A simple model
of this kind of network is depicted in Fig. 3, in which we
start again with a one-dimensional lattice, but instead of
adding extra links between pairs of sites, we add a num-

ber of extra vertices in the middle which are connected to a
large number of sites on the main lattice, chosen at random.
(Lois Weisberg would be one of these extra sites.) This
model is similar to the Watts–Strogatz model in that the ad-
dition of the extra sites effectively introduces shortcutsbe-
tween randomly chosen positions on the lattice, so it should
not be surprising to learn that this model does display the
small-world effect. In fact, even in the case where only one
extra site is added, the model shows the small-world effect
if that site is sufficiently highly connected. This case has
been solved exactly by Dorogovtsev and Mendes (1999).

Another alternative model of the small world has been
suggested by Albertet al.(1999) who, in their studies of the
World Wide Web discussed in Section 2, concluded that the
Web is dominated by a small number of very highly con-
nected sites, as described above, but they also found that
the distribution of the coordination numbers of sites (the
number of “hyperlinks” pointing to or from a site) was a
power-law, rather than being bimodal as it is in the previ-
ous model. They produced a model network of this kind as
follows. Starting with a normal random graph with average
coordination numberz and the desired numberN of ver-
tices, they selected a vertex at random and added a link be-
tween it and another randomly chosen site if that addition
would bring the overall distribution of coordination num-
bers closer to the required power law. Otherwise the vertex
remains as it is. If this process is repeated for a sufficiently
long time, a network is generated with the correct coordi-
nation numbers, but which is in other respects a random
graph. In particular, it does not show the clustering prop-
erty of which such a fuss has been made in the case of the
Watts–Strogatz model. Albertet al. found that their model
matched the measured properties of the World Wide Web
quite closely, although related work by Adamic (1999) indi-
cates that clustering is present in the Web, so that the model
is unrealistic in this respect.

It is worth noting that networks identical to those of Al-
bert et al. can be generated in a manner much more effi-
cient than the Monte Carlo scheme described above by sim-
ply generatingN vertices with a power law distribution of
lines emerging from them (using, for instance, the trans-
formation method (Newman and Barkema 1999)), and then
joining pairs of lines together at random until none are left.
If one were interested in investigating such networks nu-
merically, this would probably be the best way to generate
them.

A third suggestion has been put forward by Klein-
berg (1999), who argues that a model such as that of Watts
and Strogatz, in which shortcuts connect vertices arbitrar-
ily far apart with uniform probability, is a poor represen-
tation of at least some real-world situations. (Kasturiran-
gan (1999) has made a similar point.) Kleinberg notes that
in the real world, people are surprisingly good at finding
short paths between pairs of individuals (Milgram’s letter
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experiment, and the Kevin Bacon game are good exam-
ples) given only local information about the structure of
the network. Conversely, he has shown that no algorithm
exists which is capable of finding such paths on networks
of the Watts–Strogatz type, again given only local infor-
mation. Thus there must be some additional properties of
real-world networks which make it possible to find short
paths with ease. To investigate this question further, Klein-
berg has proposed a generalization of the Watts–Strogatz
model in which the typical distance traversed by the short-
cuts can be tuned. Kleinberg’s model is based on a two-
dimensional square lattice (although it could be generalized
to other dimensionsd in a straightforward fashion) and has
shortcuts added between pairs of verticesi, j with proba-
bility which falls off as a power lawd−r

ij of the distance be-
tween them. (In this work,dij is the “Manhattan distance”
|xi − xj | + |yi − yj |, where(xi, yi) and(xj , yj) are the
lattice coordinates of the verticesi andj. This makes good
sense, since this is also the distance in terms of links on
the underlying lattice that separates those two points before
the shortcuts are added. However, one could in principle
generate networks using a different definition of distance,
such as the Euclidean distance

√

(xi − xj)2 + (yi − yj)2,
for example.) It is then shown that for the particular value
r = 2 of the exponent of the power law (orr = d for
underlying lattices ofd dimensions), there exists a simple
algorithm for finding a short path between two given ver-
tices, making use only of local information. For any other
value ofr the problem of finding a short path is provably
much harder. This result demonstrates that there is more
to the small world effect than simply the existence of short
paths.

7 Conclusions

In this article we have given an overview of recent theo-
retical work on the “small-world” phenomenon. We have
described in some detail the considerable body of recent
results dealing with the Watts–Strogatz small-world model
and its variants, including analytic and numerical results
about network structure and studies of dynamical systems
on small-world graphs.

What have we learned from these efforts and where
is this line of research going now? The most important
result is that small-world graphs—those possessing both
short average person-to-person distances and “clustering”
of acquaintances—show behaviors very different from ei-
ther regular lattices or random graphs. Some of the more
interesting such behaviors are the following:

1. These graphs show a transition with increasing num-
ber of vertices from a “large-world” regime in which
the average distance between two people increases
linearly with system size, to a “small-world” one in
which it increases logarithmically.

2. This implies that information or disease spreading on
a small-world graph reaches a number of people which
increases initially as a power of time, then changes to
an exponential increase, and then flattens off as the
graph becomes saturated.

3. Disease models which incorporate a measure of sus-
ceptibility to infection have a percolation transition at
which an epidemic sets in, whose position is influ-
enced strongly by the small-world nature of the net-
work.

4. Dynamical systems such as games or cellular au-
tomata show quantitatively different behavior on
small-world graphs and regular lattices. Some prob-
lems, such as density classification, appear to be easier
to solve on small-world graphs, while others, such as
scheduling problems, appear to be harder.

5. Some real-world graphs show characteristics in addi-
tion to the small-world effect which may be important
to their function. An example is the World Wide Web,
which appears to have a scale-free distribution of the
coordination numbers of vertices.

Research in this field is continuing in a variety of direc-
tions. Empirical work to determine the exact structure of
real networks is underway in a number of groups, as well
as theoretical work to determine the properties of the pro-
posed models. And studies to determine the effects of the
small-world topology on dynamical processes, although in
their infancy, promise an intriguing new perspective on the
way the world works.
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