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Abstract. We present some of the results obtained during the last 8 years about complex networks.
Starting with the collection of data in the form of networks or graphs, we proceed on the character-
ization at different scales: microscopic, macroscopic, and mesoscopic. We introduce also the basic
models incorporating complexity in the pattern of connectivities. Finally we review some results on
dynamical features on complex networks.
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1. INTRODUCTION

Complex systems show emergent properties that cannot be understood as a simple
superposition of the dynamical behavior of the single unitsthat form it. Emergent
properties arise as a collective effect from the interaction between units. For most of
the complex systems we can find in nature or in society the interaction patterns of the
units are far from being regular or from being completely random. These two extreme
patterns of connectivity between units had been the subjectof analysis during the last
decades, but since the pioneering work of Watts and Strogatz[1] and Barabasi and Albert
[2] most of the interest turned to non-trivial patterns of interaction.

Access to large datasets and the power of the new generation of computers have
enabled to generate networks from the data and to scrutinizethem, finding the relevant
statistical properties and the common features shared by many of them. And such
common features are not the subject of particular disciplines; this new framework has
received a really interdisciplinar support involving disciplines such diverse as economy,
social sciences, medicine, engineering, physics, chemistry, biology, just to mention a
few (see [3, 4, 5, 6, 7] for reviews, and [8, 9] for contributedessays on various topics by
leading researchers).

Although in principle the interest relied on the structuralproperties, i.e. the topology
of the interactions, in the last years a great deal of attention has turned to the dynamical
properties. This dynamical properties can involve the growth of the network (in terms
of nodes or links or both), the regeneration of links betweenthe nodes, and even the
dynamics of the nodes properties.

In this paper we will cover the different aspects of complex networks. Starting with an
overview of networks that are found in our environment, thenwe follow with the char-
acterization of the networks at different scales (microscale, macroscale, and mesoscale)
and introducing some simple network models that describe the topological features. Fi-
nally we describe some dynamical models on networks.



2. NETWORKS EVERYWHERE

We can currently find structures among data that can be classified as networks in many
unrelated fields. The only thing that is needed is some sort ofrelation between the data.
Networks or graphs are formed by nodes that are connected by links or edges. What is a
node and a link will a characteristic of the data. For instance in social networks nodes can
be individuals and links could be any kind of relation: friendship, coauthoring, trust, ....
In technological networks, as for example the Internet, theedges correspond to physical
wiring between computers or routers. Or in biology, metabolic networks are formed by
metabolites as nodes and the links represent the biochemical reactions. Those are just
a few examples of the type of data that can be represented as a network. A very large
number of publicly available repositories of huge databases are at our fingertips.

2.1. Classification

Here we present a list of examples, mainly from papers published in Physics journals,
of data that has been collected in the form of network. They can roughly be classified
into four categories (following [6]):

• Social networks
Actor collaborations [10, 1]
Boards of directors [11, 12]
Physics and biology coauthorships [13, 14, 15]
Email messages [16, 17, 18]
Sexual contacts [19, 20]
Jazz bands and musicians [21]
Pretty Good Privacy trust network [22]

• Information networks
World Wide Web [23, 2]
Citation networks [24]
Word co-occurrence [25, 26]

• Technological and transport networks
Internet [27]
Power grid [1]
Software packages [28]
Software routine calls [29]
Electronic circuits [30]
Airport network [31, 32]
Railroad network [33]

• Biological networks
Metabolic networks [34, 35, 36, 37, 38]
Protein interactions [39, 40, 41, 42, 43]



Food webs [44, 45]
Neural networks [1, 46, 47, 48]
Genetic regulatory networks [49, 50]
Signaling networks [51]

This is by no means a complete list. Nevertheless, it attempts to be a cross section of
the various lines of investigation where network analysis has been useful.

2.2. How are networks constructed from data

It is then clear that every dataset will give rise to a networkin which nodes and
links have very different meanings: social agents and social relationships, computers
and cables, species and predator-prey relationships, neurons and synapses, web pages
and hyperlinks, and so on.

The link can be directed or undirected, depending on the reciprocity of the relation.
An example of directed network, in which some links can be directed, is presented in
Fig. 1(top-left). Links with an arrow pointing from one nodeto another one are directed,
whereas the links without any arrow are undirected or bidirectional, because the relation
holds in the two directions.

Some of the networks that are constructed are called bipartite, those are graphs that
contain nodes of two different types, with links only between unlike types. This is what
happens for instance in the actors movie database with actors and movies, or with the
coauthor-ship databases. In this case networks are constructed by linking those actors
that appear in the same movie or those authors that participate in the same paper. An
example of such network is presented in Fig. 1(bottom)[15].This is the network obtained
from the coauthorship of presentations in the Spanish Statistical Physics meetings; it has
been obtained by accumulating the collaborations along allthe editions of the meeting.
There are a few nodes that are identified because they correspond to members of the
different scientific committees; the role played by these members will be discussed later,
in the community identification discussion section.

Another fact that has become very important in the last yearsis the weight of the
edges. If one is just interested in the existence of the relation then we talk about
unweighted networks. If, on the contrary, there is some measure for the strength of
the relation, as for instance the number of flights or the number of passengers between
airports, or the band-width between Internet routers, someweight is associated to the
link, and in this case the networks are called weighted [52].In Fig. 1(top-right) we
present a network obtained from the email exchange of the Universitat Rovira i Virgili.
We take each node in the original network and measure the number of steps across the
e-mail network needed to reach any other node. Then we average over all the nodes
in the same center and obtain average distances between centers. This average distance
between the centers accounts for the weight of the link. To summarize this information
in a new network of centers, we proceed as follows. First, we calculate the distance from
one center A to all other centers,dAB, dAC, and so on. Then we compute the average
distance from A to the other centers〈dA〉. Finally, node A (that now represents a center,



not an individual) is linked to another node B ifdAB < 〈dA〉. In this case, the network is
directed because, in general,dAB < 〈dA〉 does not implydBA = dAB < 〈dB〉. [53]

3. CHARACTERIZING NETWORKS

3.1. Microscale

From a microscopical point of view, the interest would lie onthe role played by the
nodes in the overall context of the whole network. This has been the main issue for
decades from the social sciences viewpoint [54]. Several measures of centrality were
introduced and the special roles played by the nodes discussed. For instance, the degree
of a node corresponds to its number of links or the mean distance is a measure of the
average distance, measured as the shortest number of links necessary to reach one node
from another, from a node to the rest of the population. Another example is the clustering
coefficient of a node, which measures the fraction of links between neighbors of a given
node. Finally, another interesting measure is what is called the betweenness, of a node,
which corresponds to the number of shortest paths between each pair of nodes in the
network that go through the reference node. In many problemsrelated to flow or traffic
in the network the betweenness is a good measure for the load of the node [55, 56].

3.2. Macroscale

On the other hand, when dealing with very large networks, theroles played by the
individual nodes has not meaning at all and the interest is turned to the statistical
characterization of the network at the global or macroscopic scale. Now one studies
average quantities like the mean degree, the mean distance between nodes, the average
clustering coefficient, the diameter of the network (measured as the maximum distance
between nodes). Another statistical characterization of the network comes in terms of
the distributions of degree, of load, or on the correlations.

It was the initial study of these statistical characterizations of the networks that started
the big interest from the Statistical Physics community. Inparticular, as we will explain
shortly, there were two crucial facts that could not be explained by means of known
graph models: the small-world effect and the observation that the distribution of degrees
followed a power law indicating that there are no characteristic scales in this distribution
and hence those networks were called "scale-free" networks. In Fig. 2(right) we plot the
in- and out-degree cumulative distributions1 in the PGP web of trust of Ref. [22], as
an example of power-law distribution; in this case, as a directed network, the in- and
out-degrees distributions do not need to be identical.

1 The cumulative distributionP(k) is simply related to the probability density functionp(x) by P(k) =
∫ k
−∞ dx p(x). In particular, if p(x) is a power lawp(x) ∼ x−α , then P(k) ∼ k−α−1, and if p(x) is an

exponentialp(x) ∼ exp(−x/k∗), thenP(k) ∼ exp(−k/k∗).
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FIGURE 1. Examples of generated networks from data. Top-Left: Directed network. Nodes are colored
blue. Bidirectional links are colored brown whereas unidirectional links are colored orange. The shadowed
areas correspond to the robust areas of the network, i.e. they keep connected when the central node is
eliminated. Top-Right: Directed and weighted network. Network obtained from the email network at
Universitat Rovira i Virgili. The nodes correspond to the centers and the links are related to the distance
between centers (see text). Since the distance can take realnon-negative values the link, and hence the
network, are weighted. Bottom: Collaboration network. Cumulative network of collaborations during
Spanish Statistical Physics meetings. Green nodes correspond to members of the scientific committee
[15].



Later on, different characterizations of the networks havebeen introduced; for in-
stance in weighted networks, the distribution of weights isalso a scale-free [52]. Also,
other characterization in the large scale have appeared. For instance, the degree-degree
correlationP(k′|k) is the conditional probability that a link of a node with degreek is
linked to a node with degreek′; if this probability depends onk we say that the node is
correlated, or uncorrelated in the opposite case. In terms of this conditional probability,
it is more useful to define the average degree of the nearest neighbors of nodes with
degreek

knn(k) = ∑
k′

k′P(k′|k). (1)

If knn(k) is a decreasing function ofk then we say that the network is disassortative, as
happens in technological or biological networks, whereas if it is a increasing function we
call it assortative, as happens in many of the social networks, where clearly the meaning
is that most connected nodes tend to be connected between them and less with poorly
connected nodes.

4. MODELS OF NETWORKS

4.1. The random graph model of Erdös and Renyi

This is the most simple model of graph[57]. Let us consider a set of N nodes and
the probability that every two nodes are connected (form a pair or a link) is p (see Fig.
3(left)). Then the expected value of the connectivity is simply:

k̄ = p(N −1). (2)

When considering very large networks and keeping the average value fixed, the distri-
bution of connectivities approaches a Poisson distribution with meanλ :

P(k) =
λ ke−k

k!
(3)

which is sharply peaked atλ , as can be seen in Fig. 2(left).

4.2. The small-world model of Watts and Strogatz

In the paper by Watts and Strogatz [1] they realized that manynetworks in nature
had a statistical behavior that could not be fitted to that of the known results up to that
time: regular lattices or random graphs. On the one hand regular lattices have very large
average distance between nodes, this the so called "small-world" effect, and high average
clustering coefficient, due to the high interconnection between neighbors. On the other
hand, random graphs have very short average distances, due to the existence of short-cuts
and very low clustering due to the random uncorrelated nature of the connections. And
the conclusion that the authors got from the analysis of the networks was that they had
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FIGURE 2. Two exemples of distribution of connectivities. Left: Poisson distribution with average 50
in a linear-linear scale. Right: Power-law cumulative distribution of in- and out-degrees (incoming and
outgoing connections) in the PGP web of trust of Ref. [22].Notice that in this case the scale is log-log.
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FIGURE 3. Two networks of approximately the same number (100) of nodesand links (130). Left:
Erdös-Renyi Random graph. Right: Barabasi-Albert scale free network.

very short distances, like in random networks, and high clustering, like random graphs.
This observation opened a completely new field of research since new models that could
explain this simultaneous, and in principle opposite, behaviors were needed.

In particular, they already proposed a model, nowadays known as the Watts and
Strogatz "small-world" model. To construct the network onestarts with a regular one-
dimensional lattice (a ring) in which all nodes are linked totheir m neighbors in each
direction (see Fig. 4(leftmost)); in this case the degree distribution is a delta function
δ (k−2m). Then one proceeds by removing the short range links and substituting them
by long-range links between two randomly chosen nodes with probability p. As can
be seen in Fig. 4 by increasingp the graph loses the lattice character and resembles
every time more to a random graph. Actually, with a relatively small value ofp the
graph acquires a short average distance between nodes without appreciably changing
the clustering. In this way the observation of the simultaneous short distance and high
clustering is explained by means of a very simple model.



FIGURE 4. Small world model of Watts and Strogatz. Links to neighbors in the original ring are rewired
with a probability 0.00, 0.05, 0.10, 0.15 (from left to right).

4.3. The scale-free model of Barabasi and Albert

Although the model introduced by Watts and Strogatz could resolve the apparent
dichotomy in the observation of some regular and some randomcharacteristics in many
networks in nature, it did not change appreciably the distribution of connectivities.
Starting from a delta function it rapidly evolves to a Poisson distribution for low values
of p, thus the distribution of connectivities resembles that ofthe Erdos-Renyi model.
But, just a few months later than this paper appeared, Barabasi and Albert [2] published
their work in which they noticed that again many of the large networks that could be
already analyzed at that time (including the Internet or theWeb) showed distributions
of connectivities that should be fitted to a power-law, instead of a Poisson-like as an
Erdos-Renyi random graph.

In order to explain this behavior they also introduced a model, nowadays known as
Barabasi-Albert model, in which there were two essential ingredients: growth and pref-
erential attachment (this kind of attachment also gives itsname to the model sometimes).
On the one hand, networks are not static but are the result of aprocess of growing, start-
ing from a set of a small number of completely connected nodes. On the other hand,
the growth proceeds in such a way that the arriving nodes are linked preferentially to
those nodes which already have more connections, as is schematically visualized in Fig.
5 (see also Fig. 3(right) for an example of such network with around 100 nodes). As
can be easily interpreted from this simple rule, and also from the kind of distribution
showed in Fig. 2(right), one of the main implications of thismodel is the existence of
small fraction of highly connected nodes, named as hubs, whereas the vast majority of
nodes have a very low connectivity. These hubs play a crucialrole in many aspects of the
network; for instance, the network is very sensitive to intentional attacks if the targets are
the hubs, but is very robust under random attacks (or failures) in the case that the target
is chosen at random [58, 59]. They are also important in the spreading of information or
in the dynamics of synchronization, as we will see in next sections.

The finding that networks in natural or technological or social environments were
scale free, showing some remarkable similarities of many other phenomena studied
in the physical sciences, like critical phenomena or fractals, together with the "small-
world" concept introduced by Watts and Strogatz, started the new theory of complex
networks with contributions in many different fields, but with a major contribution from



FIGURE 5. Preferential attachment rule of the Barabasi-Albert model. The arriving node is more likely
to be connected to those nodes which already have more existing connections, and hence the new links
correspond to the dotted lines.

the Statistical Physics community.

5. DESCRIBING THE MESOSCALE: COMMUNITIES

Clearly, in the previous sections we characterize the networks either from the micro-
scopic or from the macroscopic point of view, but many networks show structures
that are important in the intermediate scales, the mesoscale. Those structure can have
different meanings depending on the origin of the network: communities in social
networks[54], functional groups in biology[60], regionalgroups in geographically based
networks, thematic clusters in the web [61, 62], and so on. Many times theses structures
have an important role in their own and they have not been constructed by chance but by
an ordered process of growth. For this reason identifying the communities in a network
is a process from which we can gain a lot of useful information. Furthermore, dynam-
ics is also affected by this community structure since dynamics is tightly related to the
underlying topology of the network. The readers are pointedto Refs. [63, 64] for recent
reviews on the subject of communities in complex networks.

Distinct modules or communities within networks can loosely be defined as subsets
of nodes which are more densely linked, when compared to the rest of the network. But
this is a very simple definition that cannot assure the correct identification of the groups
that form the complex network.

The problem of community detection is quite challenging andhas been the subject
of discussion in various disciplines. A simpler version of this problem, the graph bi-
partitioning problem has been the topic of study in the realmof computer science for
decades. In real complex networks we often have no idea how many communities we
wish to discover, but in general it is more than two. This makes the process all the more
costly. What is more, communities may also be hierarchical,that is communities may
be further divided into sub-communities and so on [16, 21, 15, 65].

Nevertheless, many attempts to tackle these problems have been proposed recently.
The proposed methods vary considerably in terms of approachand application, which
makes them difficult to compare. Community identification ispotentially very useful



and researchers from a number of fields may be interested in using one or several of the
methods for their own purposes. In [66] we review all these methods comparing their
performance and their computational cost.

But community identification is not merely a qualitative problem; actually, the per-
formed comparison between the different algorithms is donein terms of a quantity that
measures how good a given partition is. Since communities are sometimes not perfectly
defined with clear border-line separation among them, different algorithms to detect
communities can give rise to slightly different partitions. Them a measure that quanti-
fies the accuracy of the partition is welcome. A simple approach that has become widely
accepted was proposed in [67]. It is based on the intuitive idea that random networks do
not exhibit community structure. Let us imagine that we havean arbitrary network and
an arbitrary partition of that network intonc communities. It is then possible to define a
nc ×nc size matrixe where the elementsei j represent the fraction of total links starting
at a node in partitioni and ending at a node in partitionj. Then, the sum of any row (or
column) ofe, ai = ∑ j ei j corresponds to the fraction of links connected toi.

If the network does not exhibit community structure, or if the partitions are allocated
without any regard to the underlying structure, the expected value of the fraction of
links within partitions can be estimated. It is simply the probability that a link begins
at a node ini, ai, multiplied by the fraction of links that end at a node ini, ai. So the
expected number of intra-community links is justaiai. On the other hand we know that
thereal fraction of links exclusively within a partition iseii. So, we can compare the two
directly and sum over all the partitions in the graph.

Q ≡ ∑
i
(eii −a2

i ) (4)

This is the measure known asmodularity, that for a very good partition approaches 1.
It is important to say that the network can have a very clear community separation and
then a good partition can attain a large value of the modularity.

But sometimes, we are not only interested in the best partition but in the hierarchical
organization of the network in nested communities. One of the early methods of com-
munity detection, proposed by Girvan and Newman [68], consists in splitting the net-
works by cutting the links with the highest betweeness. In this case this procedure can
be iterated up to the level of individual nodes giving rise then to a hierarchy of nested
communities. The application of this procedure is very useful for the understanding on
the different levels of organization in a network. We have applied this procedure to the
email network of the Universitat Rovira i Virgili [16] finding that the hiercahical organi-
zation of the community structure maintains many treats of the supposed formal chart of
the organization; but, at the same time, we could observe that some nodes are not placed
in the supposed community. This is of course very valuable asa tool for the management
of a organization [53]. Also as a tool of identifying the working communities and the
respective leaders we applied the procedure to the Statistical Physics meetings network
shown in Fig. 1. The network in Fig. 6 is the result of such community partition, where
we can see that the green nodes, identified as the members of the scientific committees
are equally distributed between the different branches andappear mainly at their tips.
The former means that members have been chosen in a homogeneous way between the



FIGURE 6. Community structure of the collaboration network in the Spanish Statistical Physics meet-
ings. The small branches correspond to the research groups that are grouped into Universities that, at the
same time, are closely grouped according to geographical proximity. The green nodes, that correspond
to the members of the scientific committees appear mainly at the tips of the branches, showing their
leadership in the respective groups. The homogeneous distribution of green nodes also shows that they
have been chosen uniformly among the different groups.

different groups that form the Statistical Physics community and that these members are
the leaders of the respective teams.

Another fact that has been obtained from this hierarchical community structure is
that in many networks the distribution of community sizes also shows a power-law,
indicating an underlying mechanism of auto-organization in the network and the absence
of characteristic community sizes. In this way another scaling of magnitudes within
communities can be analyzed and hence, in a language very familiar to physicists,
networks can be classified in different universality classes [16, 15].

6. DYNAMICS ON THE NETWORK

Complex networks have become such widespread analyzed not only because of their
universal topological properties, but also because the effect of the topology on the dy-
namics. Dynamical systems had been largely studied mainly in three different play-
grounds: regular lattices, random graphs, and completely connected networks. Thus the
evidence of the existence in nature and society of complex patterns of interaction again



offered a large number of new possibilities to those studying the dynamical properties of
complex systems. And hence, many different types of dynamics have been studied ac-
cording to different patterns of connectivity. Just to mention a few in different contexts:
flow of physical magnitudes or information in communicationnetworks [56], spreading
of epidemics [69, 20, 19] or rumors[70], synchronization ofdynamical units (mainly
oscillators) [71, 7], opinion formation [72], cultural dissemination [73], technological
innovations [74], strategic games [75], Boolean dynamics in genetic networks [51], neu-
ral networks [1, 76, 77, 48].

Just to present a comprehensive view of these phenomena we will show results on
two different types of dynamics: search and congestion as anexample of transport in
networks, and the dynamics of oscillators towards synchronization since it is a good
example on how dynamics can help in elucidating some detailsof the topology.

6.1. Search and congestion

Concerning transport, the flow of information has been one ofthe mainly discussed
issues. Information, in this case, can be understood as packets in a computer network
[78], problems in a company that need to be solved [55], passengers in a transportation
network [79]. As an example of information flow in [55] we presented a formalism
that is able to cope with search and congestion simultaneously in any type of network,
allowing the determination of optimal topologies. This formalism avoids the problem of
simulating the dynamics of the communication process and provides a general scenario
applicable to any communication process.

Let us focus on a single information packet at nodei whose destination is nodek. The
probability for the packet to go fromi to a new nodej in its next movement ispk

i j. In

particular,pk
k j = 0∀ j so that the packet isremoved as soon as it arrives to its destination.

This formulation is completely general, and the precise form of pk
i j will depend on the

search algorithm and on the connectivity matrix of the network. In particular, when the
search is Markovian,pk

i j does not depend on previous positions of the packet. In this
case, the probability of going fromi to j in n steps is given by

Pk
i j(n) = ∑

l1,l2,...,ln−1

pk
il1 pk

l1l2 · · · pk
ln−1 j. (5)

This definition allows us to compute the average number of times,bk
i j, that a packet

generated ati and with destination atk passes throughj.

bk =
∞

∑
n=1

Pk(n) =
∞

∑
n=1

(

pk
)n

= (I − pk)−1pk. (6)

and the effective betweenness of nodej, B j, is then defined as the sum over all possible
origins and destinations of the packets,

B j = ∑
i,k

bk
i j. (7)



When the search algorithm is able to find the minimum paths between nodes, the
effective betweenness will coincide with the topological betweenness,β j, as usually
defined in the previous sections [80, 81].

Once these quantities have been defined, we focus on the load of the network,N(t),
which is the number of floating packets. These floating packets are stored in the nodes
that act as queues. In a general scenario where packets are generated at random and
independently at each node with a probabilityρ , the arrival of packets to a given nodej
is a Poisson process. In this simple picture, the queues are called M/M/1 in the computer
science literature and the average load of the network is [82, 55]

N =
S

∑
j=1

ρB j
S−1

1− ρB j
S−1

. (8)

There are two interesting limiting cases of equation (8). When ρ is very small, taking
into account that the sum of betweennesses is proportional to the average distance, one
obtains that the load is proportional to the average effective distance. On the other hand,
whenρ approachesρc most of the load of the network comes from the most congested
node, and therefore

N ≈
1

1− ρB∗

S−1

ρ → ρc, (9)

whereB∗ is the effective betweenness of the most central node. The last results suggest
the following interesting problem: to minimize the load of anetwork it is necessary
to minimize the effective distance between nodes if the amount of packets is small,
but it is necessary to minimize the largest effective betweenness of the network if the
amount of packets is large. The first is accomplished by astar-like network, that is, a
network with one central node and all the others connected toit. The second, however, is
accomplished by a very decentralized network in which all the nodes support a similar
load. This behavior is similar to any system of queues provided that the communication
depends only on the sender.

It is worth noting that there are only two assumptions in the calculations above.
The first one has already been mentioned: the movement of the packets needs to be
Markovian to define the jump probability matricespk. Although this is not strictly
true in real communication networks—where packets are not usually allowed to go
through a given node more than once—it can be seen as a first approximation [78, 83,
84]. The second assumption is that the jump probabilitiespk

i j do not depend on the
congestion state of the network, although communication protocols sometimes try to
avoid congested regions, and thenB j = B j(ρ). However, all the derivations above will
still be true in a number of general situations, including situations in which the paths
that the packets follow are unique, in which the routing tables are fixed, or situations in
which the structure of the network is very homogeneous and thus the congestion of all
the nodes is similar. Compared to situations in which packets avoid congested regions,
it corresponds to the worst case scenario and thus provide bounds to more realistic
scenarios in which the search algorithm interactively avoids congestion.

Equation (8) relates a dynamical variable, the load, with the topological properties
of the network and the properties of the algorithm. So we haveconverted a dynamical



FIGURE 7. Optimal topologies for networks withS = 32 nodes,L = 32 links.

communication problem into a topological problem. Hence, the dynamical optimization
procedure of finding the structure that gives the minimum load is reduced to a topo-
logical optimization procedure where the network is characterized completely by its ef-
fective betweenness distribution. In [55] we considered the problem of finding optimal
structures for a purely local search, using a generalized simulated annealing procedure,
as described in [85]. On the one side, we have found (see Fig. 7) that forρ → 0 the op-
timal network has a star-like centralized structure as expected, which corresponds to the
minimization of the average effective distance between nodes. On the other extreme, for
high values ofρ , the optimal structure has to minimize the maximum betweenness of the
network; this is accomplished by creating a homogeneous network where all the nodes
have essentially the same degree, betweenness, etc. One could expect that the transition
centralized-decentralized occurs progressively. Surprisingly, the results of the optimiza-
tion process reveal a completely different scenario. According to simulations, star-like
configurations are optimal forρ < ρ∗; at this point, the homogeneous networks that
minimizeB∗ become optimal. Therefore there are only two type of structures that can
be optimal for a local search process: star-like networks for ρ < ρ∗ and homogeneous
networks forρ > ρ∗.

Beyond the existence of both centralized and decentralizedoptimal networks, it is
significant that the transition from one sort of networks to the other is abrupt, mean-
ing that there are no intermediate optimal structures between total centralization and
total decentralization. Our explanation of this fact is thefollowing. Since we are con-
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FIGURE 8. Optimal topologies for networks withS = 32 nodes,L = 32 links and global knowledge.
(a)ρ = 0.010. (b)ρ = 0.020. (c)ρ = 0.050. (d)ρ = 0.080. In this case of global knowledge, the transition
from centralization to decentralization seems smooth.

sidering local knowledge of the network topology, centeredstar-like configurations are
extremely efficient in searching destinations and thus minimizing the effective distance
between nodes. This explains that stars are optimal for a wide range of values ofρ , until
the central node (or nodes) becomes congested. At this point, structures similar to stars
will have the same problem and will be much worse regarding search; at this point, the
only alternative is something completely decentralized, where the absence of congestion
can compensate the dramatic increase in the effective distance between nodes. If this ex-
planation is correct, one should be able to obtain a smooth transition from centralization
to decentralization by considering global knowledge of thenetwork, in such a way that
the average effective distance (that in this case coincideswith the average path length)
is not much larger in an arbitrary network than in the star. Although we do not have
extensive simulations in this case, Fig. 8 shows that there is some evidence to think that
this is indeed the case.

6.2. Dynamics towards synchronization

Physicists have largely studied the dynamics of complex biological systems, and
in particular the paradigmatic analysis of large populations of coupled oscillators [86,
87, 88]. The connection between the study of synchronization processes and complex



networks is interesting by itself. This synchronization phenomena as many others e.g.
asian fireflies flashing at unison, pacemaker cells in the heart oscillating in harmony,
etc. have been mainly described under the mean field hypothesis that assumes that all
oscillators behave identically and interact with the rest of the population. Recently, the
emergence of synchronization phenomena in complex networks has been shown to be
closely related to the underlying topology of interactions[89] beyond the macroscopic
description.

One of the most successful attempts to understand synchronization phenomena was
due to Kuramoto [88], who analyzed a model of phase oscillators coupled through the
sine of their phase differences. The model is rich enough to display a large variety of
synchronization patterns and sufficiently flexible to be adapted to many different con-
texts [90]. The Kuramoto model consists of a population ofN coupled phase oscillators
where the phase of thei-th unit, denoted byθi(t). Here we consider a simplified dynam-
ics in which all units have the same frequency, that can be setto zero without loss of
generality. Thus we have

dθi

dt
= ∑

j
Ki j sin(θ j −θi) i = 1, ...,N (10)

whereKi j describes the coupling between units. In absence of noise the only attractor of
the dynamics is the complete synchronization,θi = θ , ∀i.

Originally, this model had been studied in networks which are complete, but recently
these studies have been extended to systems where the patterns of connections is local
but non-trivial [7]. In this context the interest concerns not the final synchronized state
in itself but the route to the attractor. In particular, it has been shown [7] that high
densely interconnected sets of oscillators (motifs) synchronize more easily that those
with sparse connections. This scenario suggests that for a complex network with a
non-trivial connectivity pattern, starting from random initial conditions, those highly
interconnected units forming local clusters will synchronize first and then, in a sequential
process, larger and larger spatial structures also will do it up to the final state where
the whole population should have the same phase. This process occurs at different
time scales if a clear community structure exists. Thus, thedynamical route towards
the global attractor reveals different topological structures, presumably those which
represent communities. Therefore, it is the complete dynamical process what unveils
the whole organization at all scales, from the microscale ata very early stages up to the
macroscale at the end of the time evolution. On the contrary,those systems endowed
with a regular topological structure displays a trivial dynamics with a single time scale
for synchronization.

We have analyzed the dynamics towards synchronization in computer-generated
graphs with community structure. For this reason, we define alocal order parameter
measuring the average of the correlation between pairs of oscillators

ρi j(t) =< cos(θi(t)−θ j(t)) > (11)

where the brackets stand for the average over initial randomphases. The main advantage
of this approach is that it allows to trace the time evolutionof pairs of oscillators and
therefore to identify compact clusters reminiscent of the existence of communities.



The paradigmatic model of network with a well defined community structure that
has been used as a benchmark for different community detection algorithms [66], was
proposed by Girvan and Newman [68]. In that model the authorsconstruct a network
of 128 nodes as a set of 4 communities, each one formed by 32 nodes. Fixing the mean
number of links per node at a value of 16, the parameter describing the sharpness of the
community distribution iszin, the average number of links within the community. In Fig.
9 we show the time evolution of one of these networks,zin = 15 and hence a very clearly
defined community structure, averaging over random initialphases.

Dealing only with topological information we can, from the connectivity matrix, con-
struct the Laplacian matrix and compute their eigenvalue spectrum. This spectrum gives
information on the time scales involved in the dynamical process. We plot the eigenval-
ues spectrum of this matrix in the following way: in the horizontal axis we represent the
inverse of the eigenvalue, which in a dynamical process accounts for the time, and in
the vertical axis we represent the index of the eigenvalue which accounts for the number
of groups along the dynamics. This picture is useful becauseit can be compared with
the way groups (clusters or communities) are formed along the synchronization process,
obtaining a very striking similarity, meaning that these eigenvalues control the forma-
tion of the synchronized communities. We also plot, for completion, the dendogram of
the synchronization process (Fig. 9c): In this picture we show how the groups merge ac-
cording to the synchronization dynamics along time (vertical axis). Finally we also plot
(d) the relative time to achieve synchronization for each pair of oscillators. This syn-
chronization is understood as a correlation being larger than some threshold value. The
characterization is completely independent of the threshold, as is shown in [91], since
it only changes the absolute time scale not the relative one.Nodes are ordered in the
same way than in the picture of the dendogram just to get toghether those nodes that
synchronize earlier.

In this way we have been able to relate topology, in terms of the eigenvalue spectrum
of the Laplacian matrix, with dynamics, in terms of the appearance of synchronized
groups of oscillators. Topologically these groups correspond to the communities, but
there can be some cases where communities are not so well defined and this informa-
tions keep being useful. There can be some occasions where synchronized groups of
oscillators do not fit exactly with topological communities. Synchronization is a global
dynamical process that can identify the relevant structures (perhaps hierarchical) along
its evolution. Also the effect of hubs in the dynamical evolution is interesting, since hubs
are sometimes above the community structure.

For more information on this issue the reader is pointed to [91, 92] and to the website
http://www.ffn.ub.es/albert/synchro.html.

7. CONCLUSIONS AND OPEN PROBLEMS

Complex patterns of interactions are so often found in any natural, technological or
social environment that it has been widely accepted that newtools are needed. From
Statistical Physics, many valuable existing tools have been applied to this new emergent
field. Researchers in many different subjects are generating new repositories of data,
very large networks are generated and these tools need new implementations. A network



a) b)

c) d)

FIGURE 9. Synchronization process in a network with a homogeneous distribution of communities. a)
the network structure; b) eigenvalue spectrum; c) dendogram of the community merging; d) time needed
for each pair of oscillators to synchronize. Red for shortertimes, blue for larger times.

is not just a collection of nodes and binary relationships between those nodes. Nodes and
links can be anything, depending on the considered data, butnodes can have weights,
links can have weights as well, and hence new theories have appeared to deal with this
additional degree of complexity.

Usually, networks are characterized either from the microscopic level or from the
macroscopic level. From a microscopic point of view we are mainly interested in node
properties: degree, different measures of centrality, clustering, and so. However, from
a macroscopic point of view we deal with statistical properties of the set of nodes
and/or links; which are the distributions of connectivities, of load, of distances, and
how the different measures are, on average, correlated. These characterizations enable
to classify the networks into different universality classes, which is quite common in



physics grounds. We also know that in many problems in physics we have descriptions
that are scale invariant and hence we can move from the microscopic to the macroscopic
scale. Here we have reviewed some concepts and methods in theintermediate scale, the
mesoscale, where the definition and identification of communities or functional groups
play a crucial role. Up to now, there has been a large amount ofwork on methods of
community identification. Which are the most efficient in terms of accuracy or which
are the more economic in terms of computer resources needed.These properties have
also turned out to show some degree of universality.

Nevertheless, this identification based solely on topological properties needs to be
related with the exact relations between the nodes of the different groups. Nodes can
belong topologically to a given group but their functionality can be quite different.
Understanding these relations, why topological communities are or are not related with
functional groups, social communities, or some sort of thematic clusters, is still one
of the open problems related with the mesoscale properties.Another interesting point
that needs more clarification is the community structure at different scales, why are
they ordered in some kind of hierarchical or nested way and their relation again with
some ordering in this scales that can be related with some dynamical properties of the
processes taking place on the network. This hierarchical structure goes far beyond many
of the current methods to identify community partitions in networks; all this methods
try to find the optimal value of a kind of cost function, calledmodularity, which is a
property of the network and of the partition, then the best partition is that with the highest
modularity, but there can be partitions that, even with a high value of modularity, are
very unlikely from a physical point of view. Hence a proper understanding of the precise
location and the neighboring areas in the partition space ofspecial configurations can be
of great help in understanding the functionality of networks.

But, at the same time, networks are not formed by static objects; nodes (social agents,
computers, companies, ...) evolve in time and they can change their status and this evo-
lution is strongly correlated with the evolution of the links (social relationships, hard
rewirings, new business strategies, ...), All these new evolving, rewiring, updating, grow-
ing, removing, ... open many new problems that will be faced in the next future. Also, as
stated in the previous paragraph, we need a proper understanding of the topologies and
its relation with the dynamics of the node properties. We have presented here just two
examples on how the topological structure affects dynamics. First, a problem of trans-
port in which the nodes are agents that process and deliver information that has to arrive
to the right destination. Here we have found the characteristics of the optimal network
depending on the external load. Second, the time evolution of synchronized populations
of oscillators shows a striking degree of community ordering that reflects the topological
structure; furthermore, we have highlighted the relationsbetween topological properties
of the connectivity matrix with dynamical properties of thesynchronization. This is just
to get a glance on the wide applicability of these ideas in physical, economical, social,
biological, or even engineering problems.

In any case, we are dealing with a subject, Complex Networks,that is very young,
but that in such a short period of time has given so many relevant contributions (in the
form of reviews, technical books, popularization books, ....) that we have to think that
the future has just started and many new players are welcome to the ground.
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