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A Model for So
ial NetworksRiitta Toivonen ∗, Jukka-Pekka Onnela, Jari Saramäki,Jörkki Hyvönen, and Kimmo KaskiLaboratory of Computational Engineering, Helsinki University of Te
hnology, P.O.Box 9203, FIN-02015 HUT, FinlandAbstra
tSo
ial networks are organized into 
ommunities with dense internal 
onne
tions,giving rise to high values of the 
lustering 
oe�
ient. In addition, these networkshave been observed to be assortative, i.e. highly 
onne
ted verti
es tend to 
onne
tto other highly 
onne
ted verti
es, and have broad degree distributions. We presenta model for an undire
ted growing network whi
h reprodu
es these 
hara
teristi
s,with the aim of produ
ing e�
iently very large networks to be used as platformsfor studying so
iodynami
 phenomena. The 
ommunities arise from a mixture ofrandom atta
hment and impli
it preferential atta
hment. The stru
tural propertiesof the model are studied analyti
ally and numeri
ally, using the k-
lique method forquantifying the 
ommunities.Key words: So
ial Networks, Community stru
ture, Complex Networks, SmallWorldPACS: 89.75.-k, 89.75.H
, 89.65.-s, 89.65.Ef
1 Introdu
tionThe re
ent substantial interest in the stru
tural and fun
tional properties of
omplex networks (for reviews, see [1, 2, 3℄) has been partially stimulatedby attempts to understand the 
hara
teristi
s of so
ial networks, su
h as thesmall-world property and high degree of 
lustering [4℄. Before this, so
ial net-works have been intensively studied by so
ial s
ientists [5, 6, 7℄ for severalde
ades in order to understand both lo
al phenomena, su
h as 
lique formationand their dynami
s, as well as network-wide pro
esses, su
h as transmission
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of information. Within the framework of 
omplex networks, studies have 
on-
entrated on the stru
tural analysis of various types of so
ial networks, su
has those related to sexual 
onta
ts [8℄, professional 
ollaboration [4, 9, 10℄and Internet dating [11℄, as well as models of 
olle
tive behaviour and variousso
iodynami
 phenomena [12, 13, 14℄. One feature of parti
ular interest hasbeen to evaluate and dete
t 
ommunity stru
ture in networks [15, 16, 17, 18℄,where the developed methodologies have found appli
ations in various other�elds su
h as systems biology [19℄. Communities 
an, roughly speaking, bede�ned as sets of verti
es with dense internal 
onne
tions, su
h that the inter-
ommunity 
onne
tions are relatively sparse. In everyday so
ial life or pro-fessional 
ollaborations, people tend to form 
ommunities, the existen
e ofwhi
h is a prominent 
hara
teristi
 of so
ial networks and has far rea
hing
onsequen
es on the pro
esses taking pla
e on them, su
h as propagation ofinformation and opinion formation.It is evident that theoreti
al studies of pro
esses and 
olle
tive behaviourtaking pla
e on so
ial networks would bene�t from realisti
 so
ial networkmodels. Essential 
hara
teristi
s for so
ial networks are believed to in
ludeassortative mixing [20, 21℄, high 
lustering, short average path lengths, broaddegree distributions [22, 23, 24℄, and the existen
e of 
ommunity stru
ture.Here, we propose a new model that exhibits all the above 
hara
teristi
s.So far, di�erent approa
hes have been taken to de�ne so
ial network mod-els [23, 25, 26, 27, 28, 29, 30, 31℄. To our knowledge, of the above [23℄ exhibits
ommunity stru
ture, high 
lustering and assortativity 1 , but based on visu-alizations given in the paper their 
ommunity stru
ture appears very di�erentfrom the proposed model. Our model belongs to the 
lass of growing networkmodels, i.e. all edges are generated in 
onne
tion with new verti
es joiningthe network. Network growth is governed by two pro
esses: 1) atta
hment torandom verti
es, and 2) atta
hment to the neighbourhood of the random ver-ti
es ("getting to know friends of friends"), giving rise to impli
it preferentialatta
hment. These pro
esses then, under 
ertain 
onditions, give rise to broaddegree distributions, high 
lustering 
oe�
ients, strong positive degree-degree
orrelations and 
ommunity stru
ture.This paper is stru
tured as follows: First, we motivate the model based on real-world observations, followed by des
ription of the network growth algorithm.Next, we derive approximate expressions for the degree distribution and 
lus-tering spe
trum and 
ompare our theoreti
al results to simulations. We alsopresent numeri
al results for the degree-degree 
orrelations. We then addressthe issue of 
ommunity stru
ture using the k-
lique method [18℄. Finally, we
on
lude with a brief summary of our results.
1 The model presented in [27℄ also exhibits 
ommunity stru
ture and high 
lustering,but weak assortativity, with assortative mixing 
oe�
ients of the order 0.01.2



2 Model2.1 Motivation for the modelOur basi
 aim has been to develop a model whi
h a) 
aptures the salientfeatures of real-world so
ial networks, and b) is as simple as possible, andsimple enough to allow approximate analyti
al derivations of the fundamental
hara
teristi
s, although one of the desired stru
tural 
hara
teristi
s (posi-tive degree-degree 
orrelations) makes exa
t derivations rather di�
ult. Theresulting network is of interest rather than the growth me
hanism.To satisfy the �rst 
riterion, we have set the following requirements for themain 
hara
teristi
s of networks generated by our model: i) Due to limitedso
ial resour
es, the degree distribution p(k) should have a steep tail [22℄, ii)Average path lengths should grow slowly with network size, iii) The networksshould exhibit high average 
lustering, iv) The networks should display pos-itive degree-degree 
orrelations, i.e. be assortative, v) The networks should
ontain 
ommunities with dense internal 
onne
tions.Requirement i) is based on the observation that many so
ial intera
tion net-works display power-law-like degree distributions but may display a 
uto�at large degrees [9, 10℄. In some 
ases, degree exponents beyond the 
om-monly expe
ted range 2 < γ ≤ 3 have been observed, e.g., in the PGP webof trust [23℄ a power-law like tail with exponent γ = 4 has been observed.Similar �ndings have also been made in a study based on a very large mobilephone 
all dataset [24℄. In light of these data, we will be satis�ed with a modelthat produ
es either steep power laws or a 
uto� at high degrees. In the 
aseof everyday so
ial networks, 
ommon sense tells us that even in very largenetworks, no person 
an have tens of thousands of a
quaintan
es. Hen
e, ifthe degree distribution is to be asymptoti
ally s
ale-free p(k) ∝ k−γ , the valueof the exponent γ should be above the 
ommonly observed range of 2 < γ ≤ 3su
h that in networks of realisti
 sizes, N ≥ 106 verti
es, the maximum degreeis limited 2 , kmax ∼ 102. As detailed later, su
h power-law distributions 
an beattributed to growth pro
esses mixing random and preferential atta
hment.Requirement ii), short average path lengths, is a 
ommon 
hara
teristi
 ob-served in natural networks, in
luding so
ial networks. Requirements iii) high
lustering, iv) assortativity, and v) existen
e of 
ommunities are also basedon existing observations, and 
an be attributed to "lo
al" edge formation, i.e.edges formed between verti
es within short distan
es. The degree of 
lusteringis typi
ally measured using the average 
lustering 
oe�
ient 〈c〉, de�ned as thenetwork average of c(k) = 2E/k (k − 1), where E is the number of triangles
2 For networks with a s
ale-free tail of the degree distribution, kmax ∼ N1/(γ−1).3



around a vertex of degree k and the fa
tor 1
2
k (k − 1) gives the maximumnumber of su
h triangles. A 
ommonly utilized measure of degree-degree 
or-relations is the average nearest-neighbour degree spe
trum knn(k) - if knn(k)has a positive slope, high-degree verti
es tend to be 
onne
ted to other high-degree verti
es, i.e. the vertex degrees in the network are assortatively mixed(see, e.g., Ref. [32℄). For dete
ting and 
hara
terizing 
ommunities, severalmethods have been proposed [15, 16, 17, 18, 19℄. In so
ial networks, ea
h in-dividual 
an be assigned to several 
ommunities, and thus we have 
hosen toinvestigate the 
ommunity stru
ture of our model networks using a methodwhi
h allows membership in several 
ommunities [18℄.To satisfy the se
ond 
riterion, we have 
hosen a growing network model, sin
ethis allows using the rate equation approa
h [33, 34℄, and be
ause even verylarge networks 
an be produ
ed using a simple and qui
k algorithm. It has been
onvin
ingly argued [26℄ that sin
e the number of verti
es in a so
ial network
hanges at a very slow rate 
ompared to edges, a realisti
 so
ial networkmodel should feature a �xed number of verti
es with a varying number and
on�guration of edges. However, as our fo
us is to merely provide a modelgenerating substrate networks for future studies of so
iodynami
 phenomena,the time s
ales of whi
h 
an be viewed to be mu
h shorter than the time s
alesof 
hanges in the network stru
ture, a model where the networks are grownto desired size and then 
onsidered stati
 is suitable for our purposes.2.2 Model algorithmThe algorithm 
onsists of two growth pro
esses: 1) random atta
hment, and2) impli
it preferential atta
hment resulting from following edges from the ran-domly 
hosen initial 
onta
ts. The lo
al nature of the se
ond pro
ess gives riseto high 
lustering, assortativity and 
ommunity stru
ture. As will be shownbelow, the degree distribution is determined by the number of edges gener-ated by the se
ond pro
ess for ea
h random atta
hment. The algorithm of themodel reads as follows 3 :(1) Start with a seed network of N0 verti
es.(2) Pi
k on average mr ≥ 1 random verti
es as initial 
onta
ts.(3) Pi
k on average ms ≥ 0 neighbours of ea
h initial 
onta
t as se
ondary
onta
ts.

3 Our network growth me
hanism bears some similarity to the Holme-Kim model,designed to produ
e s
ale-free networks with high 
lustering [35℄. In the HK model,the networks are grown with two pro
esses: preferential atta
hment and triangleformation by 
onne
tions to the neighbourhood. However, the stru
tural propertiesof networks generated by our model di�er 
onsiderably from HK model networks(e.g. in terms of assortativity and 
ommunity stru
ture).4



(4) Conne
t the new vertex to the initial and se
ondary 
onta
ts.(5) Repeat steps 2 to 4 until the network has grown to desired size.
i

j

v

k l

Fig. 1. Growth pro
ess of the network. The new vertex v links to one or more ran-domly 
hosen initial 
onta
ts (here i, j) and possibly to some of their neighbours(here k, l). Roughly speaking, the neighbourhood 
onne
tions 
ontribute to the for-mation of 
ommunities, while the new vertex a
ts as a bridge between 
ommunitiesif more than one initial 
onta
t was 
hosen.

Fig. 2. A visualization of a small network with N = 500 indi
ates strong 
ommunitystru
ture with 
ommunities of various sizes 
learly visible. The number of initial
onta
ts is distributed as p(ninit =1) = 0.95, p(ninit =2) = 0.05, and the number ofse
ondary 
onta
ts from ea
h initial 
onta
t n2nd ∼ U [0, 3] (uniformly distributedbetween 0 and 3). The network was grown from a 
hain of 30 verti
es. Visualizationwas done using Himmeli [36℄.The analyti
al 
al
ulations detailed in the next se
tion use the expe
tationvalues for mr and ms. For the implementation, any non-negative distributionsof mr and ms 
an be 
hosen with these expe
tation values. If the distributionfor the number of se
ondary 
onta
ts has a long tail, it will often happenthat the number of attempted se
ondary 
onta
ts is higher than the degreeof the initial 
onta
t so that all attempted 
onta
ts 
annot take pla
e, whi
h5



will bias the degree distribution towards smaller degrees. We 
all this thesaturation e�e
t, sin
e it is 
aused by all the neighbours of an initial 
onta
tbeing used up, or saturated. However, for the distributions of ms used in thispaper the saturation e�e
t does not seem to have mu
h e�e
t on the degreedistribution.For appre
iable 
ommunity stru
ture to form, it is essential that the numberof links made to the neighbors of an initial 
onta
t varies, instead of alwayslinking to one or all of the neighbors, and that sometimes more than one initial
onta
t are 
hosen, to form 'bridges between 
ommunities'. Here, we use thedis
rete uniform distributions n2nd ∼ U [0, k], k = 1, 2, 3 for the number of se
-ondary 
onta
ts n2nd, while for the number of initial 
onta
ts ninit we usually�x the probabilities to be p1 = 0.95 for pi
king one 
onta
t and p2 = 0.05 forpi
king two. This results in sparse 
onne
tivity between the 
ommunities. Theuniform distributions for n2nd were 
hosen for simpli
ity, but allowing larger
n2nd would allow for larger 
liques and stronger 
ommunities to form.2.3 Vertex degree distributionWe will use the standard mean-�eld rate equation method [33℄ to derive anapproximative expression for the vertex degree distribution. For growing net-work models mixing random and preferential atta
hment, power law degreedistributions p(k) ∼ kγ with exponents 2 < γ < ∞ have been derived ine.g. [37, 38, 39℄ 4 . Sin
e in our model the newly added links always emanatefrom the new vertex, the lower bound for the degree exponent is 3; by 
on-trast, if links are allowed to form between existing verti
es in the network, theexponent 
an also have values between 2 and 3 (see, e.g., [38℄).If no degree 
orrelations were present, 
hoosing a vertex on the other end ofa randomly sele
ted edge would 
orrespond to linear preferential sele
tion.In this model network 
orrelations are present, leading to a bias from purepreferential atta
hment. Qualitatively, this 
an be explained as follows: Alow degree vertex will have on the average low degree neighbors. Therefore,starting from a low degree vertex, whi
h are the most numerous in the network,and pro
eeding to the neighbourhood, we are more likely to rea
h low degreeverti
es than their proportion in the network would imply. Hen
e, the hubsgain fewer links than they would with pure preferential atta
hment. Due todegree-degree 
orrelations, then, the simulated 
urves will not 
losely mat
hthe theory, but at high values of k the theoreti
al distributions 
an be viewedas an upper limit to the average maximum degrees.
4 The same result is found for generalized linear preferential atta
hment kernels
πk ∝ k+k0, where k0 is a 
onstant, sin
e mixing random and preferential atta
hment
an be re
ast as preferential atta
hment with a shifted kernel.6



We �rst 
onstru
t the rate equation whi
h des
ribes how the degree of a vertex
hanges on average during one time step of the network growth pro
ess. Thedegree of a vertex vi grows via two pro
esses: 1) a new vertex dire
tly linksto vi (the probability of this happening is mr/t, sin
e there are altogether ∼ tverti
es at time t, and mr random initial 
onta
ts are pi
ked) 2) vertex vi issele
ted as a se
ondary 
onta
t. In the following derivations we assume thatthe probability of 2) is linear with respe
t to vertex degree, i.e. following arandom edge from a randomly sele
ted vertex gives rise to impli
it preferentialatta
hment. Note that in this approximation we negle
t the e�e
ts of 
orrela-tions between the degrees of neighbouring verti
es. On average ms neighboursof the mr initial 
onta
ts are sele
ted to be se
ondary 
onta
ts. These twopro
esses lead to the following rate equation for the degree of vertex vi:
∂ki

∂t
=mr

(

1

t
+ ms

ki
∑

k

)

=
1

t

(

mr +
ms

2(1 + ms)
ki

)

, (1)where we substituted 2mr(1+ms) t for ∑

k, based on the fa
ts that the averageinitial degree of a vertex is kinit = mr(1 + ms), and that the 
ontribution ofthe seed to the network size 
an be ignored. Separating and integrating (from
ti to t, and from kinit to ki), we get the following time evolution for the vertexdegrees:

ki(t) = B
(

t

ti

)1/A

− C, (2)where A = 2 (1 + ms) /ms, B = mr (A + 1 + ms), and C = Amr.From the time evolution of vertex degree ki(t) we 
an 
al
ulate the degree dis-tribution p(k) by forming the 
umulative distribution F (k) and di�erentiatingwith respe
t to k. Sin
e in the mean �eld approximation the degree ki(t) of avertex vi in
reases stri
tly monotonously from the time ti the vertex is initiallyadded to the network, the fra
tion of verti
es whose degree is less than ki(t)at time t is equivalent to the fra
tion of verti
es that were introdu
ed aftertime ti. Sin
e t is evenly distributed, this fra
tion is (t− ti)/t. These fa
ts leadto the 
umulative distribution
F (ki) = P ( k̃ ≤ ki ) = P ( t̃ ≥ ti ) =

1

t
( t − ti ). (3)Solving for ti = ti(ki, t) = BA (ki + C)−A t from (2) and inserting it into (3),di�erentiating F (ki) with respe
t to ki, and repla
ing the notation ki by kin the resulting equation, we get the probability density distribution for thedegree k as:

p(k) = ABA(k + C)−2/ms− 3, (4)where A, B and C are as above. Hen
e, in the limit of large k, the distributionbe
omes a power law p(k) ∝ k−γ, with γ = 3 + 2
ms

, ms > 0, leading to7



3 < γ < ∞. In the model, γ = 3 
an never be rea
hed due to the random
omponent of atta
hment. When the importan
e of the random 
onne
tion isdiminished with respe
t to the impli
it preferential 
omponent by in
reasing
ms, however, the theoreti
al degree exponent approa
hes the limit 3, the valueresulting from pure preferential atta
hment.
2.4 Clustering spe
trumThe dependen
e of the 
lustering 
oe�
ient on vertex degree 
an also be foundby the rate equation method [34℄. Let us examine how the number of triangles
Ei around a vertex vi 
hanges with time. The triangles around vi are mainlygenerated by two pro
esses: 1) Vertex vi is 
hosen as one of the initial 
onta
tswith probability mr/t, and the new vertex links to some of its neighbours (weassume ms on average, although sometimes this is limited by the number ofneighbours the initial 
onta
t has, i.e. saturation) 2) The vertex vi is sele
tedas a se
ondary 
onta
t, and a triangle is formed between the new vertex,the initial 
onta
t and the se
ondary 
onta
t. Note that triangles 
an also begenerated by sele
ting two neighbouring verti
es as the initial 
onta
ts, butin the �rst approximation the 
ontribution of this is negligible. These twopro
esses are des
ribed by the rate equation

∂Ei(ki, t)

∂t
=

mrms

t
+ mrms

ki
∑

k
=

∂ki

∂t
+

mr(ms−1)

t
, (5)where the se
ond right hand side is obtained by applying Eq. (1). Integratingboth sides with respe
t to t, and using the initial 
onditionEi(kinit, ti) = mr(1 + ms),we get the time evolution of triangles around a vertex vi as

Ei(t) = ki(t) + mr(ms − 1) ln
(

t

ti

)

− mr. (6)We 
an now make use the previously found dependen
e of ki on ti for �nding
ci(k). Solving for ln

(

t
ti

) in terms of ki from (2), inserting it into (6) to get
Ei(ki), and dividing Ei(ki) by the maximum possible number of triangles,
ki(ki − 1)/2, we arrive at the 
lustering 
oe�
ient:

ci(ki) =
2Ei(ki)

ki(ki − 1)
= 2

ki + D ln(ki + C) − F

ki(ki − 1)
,where C = Amr, D = C(ms − 1), and F = D lnB + mr. For large values ofdegree k, the 
lustering 
oe�
ient thus depends on k as c(k) ∼ 1/k.8



2.5 Comparison of theory and simulationsFig. 3 displays the degree distributions averaged over 100 runs for networksof size N = 106 for various parametrizations, together with analyti
al 
urves
al
ulated using Eq. (4). The analyti
al distributions asymptoti
ally approa
hpower laws with exponents p(k) ∝ k−γ (from top to bottom) γ = 5, 4.33, 5, and
7. The tails of the simulated distributions fall below the theoreti
al predi
tionsdue to degree 
orrelations, as explained earlier. The degree-degree 
orrelationswere 
on�rmed as the 
ause of the deviation by repla
ing the atta
hment tose
ondary 
onta
ts by pure random preferential atta
hment, after whi
h thesimulated and theoreti
al slopes mat
hed very 
losely (not shown). Note thatthe parameter values shown here were 
hosen for simpli
ity, and they 
ouldbe tuned for di�erent qualities.
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Fig. 3. Degree distributions of simulated networks of size N = 106, averaged over100 runs ea
h. Due to degree-degree 
orrelations in the network, linking to theneighbourhood of a vertex does not stri
tly lead to preferential atta
hment, whi
h
auses the distributions to fall below the theoreti
al power laws (solid lines) atlarge k. Curves are verti
ally translated a de
ade apart for 
larity. Inset: the ratioof simulated values to theoreti
al ones. Markers 
orrespond to di�erent parametervalues: (+): number of initial 
onta
ts ninit from the dis
rete uniform distribution
U [1, 3], number of se
ondary 
onta
ts n2nd from U [0, 2]. (◦): p(ninit = 1) = 0.95,
p(ninit = 2) = 0.05, n2nd ∼ U [0, 3]. (×): p(ninit = 1) = 0.95, p(ninit = 2) = 0.05,
n2nd ∼ U [0, 2]. (2): p(ninit =1) = 0.95, p(ninit =2) = 0.05, n2nd ∼ U [0, 1].
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The top panel of Fig. 4 displays averaged values of the 
lustering 
oe�
ient
c(k) for the same networks, together with analyti
al 
urves 
al
ulated usingEq. (7). We see that the predi
tions mat
h the simulated results well, andthe c(k) ∼ 1/k-trend is 
learly visible. The 
orresponding network-averaged
lustering 
oe�
ients are (top to bottom) 〈c〉 = 0.30, 0.58, 0.54 and 0.43,i.e. the degree of 
lustering is relatively high. Of these parameter sets, (◦)allows the largest number of links from ea
h initial 
onta
t, therefore givingthe largest average 
lustering. Higher 
lustering 
oe�
ients 
ould be obtainedby in
reasing the possible number of se
ondary 
onta
ts.
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oe�
ient c(k), averaged over 100 iterations for networks ofsize N = 106. Predi
tions for c(k) (solid lines) agree well with simulated results.Curves are verti
ally translated a de
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2.6 Degree-degree 
orrelations and average shortest path lengthsNext, we investigate the degree-degree 
orrelations of our model networks.So
ial networks are often asso
iated with assortative mixing [20℄ related tovertex degrees, i.e. high-degree verti
es tend to 
onne
t to other high-degreeverti
es. This tenden
y 
an be formulated in terms of a 
onditional probability
P (k′|k) that an edge 
onne
ted to a vertex of degree k has a vertex of degree
k′ at its other end [32℄. A quantity more suitable for numeri
al investigationsis the average nearest-neighbour degree knn(k) =

∑

k′ k′P (k′|k). If knn(k) isan in
reasing fun
tion of k, the network is assortatively mixed in terms ofvertex degrees. The bottom left panel in Fig. 4 shows knn(k) averaged over 100networks, displaying a 
lear signature of assortative mixing. Another measureof degree-degree 
orrelations is the assortativity 
oe�
ient r [29℄, whi
h is thePearson 
orrelation 
oe�
ient of vertex degrees at either end of an edge. Forthe model networks generated with the parameters used in this paper, the
oe�
ients are (+): 0.18, (◦): 0.10, (×): 0.10, and (2): 0.09. For di�erent 
o-authorship networks, for example, the assortativity 
oe�
ient has been foundto range from 0.12 to 0.36 [20℄.Qualitatively, the presen
e of positive degree-degree 
orrelations 
an be at-tributed to the neighbourhood 
onne
tions, as well as the high degree of 
lus-tering. Consider a situation where a new vertex atta
hes to one initial 
onta
t
vi and ms of its neighbours, so that the degree of all the verti
es in question isin
reased by one. Hen
e, positive 
orrelations are indu
ed between the degreesof vi and its ms neighbours. In addition, be
ause of the high 
lustering, thereis a large probability of 
onne
tions between the ms neighbours. This givesrise to positive degree 
orrelations between the ms verti
es.It is 
ommonly observed in real life networks that average path lenghts areshort with respe
t to network size [4℄. Together with high 
lustering, this is
alled the small world e�e
t. Typi
ally in model networks, the shortest pathlengths are found to grow logarithmi
ally with network size. This is also the
ase in our model (Fig. 4, bottom right panel).
2.7 Community stru
tureThe emergen
e of 
ommunities in the networks generated by our model 
anbe attributed to the e�e
ts of the two types of atta
hment. Roughly speaking,atta
hment to the se
ondary 
onta
ts tends to enlarge existing 
ommunities;the new vertex 
reates triangles with the initial 
onta
t and its nearest neigh-bours. If the internal 
onne
tions within an existing 
ommunity are dense, the11



se
ondary 
onta
ts tend to be members of the same 
ommunity, and thus this
ommunity grows. On the other hand, new verti
es joining the network mayatta
h to several initial 
onta
ts (with our parametrizations, two or three).If they belong to di�erent 
ommunities, the new vertex assumes the role ofa "bridge" between these. However, no edges are added between the verti
esalready in the network. Therefore, the maximum size of a 
lique, i.e. a fully
onne
ted subgraph, to be found in the network is limited by the maximumnumber of edges added per time step. In this model the number of added edges
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Fig. 5. The average number of k-
lique-
ommunities ( •: k=3, ⋄: k=4, ∗: k=5) ofea
h size found in our model network with N =50000, number of initial 
onne
tions
p(ninit = 1) = 0.95, p(ninit = 2) = 0.05, and number of se
ondary 
onne
tionsfrom U [0, 3], averaged over 20 networks. In the 
ase of 3-
liques, large 
ommunitiesspanning roughly half the network are seen. The 
ommunity size distributions arebroad, and their log-log plots appear power-law-like, although the 
umulative distri-butions (not shown) show some deviation. Approximate slopes of the log-log plotsare k =3: 3 (ex
luding the super
ommunities), k=4: 4, and k=5: 10. A very large
3-
lique-
ommunity spans roughly half of the verti
es in any network generated withthese parameters. In the 
orresponding randomized networks, where edges were shuf-�ed keeping the degree distribution inta
t, there were only a few adja
ent triangles,and no 4-
liques at all (�: 3-
lique-
ommunities found in the randomized networks).The inset shows the e�e
t of network size N on the 3-
lique-
ommunity size distri-bution for N = 100, 500, 1000, 5000, 10000, 50000. As all data �t on the same linewhen s
aled by 1/N , the network size does not a�e
t the slope. Note that di�erent
hoi
es of parameters would allow larger 
liques and larger k-
lique-
ommunities toform. 12



varies, allowing for fairly large 
liques to form while average vertex degree iskept small. Visualizations of our model networks with proper parametrizationexhibit 
lear eviden
e of 
ommunity stru
ture, as shown in Fig. 2.In order to quantify the 
ommunity stru
ture, we have utilized the k-
liquemethod of Palla et al. [18, 40℄ and the free software pa
kage CFinder theyprovide. In this approa
h, the de�nition of 
ommunities is based on the obser-vation that a typi
al 
ommunity 
onsists of several fully 
onne
ted subgraphs(
liques) that tend to share many of their verti
es. Thus, a k-
lique-
ommunityis de�ned as a union of all k-
liques that 
an be rea
hed from ea
h otherthrough a series of adja
ent k-
liques (where adja
en
y means sharing k − 1verti
es). This de�nition determines the 
ommunities uniquely, and one of itsstrengths is that it allows the 
ommunities to overlap, i.e. a single vertex 
anbe a member of several 
ommunities. For so
ial networks, this is espe
iallyjusti�ed.We have found that the size distributions of k-
lique-
ommunities in our modelnetworks are broad, and appear power-law-like (Fig. 5). The slopes of thelog-log plots were seen not to depend on the network size N . In the 
aseof 3-
liques, a very large 
ommunity spans roughly half of the verti
es inany network generated with these parameters. Similar large 3-
liques 
an beobserved in many other networks with 
ommunities as well, e.g. in the datasetsprovided with the CFinder pa
kage: a snapshot of the 
o-authorship networkof the Los Alamos e-print ar
hives, where 54% of the roughly 30 000 verti
esbelong to the largest 3-
lique-
ommunity; in the word asso
iation network ofthe South Florida Free Asso
iation norms (67%), and in the protein-proteinintera
tion network of the Sa

haromy
es 
erevisiae (17%). The requirementsfor a 3-
lique-
ommunity are not very stri
t, and it is not surprising that one
ommunity 
an span most of the network. With these 
hoi
es of parameters,no su
h super
ommunities arise with k > 3.Comparison of the resulting 
ommunity size distributions with randomizednetworks, where the edges of the networks were s
rambled keeping the degreedistributions inta
t, makes it evident that 
ommunity stru
ture is present inthe model networks (Fig. 5). Community sizes depend on i) how the 
om-munities are de�ned and dete
ted, as di�erent methods divide the networksinto di�erently sized 
ommunities, and ii) what type of so
ial networks areinvestigated, as di�erent types of networks 
an be expe
ted to display dif-ferent 
ommunity stru
tures. Although analysis of the 
ommunity stru
tureof empiri
al so
ial networks is a relevant question, we will leave it for futurework. We attempt to provide a generi
 model that 
an be tuned for desiredqualities. 13



3 SummaryIn this paper we have developed a model whi
h produ
es very e�
iently net-works resembling real so
ial networks in that they have assortative degree
orrelations, high 
lustering, short average path lengths, broad degree distri-butions and prominent 
ommunity stru
ture. The model is based on networkgrowth by two pro
esses: atta
hment to random verti
es and atta
hment totheir neighbourhood. Theoreti
al approximations for the degree distributionand 
lustering spe
trum have been derived and 
ompared with simulation re-sults. The observed deviations 
an be attributed to degree 
orrelations. Visual-izations of the networks and quantitative analysis show signi�
ant 
ommunitystru
ture. In terms of 
ommunities de�ned using the k-
lique method, the an-alyzed 
ommunity size distributions display power-law-like tails. These typesof features are also present in many real-life networks, making the model wellsuited for simulating dynami
 phenomena on so
ial networks.A
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