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Complex networks such as the World Wide Web, the web of human sexual contacts, or criminal networks often
do not have an engineered architecture but instead are self-organized by the actions of a large number of
individuals. From these local interactions nontrivial global phenomena can emerge as small-world properties
or scale-free degree distributions. A simple model for the evolution of acquaintance networks highlights the
essential dynamical ingredients necessary to obtain such complex network structures. The model generates
highly clustered networks with small average path lengths and scale-free as well as exponential degree
distributions. It compares well with experimental data of social networks, as for example, coauthorship
networks in high energy physics. © 2003 Wiley Periodicals, Inc.
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I n many kinds of complex systems, large and stable net-

work structures occur. Specific examples include net-

works of interacting proteins or genes, ecological graphs,

communication networks, and social networks [1– 4]. For

most of them, neither random networks nor regular lattices

provide an adequate framework to model the observed to-

pological properties. The first step towards an improved

understanding was the mathematical concept of “small-

world networks” introduced by Watts and Strogatz [5, 6].

Small-world networks interpolate between the two limiting

cases of a highly clustered regular lattice and a random

graph with short path lengths between nodes. A network is

said to be highly clustered in the sense that if node A is

linked to node B and B is linked to node C, there is an

enhanced probability that A will also be linked to C (a

property that sociologists call “transitivity”). The distance

between two nodes is defined as the number of edges along

the shortest path connecting them. If a network shares the

following two characteristic properties it is called a “small-

world” [5, 7]: (i) high clustering and (ii) a small average

shortest path between two nodes scaling logarithmically

with network size.

Social networks and acquaintance networks in particular

are typical examples for small-world behavior [1–3, 7]. The

topology and the static characteristics of them have been

the focus of recent investigations as, for example, in the case

of illegal and terrorist networks [8, 9] or the web of humanCorrespondence to: Holger Ebel
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sexual contacts [10]. It is quite dissatisfying that much less is
known about the dynamical properties of these systems
because such real-world networks generally are not static
but evolve in time. Thus, the emergence of networks dis-
playing small-world behavior should be directly related to
local interactions within the network.

Besides clustering and path lengths, the degree distribu-
tion further characterizes a complex network. Of particular
interest are scale-free networks where the degree (i.e., the
number of a node’s next neighbors) is distributed according
to a power law. Such scale-free degree statistics leads to
distinct behavior with respect to error and attack tolerance
[11] or epidemic spreading [12] and is observed in some
social networks [1–3, 13–15]. In many cases, the origin of
scale-free properties is well understood in terms of interac-
tions that generate this topology dynamically, e.g., on the
basis of network growth and preferential linking [2, 3, 16].
Although these models generate scale-free structures, they
do not, in general, lead to clustering and are therefore of
limited use when modeling small-world networks and social
networks in particular.

Here, dynamics of social networks and the emergence of
a small-world structure is addressed by combining ideas
from the two fields of “small-world networks” and “scale-
free networks” [17]. More precisely, starting with the exam-
ple of a coauthorship network, a simple dynamical model is
introduced generating highly clustered networks with small
average path lengths that scale logarithmically with network
size. In addition to its small-world behavior, this model
leads to a scale-free degree distribution for small death-
and-birth rates of nodes.

SOCIAL WEBS: A COAUTHORSHIP NETWORK
Coauthorship networks are well-studied examples of social
networks reflecting the emergence of cooperative structures
between scientists. Nodes of such networks are authors that
are connected if they have coauthored a paper together.
One example is the coauthorship network of high-energy
physicists that was reconstructed by Newman from the
SPIRES publication database for the years 1995–1999 [13,
18]. It contains 55,627 authors as nodes, with a mean degree
of �ks� � 173 and an average shortest path length of ls � 4.0.
Because the degree distribution is consistent with a power
law P(k) � k�� with exponent � � 1.2, this coauthorship
network belongs to the class of scale-free social networks.
The clustering of the network is measured by the clustering
coefficient C defined as follows [5]. First the density of links
in the neighborhood of an individual node i is given by the
ratio of existing links Ei to the potential number of connec-
tions 1/2ki(ki � 1). Then the clustering coefficient of the
entire network is the average density

C � � 2Ei

ki�ki � 1�
�

i

. (1)

A similar, but not equivalent, definition for the clustering
coefficient is provided by the fraction of fully connected
“triples,” with a triple being a connected subgraph contain-
ing three nodes [19, 20]

C� �
3 � �number of fully connected triples�

number of triples
. (2)

The latter definition is equivalent to reversing the order of
averaging and division in (1). We computed the clustering
coefficient from the raw data using definition (1) to CS �

0.68, whereas C�,S � 0.73 was calculated for definition (2)
[13]. To understand the meaning of these values of cluster-
ing and path length, we will compare them to the respective
quantities of random networks of identical size. A naive
approach would be to consider a random network with
identical mean degree where each pair of nodes is con-
nected with a constant probability [17], yielding Crand �

0.0031 and lrand � 2.12. However, comparison with this
particular type of random network is flawed because the
constant linking probability results in a Poissonian degree
distribution that differs strongly from the observed scale-
free behavior. Therefore, we deduce both quantities for a
random network with identical degree distribution but ran-
domly assigned links. With the estimate for the clustering
coefficient according to definition (1) [17]:

C	 �
1

�k�N � �k2�

�k�
� 1� 2

, (3)

a value C	 � 0.12 is obtained, much larger than Crand but still
smaller than the observed clustering. Thus, the network
exhibits very high clustering, which is not explained by the
degree distribution alone. Note that the estimate (3) holds
exactly in the case of a Poissonian degree distribution and,
in the thermodynamic limit, for definition (2), also [21]. The
path length in a random network with the same degree
distribution [17], l	 � 1.81, is even smaller than in a random
network with constant linking probability. This is caused by
the highly connected hubs present in a scale-free network.
That l	 is slightly smaller than the observed value is due to
the fact that many links are consumed for building the
densely connected neighborhoods. Hence, the SPIRES co-
authorship network exhibits pronounced small-world be-
havior and, in addition, shows scale-free behavior in terms
of the link distribution.

MODELING SOCIAL NETWORKS
Let us now consider a model for social networks in terms of
acquaintance graphs with persons as nodes and undirected
links between people who know each other [17]. The ac-
quaintance network evolves with new acquaintances form-
ing between individuals, and people joining and leaving the
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network. We assume that the central mechanism of the

dynamics of acquaintance networks is that people are in-

troduced to each other by a common acquaintance (tran-

sitive linking). The dynamics of the model consist of two

processes taking place at each time step:

1. One individual is chosen at random and introduces two

arbitrary acquaintances to each other. They become ac-

quainted to each other, too, if they have not met before,

and a new link is built (transitive linking). If the chosen

person has less than two acquaintances he will introduce

himself to an individual picked at random (Figure 1).

2. With probability p, a randomly chosen person leaves the

network, and all the links between him and his acquain-

tances are deleted. A new individual joins the network and

becomes acquainted to one randomly chosen person.

Note that the number of nodes N remains constant, ne-

glecting fluctuations in the number of individuals being part of

the acquaintance network. The finite lifetime of links leads to

a stationary state of the network approximating the behavior

of real social networks. However, it is in contrast to most

dynamical network models which are based on network

growth [2, 3, 14, 22]. The two time scales of the model are

separated by the probability p. The rate of building new social

connections can be as short as minutes or hours, whereas the

time scale of joining and leaving the network may lie in the

range of years or decades. Hence, in the following, we will

focus on small death-and-birth rates, p � 1.

DEGREE DISTRIBUTION, PATH LENGTH, AND CLUSTERING
Once the network has reached a stationary state, one can
characterize the resulting network by its degree distribution
P(k). Results of numerical simulations for different values of p
are shown in Figure 2. The number of acquaintances a node
can collect is limited by its finite lifetime corresponding to the
cutoff of the degree distribution at high k. With p � 1, the
dynamics are dominated by the transitive linking process (i)
giving rise to a power-law decay over a certain range which
increases with decreasing p. For larger values of p, the Poisso-
nian death-and-birth process (ii) competes with the transitive
linking (i), which leads to a stretched exponential range in the
distribution until the Poissonian dynamics of (ii) dominates.
Depending on the death-and-birth rate p, the above model is
able to generate degree distributions covering scale-free and
exponential regimes all being observed in real-world networks.
For sufficiently large graphs, these distributions solely depend
on p, the single free parameter of the model. Experimental
data suggest low values of the death-and-birth rate, p � 1,
such that the two time scales of network dynamics are well
separated.

The average shortest path length l is calculated directly
from the stationary networks and shows a logarithmic scaling
with system size [17]. Using the data of Table 1, the values l	 �

1.59 and lrand � 1.77 are calculated for p � 0.0025. Similarly,
the average shortest path length of our model yields the very
low value of l � 2.38. This, together with the logarithmic scaling
of l, verifies that networks evolved by the simple rule of transitive
linking meet the first requirement of small-world behavior.

Applying definition (1), the clustering coefficient C can
be easily related to the mean degree �k� and the birth-and-
death rate p [17]:

FIGURE 1

The basic mechanism of the network model. A new link is formed by
a randomly chosen individual (gray) introducing two of its acquain-
tances, that have not met before, to each another (transitive linking).
If the chosen person has less than two acquaintances he introduces
himself to another person which he picks out at random (solitary
linking). The size of the figures corresponds to their respective degree.

FIGURE 2

Degree distributions P(k) for different values of p. The degree distri-
bution shows power-law behavior for small p with an exponent of 1.35
(p � 0.0025, N � 7000). The distribution is largely insensitive to
system size N with the cutoff being caused by the finite age of nodes.
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1 � C � p��k� � 1�. (4)

As can be calculated from Table 1, Eq. (4) yields the same
values of the clustering coefficient C, which are obtained
numerically for different values of p. As required for the
second small-world property, the clustering is far higher
than for a random network. Moreover, the observed clus-
tering C is not as strongly dependent on the mean degree as
the respective values C	 and Crand, which is directly ex-
plained by Eq. (4). Altogether, this results in pronounced
small-world behavior of the presented model.

DISCUSSION AND CONCLUSIONS
The example of the SPIRES coauthorship network demon-
strates how our model can be applied to a social network in
the dynamically stationary state. For the regime of small
turnover rates p � 1, small-world properties and scale-free
behavior of the coauthorship network are reproduced by
our model. Applying the logarithmic scaling for l, the aver-
age shortest path length of the model is in accordance with
the experimental value. The clustering coefficients agree,
too, and the model exhibits a scale-free degree distribution
similar to the real-world network. Furthermore, this model
provides a suitable framework for the study of other small-
world networks, with exponential or broad degree distribu-
tions in particular. This is further confirmed by the fact that
the results presented here are not altered when a small
amount of noise is added to the link forming process.

In conclusion, the model presented here provides a
framework for the study of complex social networks inter-
polating between networks with scale-free and exponential
degree distributions. The small-world properties of high
clustering and small mean shortest path length, observed in
may real-world systems, are achieved by the local rule of
transitive linking. The statistical and topological properties
of the network depend on the single free parameter of the
model, the turnover rate p, which can be related to the rate
of nodes entering and leaving the network in the stationary
state. Complex networks are sometimes viewed as the

“backbone” of a complex system. Revealing the basic build-
ing mechanism for a broad class of social networks adds to
the understanding how these skeletons can emerge from
local dynamical rules.
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TABLE 1

Clustering Coefficient C (p: birth-and-death rate, N � 7000)

p �k� �k2� C C	 Crand

0.04 14.9 912 0.45 0.036 0.0021
0.01 49.1 13744 0.52 0.29 0.0070
0.0025 149.2 99436 0.63 0.43 0.021

C 	 is an estimate for the average clustering coefficient of a network with
identical degree distribution P (k ), but without transitive linking. Crand is the
clustering coefficient of a random network with same size and constant
linking probability.
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