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Economic aggregation

A fundamental  problem in economic theory is the relation between the actions of individuals,  households
and firms, which produce,  consume, buy, and sell, and the social  phenomena these actions generate, such
as markets and prices.  We apprehend economic reality largely through statistical  measures,  such as GDP,
employment, and price indices, which aggregate individual actions and transactions.

Every  economic  theory  must  propose  a viable  conceptual  and  methodological  relationship  between these
levels.  Since  what  we  observe  are  largely  statistical  aggregates,  some  theories  propose  relations  directly
between  aggregates,  such  as  aggregate  consumption  functions  or  Phillips'  curves.  Under  what  circum-
stances  are  we  justified  in  reasoning  in  this  way?  Must  valid  relations  among  aggregates  be  rooted  in  a
rigorous analysis of individual behavior (micro-foundations)?

 « ▸  3 of  22

Aggregation, explanation and prediction

One  reason  for  economics'  preoccupation  with  these  issues  is  the  common  observation  that  statistical
aggregates  are  much  stabler  and  more  regular  than  individual  behavior,  due  to  the  effects  of  the  Law of
Large  Numbers,  and  therefore more amenable  to mathematical  explanation.  Furthermore,  economists  and
the important  consumers  of the  knowledge they produce,  such  as politicians  and the educated  public,  are
often more interested in aggregates such as economic growth rates, employment rates, and the like than in
explanations of individual behavior.
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Statistical self-organization in thermodynamic and economic systems

Thermodynamic  systems  tend  to  a  statistical  equilibrium  with  well-defined  emergent  properties  such  as
pressure  and  temperature.  The  second  law  of  thermodynamics  asserts  the  strong  stability  of  this  type  of
statistical  equilibrium (maximization  of entropy)  in thermodynamic  systems. It  is the unique definition  of
entropy in these systems that allows us to link their aggregate properties directly through a state function.
When we know the volume and energy of a given fluid system, we also know its temperature and pressure.
This was the first type of self-organization that physicists understood clearly. 
Marginalist  economics  was an  attempt  to  apply  physical  ideas  of  equilibrium  to  economic  exchange  and
production.  Economists  expected  to  be  able  rigorously  to  produce  the  same  kind  of  linkage  between
macro-aggregates  that  characterize  classical  thermodynamic  systems.  Expressions  such  as  MV  =  PT  for
the relations among the money supply, velocity of money, price level, and transactions reveal this underly-
ing program.
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Economic agents

The neoclassical or marginalist economic agent is defined by a well-behaved preference ordering represent-
able  by  an  ordinal  utility  function  u@xD.  The  gradient  of  the  utility  function  u£ @xD  represents  the  relative
offer prices  at which the agent will trade commodities.  Two agents with different relative offer prices can
find a mutually advantageous voluntary exchange. An equilibrium of a system of such agents is an alloca-
tion  of  commodities  at  which  no  further  voluntary  exchanges  are  possible  (the  Pareto  set).  (Walrasian
equilibria  constitute  a  small  subset  of  the  Pareto  set.)  Neoclassical  economic  agents  thus  behave  exactly
like equilibrated thermodynamic subsystems interacting with each other.
The existence of at least one economic equilibrium is assured if there is an economic problem of scarcity.
The  stability  of  the  economy  toward  the  equilibrium  set  is  robust  given  any  mechanism  of  voluntary
exchange. The equilibrium set, however, is generally large and indeterminate.
Quasi-linear  economies  in  which  all  agents'  utility  (or  profit)  functions  can  be  written  as
uj @xj D = x0

j + uêê j @xêê j D where  x0  is  the  same  good  (wealth)  for  all  agents  also  have  well-defined  entropies
S = ⁄ j uêê j @xêê j D  maximized  on  their  equilibrium  set.  In  these  economies  the  marginal  utility  of  wealth  is
constant,  and  changes  in  holdings  of  wealth  absorb  all  the  income  effects.  The  micro-foundation  of
Keynesian economics is a quasi-linear economy.
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Indeterminacy of equilibrium in general economies

Figure 1
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The movement from non-equilibrium endowments to equilibrium (the Pareto-set) in economies is irrevers-
ible, non-unique, and indeterminate.
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Indeterminacy of equilibrium in quasi-linear economies

Figure 2

xê

x0

A

B

In  quasi-linear  systems,however,  the  prices  and  allocation  of  the  non-linear  goods  are  invariant  in  the
equilibrium set, and this degeneracy makes these properties of the economy determinate.
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Path-dependence in complex systems

We can see in the case  of general  economies  where the marginal  utility of wealth changes along the path
from  non-equilibrium  endowments  to  the  equilibrium  set  that  the  final  allocation  and  prices  of  all  goods
are indeterminate.  It  was to address  this problem that Walras  introduced the fiction of the auctioneer  and
Edgeworth the device of recontracting,  in the hope (which turned out to be wrong) that the Walrasian set
of equilibria reachable by recontracting at which the value of agents' final bundles is equal to the value of
their initial endowments would be unique and therefore determinate.
In fact, economists  stumbled on the phenomenon of path-dependence,  which caught the attention of most
physicists  only  much  later.  The  reason  that  simple  thermodynamic  systems  have  statistically  self-orga-
nized  equations  of  state  is  that  they  have  no  memory  of  the  irreversible  path  through  which  they  reach
equilibrium.
Physicists attack this problem using the methods of statistical mechanics, the combinatorial analysis of the
micro-states of a thermodynamic system consistent with its macro parameters such as energy and volume.
This method is not available to study the micro-structure of economic agents.
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Walras' attempt to define unique economic equilibrium

Walrasian  economics  attempts  to  resolve  the  problems  of  the  indeterminacy  of  the  robust  and  simple
definition  of  equilibrium by arbitrarily  choosing one  path of exchanges  from an initial  endowment  to the
contract  set.  The Walrasian  idea  is  that an equilibrium (in  the sense above)  is characterized  by particular
relative  prices  (common  to  all  the  agents),  and  to  use  these  same  prices  to  define  the  path  of  exchanges
leading to equilibrium.  This leads to a backward logical situation,  since we need to assume the answer to
the problem (which equilibrium the economy will reach) in order to analyze the problem itself (what path
will  the economy follow from its  initial  endowment  to equilibrium).  Indeed,  this  logical backwardness  in
Walrasian  reasoning  led  in  the  twentieth  century  to  a  tremendous  mathematical  complication  of  equilib-
rium logic.
In  order  to  carry  out  the  Walrasian  program  we  must  define  a  Walrasian  equilibrium  as  an  equilibrium
whose prices give the same value to each agent's endowment and her final commodity bundle (that is, keep
the agent on her budget constraint). If we knew these prices to start with, we could plausibly suppose that
the  economy  would  find  this  equilibrium  through  a  set  of  exchanges  at  precisely  the  equilibrium  price
ratios.  The question is how do we know what  these prices are before the actual  market  process has taken
place?
The question of the existence and stability of Walrasian equilibrium bristles with mathematical difficulties
and  paradoxes.  In particular the question of finding a robust  stability in equilibrium prices has  remained
elusive,  and  the  issue  of  the  existence  of  Walrasian  equilibrium  has  been  settled  only  by  introducing
powerful abstract mathematical principles into the argument which have no real economic foundation.
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Non-equilibrium phenomena

Many  important  phenomena,  including  life  itself,  cannot  be explained  as features  of entropy-maximizing
thermodynamic equilibrium. From the thermodynamic point of view, these phenomena take place far from
equilibrium.  They  are typically  path-dependent,  in that  the  further  evolution  of the  system depends  criti-
cally on the path it took to reach its current state, not just on the state itself. The analysis of these phenom-
ena requires some method that can address their detailed dynamics.
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Equilibrium, self-organization, and complexity

Classical  thermodynamic  systems  relax  to  equilibria  that  are  statistically  self-organized  and  determinate.
Their  equations  of  state  (entropies)  represent  the  interaction  of  their  macro-aggregates   The  complexity
program broadly speaking seeks to extend this type of analysis to path-dependent non-equilibrium systems
by  finding  other  forms  of  self-organization  that  are  stable  or  quasi-stable  in  such  systems.  Complexity
theory  is  in  this  sense  a  branch  of  thermodynamics,  which  studies  the  generalization  of  thermodynamic
methods  to  path-dependent  non-equilibrium  systems.  The  influence  of  this  methodological  program  on
economics in the last sixty years has been immense.
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John von Neumann and automaton theory

The key figure in the development of the thermodynamic program to embrace non-equilibrium path-depen-
dent  systems  and  to  address  economic  problems  was  the  mathematician  John  von  Neumann.  von  Neu-
mann's first attempt to address this problem, game theory in the pre-Nash form, gave a satisfactory determi-
nacy in zero-sum games,  but  proved incapable of addressing  non-zero sum games.  von Neumann viewed
Nash's  "equilibrium"  approach  to  non-zero  sum  games  as  unlikely  to  produce  determinate  results,  and
devoted  the  last  years  of  his  life  to  the  study  of  automata,  abstract  representations  of  entities  capable  of
complex  interactions.  Much  of  the  foundation  of  complexity  theory  lies  in  the  theory  of  automata.  von
Neumann's  program  was  to  derive  emergent  properties  of  interactive  systems  of  automata  from  general
properties of the automata themselves at various levels of sophistication.
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Characterizing complex systems dynamically

Dynamical systems are characterized by their stability and corresponding attractors. The simplest class of
dynamical  systems have unique,  asymptotically  stable equilibria  with point attractors.  These systems tend
to a unique state from any initial conditions. Conventional economics has been preoccupied with the effort
to represent  complex economic interactions  in this form. The second simplest  class of dynamical  systems
converge  asymptotically  to periodic  motions  with an attractor  like  a  limit  cycle.  Much of  Richard  Good-
win's  pathbreaking  work  addresses  economic  systems  that  behave  in  this  way.  The  trajectories  of  both
these types of system tend to converge dynamically over time, making it possible to predict their evolution
with high precision from imperfectly measured initial conditions.
A third  class  of  dynamical  systems  are  chaotic  systems,  in which  trajectories  diverge  over  time.  Chaotic
systems have strange attractors,  fractal  self-similar  sets towards which they converge,  but on which they
diverge.  The  dynamic  divergence  of  chaotic  trajectories  makes  it  impossible  to  predict  their  evolution
precisely  from  imperfectly  measured  initial  conditions,  but  it  is  possible  to  characterize  their  long-run
behavior statistically. While it is difficult to predict the exact position of a chaotic system on its attractor at
a future point in time, it is often possible to predict the amount of time the system will be observed in any
portion  of  its  attractor  quite  accurately.  Classical  thermodynamic  systems  such  as  gases  are  chaotic
dynamical systems in this sense.
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Adaptive, self-organizing systems far from equilibrium

Complex  systems  that  can  maintain  themselves  far  from  dynamical  or  thermodynamic  equilibrium  in
apparent defiance of the Second Law of Thermodynamics, such as the living cell, ecologies, the brain, and
capitalist  economies,  cannot,  viewed  as  dynamical  systems,  be  members  of  any  of  these  three  basic
classes.  In  stable  dynamical  systems  structures  disappear  by  being  compressed  toward  the  equilibrium
attractor,  while  in  chaotic  dynamical  systems  structures  disappear  by  exploding  into  all  parts  of  the
attractor. Complex systems must lie on the boundary between stable and chaotic systems, so that structures
in their initial conditions can evolve without being destroyed. Like chaotic systems, complex systems may
be stable in some dimensions (and chaotic in others) giving rise to self-organization  either of a determinis-
tic or statistical  variety.  It is possible to understand the self-organizing dimensions  of complex dynamical
systems without assuming that their overall trajectories are deterministically or statistically predictable.
Commodity economies are a good example. There are in the short run highly stable aspects to commodity
economies,  such  as  the emergence  of  prices  (due to short-run  entropy maximization),  the  equalization  of
profit  rates,  and  the  like.  There  are  also  stable  and  quasi-stable  evolving  structures  (institutions)  whose
exact  trajectory  cannot  be  predicted.  It  is  much  more  likely  that  we  could  predict  the  existence  of  asset
markets and speculative formation of asset prices a hundred years in the future than what technologies will
be or what the relative size of different sectors of an economy will be.

 « ▸  15 of  22

ComplexityVisionSlides.nb 8



Cellular automata

Cellular  automata  are  a particularly  simple  class  of automata  that  live  on a  graph or network.  At least  in
the  simplest  cases,  all  the  nodes  of  the  lattice  are  identical  "cells"  which  can  take  on  a  finite  range  of
"states". To begin with I will consider cellular automata that live on a one-dimensional lattice (the integer
numbers, or the integer numbers modulo some number n,which makes the integer number line effectively
into  a circle  by making cell  n  the  immediate lefthand  neighbor of cell  1.  But  there are some well-known
higher-dimensional  cellular automata, such as John Conway's Game of Life.The Game of Life is a two-di-
mensional  lattice  in which each  node is a cell  that can be in one of  two states,"alive"  or "dead". As time
passes (usually in cellular automata in discrete fashion,like the ticking of a clock) a dead cell comes to life
if it is surrounded by exactly 2 or 3 living cells, and a living cell continues to live only if it is surrounded
by exactly 2 living cells. It has been shown that there is a particular starting configuration for the Game of
Life that is a universal computer, in that it will carry out any computation a general Turing machine can.
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Representation of cellular automata

One-dimensional  cellular  automata  are  defined  by  the  number  of  states,  k,  which  Wolfram  often  calls
"colors",  and the radius or range of the neighborhood, r, which determines which neighboring  cells affect
each  cell.  The  simplest  cases  is  when  k = 2,  and  r = 1,  so  that  there  are  only  two  states,  and  each  cell
changes according the state of its immediate neighbors and itself.

We can visualize the evolution of a 1-dimensional cellular  automaton by graphing its states (using colors)
across  a  number  of  pixels,  and  then  moving  down  as  time  moves  forward.  For  example  the  Rule  30
cellular  automaton  (with  two  states  and  a  range  of  1)  produces  this  type  of  output   on  random  initial
conditions.

Rule 90 produces this type of output:
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Complexity Classes in Cellular Automata

Rule 30 produces a dense, apparently constantly  changing, expanding pattern. Rule 90, on the other hand,
produces a highly regular, repetitive pattern. These are examples of Class 3 and Class 2 cellular automata,
respectively.  Class 2  cellular  automata  produce  regular,  periodic  patterns  in both  space  and  time  that are
equivalent  to  periodic  or  limit-cycle  motions  of  dynamical  systems.  Class  3  cellular  automata  produce
highly mixed, constantly varying output and are equivalent to chaotic dynamical systems. Class 1 cellular
automata  rapidly  converge  to  a  single  state  both  in  time  and  space,  and  are  equivalent  to asymptotically
stable dynamical systems, as the following example (Rule 128) shows:

Class 4 cellular automata, however, exhibit quite a different type of behavior. It turns out that k = 2, r = 1
cellular automata are incapable of Class 4 behavior, so the "simplest" example has k = 3, r = 1:
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There  are  several  remarkable  and  thought-provoking  features  of  this  Class  4  cellular  automaton.  First,
unlike Class 1 and 2 CAs, Class 4 does not settle down into a single state or repetitive pattern. On the other
hand, the structures generated by a Class 4 system are not explosive like those of Class 3, and, in particu-
lar,  sometimes  highly  elaborate  structures  collapse  into  much  smaller  ones.  Class  4  CAs  can  maintain
structures for long periods of time, and allow them to interact. Thus the Class 4 cellular automaton, though
it is an extremely simple construct, provides us with a very abstract model of complex interactive systems.
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Computation and complex systems

Complex systems have several important computational properties:  computational irreducibility, computa-
tional replicability, computational universality, and  computational tractability.
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Computational irreducibility of complex systems

It is impossible to simulate the behavior of a complex system with a system less complex than itself. This
implies  that  the  only  way  to  study  the  evolution  of  a  complex  system  is  to  allow  it,  or  an  equivalent
system, to evolve over time. 
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Computational replicability of complex systems

Many complex systems, such as cellular automata, however, can be generated by the application of simple
rules  of  component  behavior  and  interaction.  Thus  the  evolution  of  a  complex  system  which  is  exactly
represented  in an  algorithmic  model  can  be  reproduced  exactly  in  different  runs  of  a  computer  program.
The problems associated with  understanding  the behavior  of complex  systems are not,  as a result,  funda-
mentally problems of approximation.
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Computational universality of complex systems

There  is  strong  evidence  (for  example,  from  Wolfram's  work  on  cellular  automata  and  related  systems)
that systems as complex as Type 4 cellular automata are all capable of acting as Turing machines,  that is,
as universal computers.  Thus any complex  system, viewed algorithmically,  can, in principle,  emulate any
other  complex  system  (though  different  representations  of  the  same  system  might  involve  immensely
varying transparency and time-efficiency of the programs involved).  This property of complex systems is
particular  important for the economic representation of expectations,  since human beings interacting in an
economy  are  themselves  complex  systems  making  an  effort  to  understand  and  predict  the  behavior  and
interaction of other individuals, also complex systems.
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Computational tractability of complex systems

The main tool  for the exploration of the properties of complex systems is computer  simulation.  With this
methodology come a huge advantage and an important vulnerability.
The  advantage  of  representing  complex  systems  such  as  economies  explicitly  as  simulation  programs  in
computers  is  that  there  is essentially  no limit  on  the type of  behavior  that  can be represented.  Analytical
methods  in  economics  often  force  researchers  to  make  simplifying  assumptions  (such  as  convexity  of
production  sets,  reducibility  of  economies  to  representative  agent  form  and  the  like)  to  assure  tractable
closed-form representations  of outcomes. Simulation programs are not limited in this way, since adding a
line of code to represent an exception or addition to agent behavior in certain circumstances is straightfor-
ward.
The  vulnerability  of  simulation  methods  lies  in  the  difficulty  of showing  how general  and  representative
the results of particular simulations  are for a broad class of models.  If we can demonstrate business-cycle
type fluctuations  in the interaction of investing firms represented by one algorithm, for instance,  how can
we  be  confident  that  similar  interactions  will  produce  similar  cyclical  fluctuations  in  similar,  but  not
identical model scenarios?
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