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This paper applies the principles and concepts in social networks to designing a decentralized, survivable
and adaptive resource discovery approach in complex grid systems. The simulation results show that our
approach can: (i) form relationship among clusters and significantly improve the discovery performance;
(ii) adapt well to different resource distributions and user request patterns; (iii) survive from the changes
of dynamic environments, including variable-biased user requests and agent amounts as well as partial
failure of the agents. Our approach is not only a beneficial experience on dynamic resource discovery of
complex grid systems, but also a further attempt to exploit one type of complex systems-inspired
approach to build useful services in another type of complex systems.
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1. Introduction

A grid (Foster et al. 2002), defined as a coordinated resource-sharing and problem-solving

environment in dynamic, multi-institutional virtual organizations (VOs), is a multifaceted

system with many components and innovative features. Next-generation grid systems are

heading for globally collaborative, service-oriented and live information systems (De Roure

et al. 2003; Cannataro and Talia 2004). The next-generation grid systems have the hallmarks

of complex systems (Ottino 2004), namely, adaptation, self-organization and emergence: no

one designed the whole grid or the metabolic-like processes within users and resources. For

example, by focusing on one instance of this kind of grid systems, namely file-sharing

systems, and examining user behaviours, a self-organizing “small world” pattern can be

discovered (Iamnitchi et al. 2004).

In such a complex system, resource discovery is a critical activity: given a description of

desirable resources, a discovery mechanism can return a set of (contact addresses of) resources

that match the description in a dynamic grid environment. Resource discovery is challenging
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owing to: (i) the potentially myriad resources and users; (ii) highly heterogeneous resource

types (e.g. computer power, network bandwidth and online instruments) and highly variable

resource attributes (e.g. central processing unit (CPU) load changing); (iii) highly spontaneous

sharing characteristics (e.g. users and resources join and leave the grid frequently); and (iv)

unbalanced resource distribution and variable user request patterns. So, it is destined that the

discovery activity is lack of global centralized authority because aggregation of multiple VOs

does not naturally support a central point of control. More importantly, the discovery

mechanism needs to exhibit autonomous, flexible behaviours for surviving and adapting to

uncertain environment factors (such as different resource distribution and variable user request

patterns) (Cannataro and Talia 2004).

However, traditional resource discovery services such as directory services have not

addressed all of the above challenges of dynamic resource discovery. For example, the

Globus’s monitoring and discovery service (MDS) (Czajkowski 2001) is just a centralized

service that realizes the tree-like metadata management. Therefore, it is valuable to seek

discovery approaches in other fields.

Social networks, another type of vast and complex systems, are a natural way for people to

go about seeking information or resources. There is evidence that search depending on

acquaintances is remarkably effective in large social networks (Milgram 1967). This reveals

not only that short paths exist (among people Watts and Strogatz 1998; Strogatz 2001) but

also that ordinary people can find these short paths (Kleinberg 2000). Also, some researches

have explained social network searchability (Watts et al. 2002). These studies demonstrate

that social relationships among individuals can provide a fully decentralized, naturally

adaptive, survivable search approach. As such, we study an approach that places the

intelligence on the grid entities, enabling the users to locate desirable resources based on

social network-like collaborations. Agent-oriented computing (Jennings 2001) provides a big

possibility of implementation for this solution. Our previous work (Gao et al. 2004) has

viewed the grid as a number of interacting software agents and applied some key

mechanisms of natural ecosystems to build a novel grid middleware system named

ecological network-based grid middleware (ENGM) for solving some issues that complex

grid systems face. The work reported in this paper presents further results.

The current paper gives out our further attempts on how to impose the ability of solving

complexity deriving from a type of natural complex systems on complex grid systems. We

originally apply the key mechanisms and properties of social networks to design a resource

discovery approach. We have developed a simulator and modelled some relevant scenarios to

evaluate our approach. The results demonstrate that, via our solution, the survivability and

adaptation to dynamic grid environments can emerge from autonomous agents. The rest of

the paper is organized as follows. The social network-inspired discovery approach, including

its framework, key models, and algorithms, is demonstrated in details in Section 2.

A simulation implementation and the result analysis are presented in Section 3. Finally, we

conclude our research efforts in Section 4.

2. A social network-inspired discovery approach

This section first provides a brief overview of the ENGM system (Gao et al. 2004), on which

a basic discovery framework for the complex grid systems is set up. Then, this section

proposes a resource discovery approach inspired from observation on social networks.
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2.1 The ecological network-based grid middleware

We presented a three-layered architecture of the ENGM system as shown in figure 1.

(1) Heterogeneous and distributed resources consist of different types of resources

distributed in grids. An ENGM platform can run on a distributed system built in a

network node.

(2) ENGM provides the services to support a common set of applications in grid

environments. It is made up by ENGM functional modules, ENGM core services, grid

agent survivable environment, emergent grid common service and grid pluggable

developing kits. (a) ENGM functional modules layer deals with the management of

networks and systems; (b) ENGM core services layer provides a set of general-purpose

runtime services that are frequently used by agents, such as community niche sensing

service; (c) Grid agent survivable environment is runtime environment for deploying

and executing agents; (d) Emergent grid common services layer is kernel of middleware

and responsible for resource allocation, information service and so on. These common

services are emerged from the interactions among autonomous agents and their

environment. (e) Grid pluggable developing kits layer provides pluggable toolkits for

developing environment, containing low-level function developing, agent creation and

so on.

(3) Grid applications for virtual organizations use developing kits and organize certain

agents and common services automatically for special purpose applications.

The discussion on design philosophy, layer analysis, functional merits and message-based

communication of the ENGM system is beyond the scope of this paper. Readers are referred

to work by Gao et al. (2004) and Gao and Ding (2005).

Figure 1. The architecture of ENGM.
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2.2 A wide-area resource discovery framework based on ENGM system

Every grid resource supplier maybe has one or more servers that store and provide the access

to local resources. We regard these servers as nodes. An ENGM platform-based wide-area

resource discovery framework is set-up on these nodes. Furthermore, some nodes can form a

community niche (Niche in ecology is defined as the site where organisms of a species can

live, and the function performed by the species. Here, a community niche refers to a logically

defined area where agents in a community can learn.) An agent may sense which agents are

in the niche, what services they perform and which resources it can access. Here, a niche can

be regarded as a VO.

Agents in this framework fall into two categories: grid user agents (GUAs) and grid service

agents (GSAs). A GUA represents a kind of user tasks. GSAs are used to comprise the main

components of ENGM, such as grid information service agent (GISA). An agent is represented

on its unit function, which is defined as a metadata structure. The attributes in the metadata of

an agent include agentID (its global unique identifier), agentAddress (its location),

serviceType (its service type), serviceDescription (service description information), and

relationshipDescription (the information about its acquaintances, the agents that known by

this agent are called acquaintances). Besides basic information of its acquaintances (agentID,

agentAddress, serviceDescription and relationshipDescription of the acquaintances),

relationshipDescription of an agent still consists trustCredit (indication of reliability to

acquaintance) and collaborationRecord (collaboration history records with acquaintance).

At the beginning of the discovery, a GUA makes user’s search instructions into request

messages and sends them to a GISA in the local niche. The GISA responds with the matched

resource descriptions if it has them, otherwise it forwards the requests to another GISA

outside the niche until the request hit returns or request time exhausts. This process is shown

in figure 2. There is only one GISA in a niche. It is not feasible for a GISA to know all GISAs

in a wide-area grid. If GISA A knows a subset of all the GISAs, then it can communicate with

GISA B among them, and B delivers the request to one of GISAs it knows and so on.

Broadcast-type search strategies will lead to high bandwidth cost, scalability problem and

congestion constraints (Adamic et al. 2001). Therefore, a request is only passed onto one

GISA at each step in our framework.

Figure 2. Delineation of a simple discovery process.
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2.3 Proposed resource discovery approach

2.3.1 Properties of social networks. People often ask their acquaintances for interesting

items to obtain advice, which shows a kind of collaboration in the real world. Some key

properties of the collaboration draw our attentions.

2.3.1.1 Interpersonal communication

This performs well for propagating and seeking valuable information in a social

environment. Our approach is expected to form an interpersonal communication-based social

network among discovery agents (GISAs) where a self-organizing, adaptive and survivable

discovery emerges. A challenge is how to decide the right person to ask.

2.3.1.2 Autonomy of the individuals

Discovery entities in grid environments are necessary to implement autonomous decision-

making ability as individuals do in social networks. However, entities will not act to achieve

their group interests if there is no coercion to make them act so. Here, accountability, a

concept in human society, is introduced into the design of our approach. A GISA must be

responsible for its activities such as service provision and resource utilization.

2.3.1.3 Trust

This is an important social concept and present in all human interactions. If a person wants to

obtain advice, he will not ask all acquaintances but the reliable ones. If a person finds one of his

acquaintances is getting along with him, he will trust the acquaintance more. Otherwise, trust

less. A trust model is introduced to the discovery collaboration among GISAs.

2.3.1.4 Cluster

Individuals will cluster the social world through the long-term collaborations. In our

approach, GISAs with related resources will be located nearby one another in the relationship

network, facilitating resource discovery, which results into the clustering of relative GISAs.

2.3.2 A social network-inspired three-phase discovery approach. Based on the discovery

framework and observation on social networks, a three-phase discovery approach is

proposed: GISA relationship construction, request processing strategy and trust-based

reconstruction of relationship.

(1) GISA relationship construction is responsible for collecting and updating

information on currently participating GISAs and forming a relationship network.

A GISA joins the grid by contacting a member GISA. Contact addresses of a

member GISA can be learned via information sensing mechanism integrated in the

ENGM platform (Gao et al. 2004). Once a GISA is found, a relationship is

established. The GISA adds the new information to its relationshipDescription

attribute list. A GISA contacted by a joining member responds with its GISA

agentAddress attribute. Then, the joining GISA can access its information such as its

service type and decide to join the existing niche or not. Thus, a set of relationships

is built to form a social network over all GISAs. GISAs can update the changed

relationships of their acquaintances.

(2) Request processing strategy performs the search itself. A request message

contains the message ID, message type, information on a message originator and
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message forwarders, a set of parameters to specify attributes of the target

resources and a set of weights to describe the importance of each resource

attribute. When a GISA receives a request message, it first examines the message

ID to check whether it has seen the message before. If it has, it then discards the

message. Otherwise, it creates a new entry in a message-processing list. After

completing the list for the newly received request, it evaluates the request by

resource matching model and request forwarding model. Then, the GISA decides

to respond the request with its local resources, forward the request to its

acquaintances, or reject the request. It can both respond and forward the request.

Resource matching model and request forwarding model are given out as follows.

The resources held by a GISA and the requested resources are both modeled as

an attribute vector.

(a) Resource matching model. Given a request vectorR ¼ kr1; r2; . . .; rnl, a weight

vector W ¼ kw1;w2; . . .;wnl (where
Pn

t¼1wt ¼ 1) that indicates the importance

degree of each request attribute about R, and a grid resource vector

G ¼ kg1; g2; . . .; gnl, the matching strength between R and G is defined as:

MSvectorðR;W ;GÞ ¼
Xn
t¼1

MSsingleðrt; gtÞwt ð1Þ

where

MSsingleðrt; gtÞ ¼
1; gt satisfies rt

0; otherwise

(
ð2Þ

For example, if a single request attribute value rt represents “more than 128MB of

available memory” and a single resource attribute value gt stands for “256MB of available

memory”, according to equation (2), MSsingleðrt; gtÞ ¼ 1. The request originator will specify

a threshold við0 # vi # 1Þ for resource matching. If MSvectorðR;W ;GÞ $ vi, there is a

matching between R and G. For example, for a three-tuple vector, {MSsingleðr1; g1Þ,

MSsingleðr2; g2Þ, MSsingleðr3; g3Þ}¼ {1; 1; 0}, and W ¼ k0:5; 0:3; 0:2l. According to equation

(1), MSvectorðR;W ;GÞ ¼
P3

t¼1MSsingleðrt; gtÞwt ¼ 1 £ 0:5þ 1 £ 0:3þ 0 £ 0:2 ¼ 0:8.

If vi ¼ 0:8, there exists a matching. If vi ¼ 0:9, there does not. Grid users can set different

weight vectors in a request message to emphasize their desired resource attributes.

(b) Request forwarding model. When a GISA processes a request message, it not only

examines whether its local resource satisfies the request, but also decides which

acquaintance to forward by the calculation of the optimal forwarding strength.

Through trustCredit values with which a GISA labels its acquaintances, it relies on

some GISAs and mistrusts in other ones. In addition, information about similar

requests that user evaluated previously in collaborationRecord attribute may help

users get desired resources.

The forwarding strength that GISA Ai imposes on its acquaintance Aij is relative to

trustCredit and collaborationRecord. The optimal matching strength on requests in

collaborationRecord is defined as MSoptðR;W ;Rk
ij
Þ ¼ maxmk¼1MSvectorðR;W ;Rk

ij
Þ·dkij , where R

andW have the same meaning in resource matching model, Rk
ij
¼ krk1ij ; r

k2
ij
; . . .; rknij l is one ofm

request vectors that Aij previously has answered and/or forwarded, and dkij is a parameter in

½21=2; 1� that indicates the user evaluation on request vector Rk
ij
. Given a weight h to
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trustCredit and collaborationRecord, the forwarding strength that GISA Ai imposes on its

acquaintance Aij is defined as FSvectorðR;W ;Ai;AijÞ ¼ h�trusti;ij þ ð12 hÞ�MSopt
ðR;W ;Rk

ij
ÞÞ, where trusti;ij is a number in ½0; 1� representing trustCredit value that Ai has

on Aij .

The optimal forwarding strength FSoptðR;W ;Ai;Aik Þ ¼ maxnk¼1FSvectorðR;W ;Ai;Aik Þ can

help Ai decide which acquaintance to forward. Before Ai forwards the request message, it

will register its information in the message. Furthermore, Ai will specify a threshold ui
(0 # ui # 1 and usually ui # vi). When evaluating the resource request, if

MSvectorðR;W ;GiÞ $ vi, Ai will respond the request with local resources. Further,

if FSoptðR;W ;Ai;Aik Þ $ ui, Ai will forward the request message. Ai will discard the message

if it neither responds nor forwards the request.

In our approach, users are only required to decide three parameters: h, vi, and ui. The

effect of h will be studied in Section 3 to help users chose a reasonable one. vi and ui are

introduced into the proposed approach to bring GISAs an accountability mechanism. If a

GISA sets an ill-suited value of vi or ui, it will get a penalty for its unaccountable behaviors

that results in dissatisfied discovery. We use time to live (TTL) to describe the time limitation

of forwarding request. The GISA that matches a given search request may respond directly

back to the search originator as soon as they are available.

(3) Trust-based reconstruction of relationship makes the necessary preparations for a

more efficient search. This mechanism on the reconstruction of relationship can

contribute to resource discovery. It updates and strengthens the relationship

network by establishing and changing the trustCredit values among the GISAs.

On receiving a request hit, the request originator returns a defray message including a

collaboration record and a credit that stands for the user evaluation of the request hit. If the

relationship of a GISA does not contain the corresponding collaboration record, the

collaboration record including initial user evaluation, is added to relationshipDescription

attribute. A credit could be a reward or a penalty, which indicates that the degree of a user’s

preference to the received request hit. This message is propagated through the same path

where the discovery request has been originally forwarded. When an intermediate GISA on

the path receives message, it adjusts the trustCredit value of the relationship that has been

used to forward the original discovery request. trustCredit value is increased for a reward

(i.e. high degree of the request originator’s preference), and is decreased for a penalty

(i.e. low degree of the request originator’s preference). Given a credit gð21=2 # g # 1Þ that

contained in a defray message, GISA Ai updates the trustCredit value of Aij using the

formula:

trustþi;ij ¼

trust2i;ij ð1 2 g2Þ þ g2; g $ 0

trusti; ij
2 2 2 1

1þg

� �
; g , 0

8><
>: ;

where trust2i;ij is a number in ½0; 1� that represents trustCredit value that Ai imposes on Aij

before updating. Correspondingly, trustþi;ij is the trustCredit value after updating. We have

chosen the above formula with the purpose of remarking ratings rise slowly and fall quickly.
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3. Simulation studies

3.1 Simulation set-up

To evaluate our approach, a simulator is developed on ENGM platform, which supports

pluggable functions and provides a generic easy-to-use programming Application Program

Interface (API).

3.1.1 Initial relationship network topology. We suppose that at each time there is only a

request message sent by a GISA and the same message can be sent only once by the request

originator during the entire simulation. Define that a cycle starts from a request message sent

by a GISA and ends when all the relevant messages disappear in the system, and 100 cycles is

a generation in the simulation.

In our simulated network, the nodes are GISAs and the edges connect pairs of GISAs that

know each other. The relationship network defined by the GISA relationship construction can

strongly affect discovery performance. Two characteristics, we think, must be well reflected

in topology generation: (a) Internet is the carrier of grids, with the increasingly growing

scale; (b) new nodes will preferentially connect to those nodes with more connections. To

follow them, we adopt Barabási and Albert’s method (Barabási and Albert 1999) for

topology generating. The generated topology follows power laws that can provide the

simulation of grid environments with basic referential standards. It should be pointed out

emphatically that the statistic results from domain level and router level also follow the

power law rule, and GISAs just play their roles at these two levels.

3.1.2 Resource distribution. In the simulation, the storage space in GISAs’ attributes is

supposed to be unlimited. Two thresholds involved, ui and vi, are respectively set to be 0.2

and 0.8. Actually, each GISA can make decision for deciding different values of ui and vi.

Here, our aim is to evaluate the performance of the proposed approach, so we make

simplifications. When there are the occasions of different resource vectors that meet the same

request, GISA will randomly choose one.

We make a set of common resources (contains 20,000 different resource vectors) and a set of

new-type resources (contains 2000 different resource vectors that are completely different

from common resources). We experiment on two resource distribution strategies. (a) Balanced

distribution strategy: initially each GISA provides 3–5 resource vectors, which are randomly

picked out (can be repeatedly picked out) from the common resource set. (b) Unbalanced

distribution strategy: a few number of GISAs (about 8%) provide most (about 80% of the total)

of the resource vectors, while the other 92% of GISAs share 20% of the resources. Here, the

resource vectors come from common resource set. In both strategies, local resource vectors

held by GISAs are replaced randomly with 100 new-type resource vectors per generation.

3.1.3 User requests and user evaluation. Requests are initiated at a fixed percentage of

randomly selected GISAs and contain resource vectors. The resource attributes of each

request have the same weights. In network environments, the request distribution complies

with Zipf distributions (Zipf 1949). For simplification, we suppose that users are interested in

a particular subset of the request vectors. Two user request patterns are studied: (a) unbiased
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user request scenario (asking for the total resource request vectors randomly) and (b) biased

user request scenario (using the probability 0.8 to ask for about 5% special request vectors of

the total resource request vectors available in the simulation network). In addition, we

randomly assign a fixed threshold Ei (a random value between 0.6 and 1) to each GISA for

indicating the satisfaction level of a request originator. On receiving a request hit, the request

originator will examine the matching degree of responded resources. If the matched result is

greater than or equal to Ei, the request originator returns the defray message with a credit

g ¼ 0:1 to the resource responder; otherwise, the credit g is equal to 20.1. The GISAs in the

credit-propagated chain will be given the same amount of credit g.

3.2 Simulation results

The simulation evaluates the survivability and adaptability of the approach in the following

three aspects: (a) resource distributions; (b) user request patterns; and (c) the number and

reliability of GISAs. Also, we evaluate discovery performance distinctions affected by

different values of h (i.e. h ¼ 0; 0.25, 0.5, 0.75, 1). Considering the randomness in the

simulations, we repeat the experiments multiple times. The results given out are the averaged

values of measurements.

We first experiment on discovery performance (as measured in number of hops that stands

for node amount) with different h values in different resource distributions (balanced and

unbalanced) and user request scenarios (biased and unbiased), as shown in figures 3 and 4.

We also give out the performance measurement of a random forwarding approach used as a

comparison with our approach in figure 3. Within unbalanced resource distribution and

biased request scenario, we further evaluate the effect of the dynamic user requests on the

discovery. The user requests (i.e. the biased user request set) are gradually changed in the

following way: first, to set ten generations as an interval, then, to change the biased user

request set with the ratios as j ¼ 0 (no changes), 0.002, 0.02, 0.2 and 1 (the user requests

completely change) at the beginning of each interval. The results are shown in figure 5(a).

To evaluate the effect of the number of GISAs on discovery approach, the simulation is

conducted with the numbers from 1000 to 10,000 in different conditions. Figure 5(b)

Figure 3. Average number of hops per request with different resource distributions in unbiased user request
scenario. (Left: balanced. Right: unbalanced). The number of GISA is 5000. The value of TTL is 200.
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demonstrates such a result in unbalanced environment for biased user request pattern in 50

generations. We experiment on the adaptability of the approach in the condition where

GISAs are likely to be unavailable. We adopt the same simulation environment as figure 5(b)

to conduct a comparison. At each generation, we chose 1% of GISAs randomly in the

simulation and set them unavailable for discovery (they will be recovered available in the next

simulation generation). A measure of the adaptability to unreliable GISAs is measured as

D ¼
Nunreliable

hop 2 Nreliable
hop

Nreliable
hop

where Nunreliable
hop and Nreliable

hop are respectively, the average number of hops per request for a

certain number of GISAs in a static (all GISA are reliable) and dynamic scenario. The

average result equals to

1

N

XN
i¼1

D

where N ¼ 10 represents for ten experiment points on the number of GISAs with each value

of h for all the numbers of GISAs are, respectively, 0.0373, 0.039, 0.0403, 0.0302 and

0.0429.

3.3 Analysis of simulation results

3.3.1 Clustering of discovery relationships. As shown in the figure 3, the random

forwarding has the lowest efficiency though it is low-cost (stores no discovery information in

GISAs). Its average number of hops in 50 generations with balanced distribution strategy is

137.26 hops, which is about 7.5 times of that as h ¼ 0 and 1.8 times of that as h ¼ 1 in the

same experiment environment. With unbalanced distribution strategy, the average number of

hops is 148.75, which is about 9.5 times of that as h ¼ 0 and 3.7 times of that as h ¼ 1 in the

same experiment environment.

Figure 4. Average number of hops per request as a function of simulation time within biased user request scenario
in two environments (Left: balanced. Right: unbalanced). The number of GISA is 5000. TTL value is set to 100.
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The approach can improve the discovery performance evidently and adaptively. At the

beginning of simulation, relationships are random, and discovery performs poorly. Many

hops need to be visited to hit the target GISA. As some simulation cycles elapse, GISAs

gradually obtain many relationships similar to themselves, leading to improved performance

in discovery process. We find that such improvement results from the clustering of vector-

matched GISAs. With enough hops, GISAs are likely to meet some relative resource clusters

and enter the clusters to find the required resources. The clusters have not formed in the

process of random forwarding simulation, and the discovery will go on aimlessly until it

meets the matched GISA. The comparison results have proved that our approach can form

clusters and improve the performance.

3.3.2 Effects of resource distribution. Generally speaking, the discovery has better

performance in a highly unbalanced environment than in a balanced environment, as shown

in figures 3 and 4. When a few number of GISAs hold most of the resources and so have

rather more relationships, it is easier for them to form clusters.

Relative to the other h, the condition with h ¼ 1 (discover totally according to trustCredit

value) takesminimumoverhead costs, but almost the lowest discovery efficiency.Whileh ¼ 0

(discover totally according to collaborationRecord), it is with the highest discovery efficiency,

but not greater consumption. In unbalanced environments, the efficiency of the trustCredit-

based discoveries (with minor value of h) is much better than that in balanced environments.

3.3.3 Influence of user request scenario. Comparing figure 3 with figure 4, we can see that

as a whole, the performance of our approach within biased request scenario is better than

within unbiased request scenario. Especially, the performance with h ¼ 1 has evidently been

improved, which means that discovery fully according to trustCredit value can better support

the special user request scenario. It shows very good efficiency in the unbalanced

environments, where its response latency is almost half of that in the balanced environments.

Similarly, the performance in the unbalanced environments has been improved comparing to

Figure 5. (a) The performance impacted by the varying user requests in unbalanced environment for biased user
request patterns. GISA amount is 5000 and TTL value is 100. As the time is 10, 20, 30, 40 and 50 generations, the
variable probabilities of user requests are 0, 0.002, 0.02, 0.2 and 1, respectively. (b) The performance with the
increase of the number of GISAs in unbalanced environment for biased user request patterns. TTL value is 100.
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that in the balanced environments as h equals 0.75, 0.5 and 0.25. Relative to the unbalanced

environments, when h ¼ 0, the performance is better in the balanced environments.

When changing biased user requests in an unbalanced resource environment, we find the

performance of our approach first becomes good, then gradually turns bad, as shown in figure

5(a), The explanation is: originally, there is enough randomness in the relationship network

to greatly improve the performance and specific requests will strengthen the clusters.

However, as the GISAs acquire more relationships similar to some specific user requests,

randomness is lost. As the requests are changed, the performance degrades greatly (As the

time goes, the discovery will acquire good adaptability again.) As shown in figure 5(a), the

discovery with h ¼ 1 performs best when there are little or no changes in user requests and

performs worse as the requests become more dynamic. During the whole process of

simulation, the discovery with h ¼ 0 performs best.

3.3.4 Influence of the number and reliability of GISAs. For all network sizes in our

experiments, the discovery has obtained good performance, as shown in figure 5(b). The

discovery with h ¼ 0 performs predictably because its average number of hops per request

increases with raise of the number of GISAs. While discoveries with other values of h prove

to be slightly unpredictable in terms of performance. The experiment on adaptability to

unreliable GISAs of relationship network shows the performance of our approach in the

dynamic scenario is worse than that in the static scenario. However, the difference between

the static and dynamic scenarios appears relatively small, which suggests that our approach

could be survivable in the environment with unreliable GISAs.

4. Conclusions

We have originally applied the principles and concepts of social networks to the design of a

dynamic discovery approach. The simulation results show that our approach forms

relationship clusters and significantly improves the discovery performance. With balanced

and unbalanced distribution strategies, the minimum average numbers of hops in 50

generations are about 13.3 and 10.5% of that of a random forwarding approach in the

corresponding condition, respectively. The results also demonstrate the approach can well

adapt to different resource distributions and user request patterns, and survive from the

changes of dynamic environments as well as partial failure of GISAs. The performance

distinctions of different values of h in all experiments can help users better understand the

tradeoffs between overhead costs and performance, and chose the preferable parameters. Our

approach is a further attempt to exploit one type of complex systems-inspired approach to

build useful services in another type of complex systems.
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