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Networks everywhere

Food Web
from bacteria to human beings

World Trade Networks
among 28 OECD countries

Electric Power Network
nodes: generators, transformers

egdes: transformation lines
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Social Networks

• Acquaintanceship Networks (Rapoport, Milgram)
What is the probability that any two people se-
lected arbitrarily from a large population will know
each other?

• Hollywood Universe
From the shorest path from any actor to Kevin
Bacon, using the association rule.
Unlike society in general, film actor associations
are well documented.

• Collaborative graphs

Paul Erdős
(1913-1996)



Social Networks

Erdős Number

The Erdős Number Project
http://www.oakland.edu/grossman/erdosnp.html

E. n. 0 1 person
E. n. 1 502 people
E. n. 2 5713 people
E. n. 3 26422 people
E. n. 4 62136 people
E. n. 5 66158 people
E. n. 6 32280 people
E. n. 7 10431 people
E. n. 8 3214 people
E. n. 9 953 people
E. n.10 262 people
E. n.11 94 people
E. n.12 23 people
E. n.13 42 people
E. n.14 7 people
E. n.15 1 people
E. n.16 0 people

Average Erdős Number: 4.69



Social Networks

Hollywood Graph

429065 actors, 170479 films
Bacon numbers and their distributions

0 1
1 1465
2 109974
3 256183
4 56936
5 3932
6 477
7 69
8 27
9 1

average: 2.89
912 actors have smaller than average

Kevin Bacon



Social Networks

Social Network Analysis







Degree: the number of direct connections a node
has. In the network above, Diane has the most direct
connections in the network. She is a ’connector’ or
’hub’ in this network.



Social Networks

Social Network Analysis





Betweenness: While Diane has many direct ties,
Heather has few direct connections – fewer than the
average in the network. Yet, in may ways, she has one
of the best locations in the network – she is between
two important constituencies. She plays a ’broker’
role in the network.



Social Networks

Social Network Analysis





Closeness: Fernando and Garth have fewer con-
nections than Diane, yet the pattern of their direct
and indirect ties allow them to access all the nodes
in the network more quickly than anyone else. They
have the shortest paths to all others – they are close
to everyone else.



World Wide Web and the Internet

nodes: web documents
edges: directed hyperlinks

nodes: routers and computers
edges: wires and cables



2. STATISTICAL ANALYSIS of LARGE

GRAPHS



Graphs

<nodes or vertices, edges>
Euler and the bridges of Königsberg (Kalinyingrad)

Statistical analysis of large graphs
Brain Hayes: Graph Theory in Practice I, II

American Scientist 88(1), 88(2) 2000



Graphs

Regular, Random and
Real World Graphs

lattice like regular + random
(several random
neighbours) effects



Graphs

Graph Characteristics

Diameter:
maximal minimal path

Characteristic path
lenght:
minimal path lengths aver-
aged for all pairs of vertices

(complete graph, clique)
many edges are necessary



Graphs

Measure of Clustering (C)
(are my friends also friends of each other?)

List all the neighbours of a vertex, count the edges
that link those neighbours, and divide by the maxi-
mum number of edges that could possibly be drawn
among the neighbours; then repeat these operations
for all the vertices, and take the average.



Elements of Random Graph Theory

Illustration of the Erdős – Rényi Theorem
n nodes, no edges; p is the probability that we drag
an edge to a pair of nodes, for each pair.

p = 0 → no edge; p = 1 → clique

generally the number of edges pn(n − 1)/2; ran-
domly and independently

for large graphs (n → ∞, e → ∞, n/e = const):
e > n/2 → there exists a ’giant component’ i.e. a
connected piece of the graph spanning most of the
vertices,

the distance between two arbitrarily chosen points is
’rather small’



Elements of Random Graph Theory

Illustration of the Erdős – Rényi Theorem

Illustration of the graph evolution process for the Erdős-Rényi model. We

start with N = 10 isolated nodes, then connect every pair of nodes with

probability p. The lower panel of the figure shows two different stages

in the graph’s development, corresponding to p = 0.1 and p = 0.15.

We can notice the emergence of trees (a tree of order 3, drawn with

long-dashed lines) and cycles (a cycle of order 3, drawn with short-dashed

lines) in the graph, and a connected cluster that unites half of the nodes

at p = 0.15 = 1.5/N .



Elements of Random Graph Theory

Illustration of the Erdős – Rényi Theorem

The threshold probabilities at which different subgraphs appear in a ran-

dom graph. For pN3/2 → 0 the graph consists of isolated nodes and

edges. For p ∼ N−3/2 trees of order 3 appear, while for p ∼ N−4/3

trees of order 4 appear. At p ∼ N−1 trees of all orders are present, and

at the same time cycles of all orders appear. The probability p ∼ N−2/3

marks the appearance of complete subgraphs of order 4 and p ∼ N−1/2

corresponds to complete subgraphs of order 5. As z approaches 0, the

graph contains complete subgraphs of increasing order.



Elements of Random Graph Theory

Illustration of the Erdős – Rényi Theorem
The Edge Distribution:

Comparison of the digree distribution (Xk/N) of a network of N = 10000 nodes
and p = 0.0015 with the expectation value of the Poisson distribution below,
E

(
Xk

)
/N = P (ki = k).

E(Xk) = NP (ki = k) = λk

λk = NC
k
N−1p

k
(1− p)

N−1−k

P (Xk = r) = e
−λk

λr
k

r!



Elements of Random Graph Theory

Real World Graphs: Small-World Networks
• It is not true that we know our neighbours only. It is also not true

that our relationships are completely random.



Elements of Random Graph Theory

Real World Graphs: Small-World Networks
• It is not true that we know our neighbours only. It is also not true

that our relationships are completely random.

• Generation of the Watts-Strogatz“Small World Graph”:

1. initial configuration is a regular lattice
2. each edge is examined, and is redirected with p probability to an

other target node (chosen also randomly)



Elements of Random Graph Theory

Real World Graphs: Scale-free Model

“Zoology” of degree distributions in networks. Main types of a degree

distribution in log-log plots. Poisson (a), exponential (b), power-law (c),

multifractal (d), and discrete (e) distributions.



3. DEVELOPMENT of NETWORKS



Formation of Scale-free Networks

Random Growth vs. Preferential Attachment

The Erdős-Rényi (ER) (a) and the Watts-Strogatz (WS) (b) models.

A random network described by the ER model has N vertices connected

with probability pER, the total number of edges in the system being

n = pERN(N − 1)/2. The example presents a network of N = 10

vertices for pER = 0 and pER = 0.2. The WS model starts with a

regular one-dimensional lattice with edges between the nearest and next-

nearest neighbors. Then a fraction pWS of the edges is rewired randomly

(their endpoint is changed to a randomly selected vertex). The example

presents a network of N = 10 vertices. For pWS = 0 the system is a

regular lattice with 2N = 20 edges. For pWS = 0.3, 2pWSN = 6

edges have been rewired to randomly selected vertices.



Formation of Scale-free Networks

Random Growth vs. Preferential Attachment
The Barabási-Albert (BA) model.
(1) The ER and WS models assume that we start with a fixed number
N of vertices that are then randomly connected or re-wired, without
modifying N. In contrast, most real-world networks describe open systems
that grow by the continuous addition of new nodes. In the BA model,
after starting with a small, initial network, at every timestep a new node
is added.



Formation of Scale-free Networks

Random Growth vs. Preferential Attachment
The Barabási-Albert (BA) model.
(1) The ER and WS models assume that we start with a fixed number
N of vertices that are then randomly connected or re-wired, without
modifying N. In contrast, most real-world networks describe open systems
that grow by the continuous addition of new nodes. In the BA model,
after starting with a small, initial network, at every timestep a new node
is added.

(2) The ER and WS models assume that the probability that two nodes

are connected (or their connection is rewired) is independent of the nodes

degree, i.e., new edges are placed randomly. Most real networks however,

exhibit preferential attachment, such that the likelihood of connecting to

a node depends on the node s degree. The probability Π that a new node

will be connected to node i depends on the degree ki of node i , such that

Π (ki) = ki∑
j kj



Formation of Scale-free Networks

The Barabási-Albert Model
(a) Connectivity distribution of the BA model, with N =

m0 + t = 300000 and m0 = m = 1 (circles),

m0 = m = 3 (squares), m0 = m = 5 (dia-

monds) and m0 = m = 7 (triangles). (b) P(k) for

m0 = m = 5 and system sizes N = 100000 (circles),

N = 150000 (squares) and N = 200000 (diamonds).

The inset shows the time-evolution for the connectivity of

two vertices, added to the system at t1 = 5 and t2 = 95.

Here m0 = m = 5.

Given the assumption of growth and preferential attachment degree of nodes satisfies the dynamical equation:

∂ki

∂t
= mΠ (ki) = m

ki∑N−1
j=1 kj

=⇒ ki (t) = m
t

ti

0.5



Formation of Scale-free Networks

The Barabási-Albert Model
(a) Connectivity distribution of the BA model, with N =

m0 + t = 300000 and m0 = m = 1 (circles),

m0 = m = 3 (squares), m0 = m = 5 (dia-

monds) and m0 = m = 7 (triangles). (b) P(k) for

m0 = m = 5 and system sizes N = 100000 (circles),

N = 150000 (squares) and N = 200000 (diamonds).

The inset shows the time-evolution for the connectivity of

two vertices, added to the system at t1 = 5 and t2 = 95.

Here m0 = m = 5.

Given the assumption of growth and preferential attachment degree of nodes satisfies the dynamical equation:

∂ki

∂t
= mΠ (ki) = m

ki∑N−1
j=1 kj

=⇒ ki (t) = m
t

ti

0.5

Probability density for P (k) can be obtained:

P (k) =
∂P (ki (t) < k)

∂k



Formation of Scale-free Networks

The Barabási-Albert Model

Limited cases of the BA model:
Model A: growth without preferential attachment
For t → ∞ the degree distribution decays exponentially,

P (k) = e
m exp

(
− k

m

)
. The absence of preferential attach-

ment eliminates the scale-free character.

Model B: preferential attachment without growing

After an initial transient when P (k) follows a power-law scaling the

degree distribution becomes a Gaussian.

Figures: upper panel show time evolution of (a) the BA model, (b) Model A and (c)

Model B. Lower panel shows degree distributions for (a) Model A and (b) Model B.



Community Stuctures

Probability of collaboration between scientists in the Los Alamos Archive as a function of their number of mutual previous

collaborators. Inset: the relative probability of collaboration as a function of number of previous collaborations of the

same scientists, for the Los Alamos Archive (circles) and Medline (squares). The dotted lines are the best straight-line fits

to the data. The data for Medline have been divided by a factor of 50 vertically to improve the clarity of the gure.



Sociopsychological Mechanisms and
Algorithms

Rules of Connection Generation

• Trait vector: The trait is composed of different characteristics, such as psycho-
logical (temperament), physical, economical, social, aesthetic, intellectual etc.
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Sociopsychological Mechanisms and
Algorithms

Rules of Connection Generation

• Trait vector: The trait is composed of different characteristics, such as psycho-
logical (temperament), physical, economical, social, aesthetic, intellectual etc.

• Local: the establishment of an edge between the nodes of i and j depends only on
the state/decisions of i and j.

• Global: there are other nodes, whose state/decision influence the edge formation.

• Passive: the formation of a new connection (or the deletion of an existing one)
depends on the state of the“trait vectors”of the individuals.

• Active: The agents are active when they make decisions.

Open problem: how to combine local and global, and passive and active rules,
respectively.



The Small-world Network of the Human
Language

• sentence generation is rapid

• 1/f distribution in linguistics (Zipf’s law)

• lexicons in human brain: 104 − 105 words

• communication: kernel lexicon

• basic words and specialized words

ΩL = (WL, EL), words: WL = {wi}, i = 1, ..., NL, connections: EL = {{wi, wj}}

connection between words: first- and second neighbours

[BUT: Chomsky: surface and dep structure → distant neighbours]



The Small-world Network of the Human
Language

The figure shows an example of word networks. (a) A toy network constructed

with four sentences: ‘John is tall’, ‘John drinks water’, ‘Mary is blonde’, ‘Mary

drinks wine’. (b) A possible pattern of wiring in ΩL. Black nodes are common

words and white nodes are rare words. Two words are linked if they co-occur significantly.

Assumption: from a sufficiently large text macro-
scopic properties of the network should emerge

Improvement: pij > pipj: the presence of correla-
tions beyond that expected from a random ordering
of words (RWN: restricted word networks) UWN: else



The Small-world Network of the Human
Language

Degree distribution for the unrestricted word network (filled circles) and the

restricted word network (open circles). The distribution function is obtained

after processing about three- quarters of the 107 words of the British National

Corpus (http://info.ox.ac.uk/bnc/). The obvious limitations of our methods

are overcome by the use of a large amountPoints are grouped by powers of

two. Inset: average degree as a function of frequency. Degree increases as a func-

tion with frequency, with exponent 0.80 for the first domain and 0.66 for the second one.

γ1 = −1.5, γ2 = −2.7

the network also has small world properites:
average minimum distance: ∼ 2.6,
clustering coefficient: ∼ 0.5



The Small-world Network of the Human
Language

Connectivity distribution for the kernel word network (KWN), formed by the 5000
most connected vertices in RWN. Inset: power-law tail for k > k calculated by grouping
in powers of 1.5, 1.75 and 2. The exponent of the power tail is γKWN ≈ −3,
indicating that preferential attachment is happening.

Every word on average is connected to 24% of the rest of the kernel words.



4. CONNECTIVITY of the BRAIN



Neural Networks

• The nervous system of the nematoda worm Cae-
neorhabditis elegans forms a small-world network.
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Neural Networks

• The nervous system of the nematoda worm Cae-
neorhabditis elegans forms a small-world network.

• Mammalian cerebral cortex: its network is neither
regular nor random

• The distance of two arbitrarily choosen cortical
neurons is 5 (John Szentágothai)



Neural Networks



Theoretical Neuroanatomy“Small-world”
Graphs

Neural Networks: Many Cells, Several Cell Types

Cell types of the hippocampus

T. Freund and colleagues



Theoretical Neuroanatomy“Small-world”
Graphs

Hierarchy of Subsystems

The Visual System

Van Essen and colleagues



Theoretical Neuroanatomy“Small-world”
Graphs

Cortical Modules
• Wiring optimization in the brain - wiring economy principle?

• Limitations on the brain size require keeping the connection length as short as possible?

• Cortical modules: structural and functional units of information processing.

Cortical column as first visualized by J. Szentágothai János Szentágothai (1912 – 1994)



Theoretical Neuroanatomy“Small-world”
Graphs

Connectivity Databases & Neuroinformatics

• http://www.psychology.ncl.ac.uk/neuroinformatics.html (M. P. Young)

• The complexity of the brain, and the quantity and complexity of the data derived

from it in the neuroscience, represents very substantial problems for brain science.

• Neuroinformatics: computer-based collation, management and analysis to neuro-

science data, with the aims of making the complex data tractable, and of bringing

mathematical and computational rigour to those areas that have not previousle

benefitted from it.

• Cat cortico-cortical connectivity

• Parcellation of the cat thalamus

• Rat connectivity

• Connectivity data on the Macaque monkey
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