

Chapter 1
Introduction

1.1 Complex Adaptive Systems

We live in a remarkable world, full of uncertainties to which we constantly adapt without
really thinking about it. We are examples of systems called complex adaptive systems,
which are complex systems that can learn from and adapt to their dynamically changing
environments. In the computer world, open distributed environments, such as the
Internet, place a growing demand on complex computer systems to be able to adapt to
their environments. The uncertainty in these environments is mostly due to the behaviour
of other complex adaptive systems such as users browsing web pages, the behaviour of
buyers and sellers on the Internet and the behaviour of autonomous agents bidding on
behalf of persons in Internet auctions.

The ability to adapt implies emergent behaviour. Adaptive agents are the basic building
blocks of a complex adaptive system. These agents act together, interact with each other
and the environment, and collectively adapt to changing environmental conditions. The
interactions between the agents and the environment and the interactions between the
agents themselves comprise a complex set of causal relationships.

All complex adaptive systems maintain internal models, consisting of hyperstructures
representing “regularities” in the information about the system’s environment and its own
interaction with that environment. Hyperstructures are higher-order structures that
emerge from the collective behaviour of the agents. Complex adaptive systems use these
hyperstructures to act in the real world (Gell-Mann, 1994) (Holland, 1995).

1.2 Adaptive Agent Architectures

Agent architectures are software engineering models of agents (Wooldridge & Jennings,
1995). These architectures provide a new and natural way to analyse, design and
implement complex software systems (Jennings, Sycara & Wooldridge, 1998). An agent
architecture can be a single-agent system or a multi-agent system, composed of agents,
coordinated through their relationships with one another. There are three types of agent
architectures, namely deliberative, reactive and adaptive agent architectures.
Fundamentally, deliberative agent architectures differ from reactive and adaptive agent
architectures with respect to the presence or absence of emergence. Emergence is one of

1

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

the main characteristics of reactive and adaptive agent architectures, but is absent from
deliberative agent architectures.

Deliberative agent architectures have internal world models that they manipulate.
These world models are explicitly represented symbolic models of the world and
decisions (for example what actions to perform next) are usually made using logical
reasoning, based on pattern matching and symbolic manipulation (Wooldridge &
Jennings, 1995). An example is the well-known and popular Belief-Desire-Intention
(BDI) architecture (Rao & Georgeff, 1995). Deliberative architectures cannot function as
complex adaptive systems as time constraints within complex, dynamic environments
render them incapable of responding in time. The translation of the world into an accurate
symbolic representation in time for it to be useful cannot realistically be achieved.
Complex real-world processes are difficult to represent symbolically and to then reason
about them using extensive deliberative processes cannot be done within the time
constraints imposed by complex, dynamic environments (Wooldridge & Jennings, 1995).
Deliberative agent architectures cannot handle emergence and can therefore not function
as complex adaptive systems.

Reactive agent architectures are agent architectures that are situated in the world and
that are embodied in that their actions are part of a dynamic interaction with the world
(Brooks, 1991). These architectures do not include any kind of symbolic world model
and they do not use complex symbolic reasoning (Wooldridge & Jennings, 1995).
Examples include the Subsumption Architecture (Brooks, 1985) and autonomous
adaptive agents developed by Maes (1990). Emergence is the most important
characteristic of these agent architectures.

Adaptive agent architectures are agent architectures that can function as complex
adaptive systems. These architectures maintain internal models consisting of
hyperstructures in order to learn from and adapt to their dynamically changing
environments. These architectures are usually reactive agent architectures that can learn
from experience.

1.3 Agent-oriented software engineering

Agent-oriented software engineering refers to the software engineering approach
followed in an agent architecture. This software engineering approach commonly focuses
on two aspects, namely the design of the individual agents and the design of the
interactions between different agents. These interactions are usually restricted to
symbolic communication protocols. For example, in the Gaia methodology (Wooldridge,
Jennings & Kinny, 2000), a system is analysed in terms of roles and interactions between

2

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

roles and then designed in terms of complex agents, the services to be provided by each
agent and the lines of communication between different agents (acquaintances). The
coordination-oriented methodology (Zambonelli, Jennings, Omicini & Wooldridge,
2000) added global laws that agents in an agency must obey when interacting with other
agents.

Agent-oriented software engineering is commonly viewed as an extension to
conventional component-based software engineering approaches (Griss & Pour, 2001).
As most agent architectures are deliberative (Wooldridge & Jennings, 1995), agent-
oriented software engineering is mostly concerned with the analysis and design of agents
that are complex due to their complex reasoning capabilities. These agents are commonly
viewed as “next-generation” components (Griss & Pour, 2001), as the current component
architectures are too limited to implement components that exhibit flexible (reactive, pro-
active, social) behaviour. These limitations are due to the fact that components and
objects are passive in nature and the patterns of interactions between them are rigid and
predetermined (Jennings, 2001).

No principled software engineering methodology exists for reactive and adaptive agent
architectures (Jennings et al., 1998). These architectures are usually based on ad hoc
principles as it is not clear how one should reason about them or what their underlying
theory is (Wooldridge & Jennings, 1995) – the side effects of emergence. In most of
these architectures, the engineering of emergence is a manual iterative process as in
Brooks (1985), Maes (1994) and Bryson (2001) in which a human observer places the
agent in its environment and observes its behaviour using a laborious process of
experimentation, trial and error (Jennings et al., 1998). In a complex adaptive system, this
becomes an impossible task for a human observer to perform.

1.4 Goal of this Thesis

The goal of this thesis is to define an adaptive agent architecture and to propose a
methodology to engineer emergence in such an architecture. This thesis will prove that it
is possible to use a commercially available component architecture to implement such an
adaptive agent architecture. In this research, we defined the BaBe (Bayesian Behaviour
Networks) adaptive agent architecture, as well as the BaBe agent-oriented software
engineering methodology that is followed in this architecture. This methodology modifies
and extends current agent-oriented software engineering approaches in order to include
the engineering of emergence.

Our BaBe agent architecture is adaptive through the use of specialized Bayesian
networks, which we call Bayesian behaviour networks, as hyperstructures. Bayesian

3

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

networks are ideally suited for probabilistic reasoning in uncertain environments and can
be used by agent architectures to evolve and adapt in response to environmental changes.

Our BaBe methodology includes analysis and design models similar to other agent-
oriented engineering approaches, as well as an additional run-time emergence model.
This model consists of Bayesian behaviour networks, initialised by the software engineer
during the analysis and design phases, and maintained by Bayesian agencies during the
execution phase. The emergence model functions as the internal model of the adaptive
agent architecture.

1.5 Research Contribution

The contribution of this research effort is twofold, namely:

1. A component-based implementation of adaptive hyperstructures in complex
adaptive (software) systems. We defined an adaptive agent architecture, namely the
BaBe agent architecture, and its implementation using re-usable components. In this
architecture, the hyperstructures in the internal model are specialized Bayesian
networks, which we call Bayesian behaviour networks. Bayesian learning in these
networks can incrementally discover regularities in the information about the
system’s environment and its interaction with that environment. We call the
components that are responsible for inference and learning in these networks,
Bayesian agents. These simple agents are organized into heterarchies of agencies,
which we call Bayesian agencies. A Bayesian agency can activate one or more
component behaviours depending on the inference in the underlying Bayesian
behaviour network in response to environmental states. Each component behaviour
is a re-usable component that implements one or more actions. To our knowledge,
adaptive hyperstructures in complex adaptive (software) systems have not yet been
constructed from re-usable components.

2. The automated engineering of emergence in adaptive agent architectures. To our
knowledge, the engineering of emergence in existing reactive and adaptive agent
architectures involves a laborious manual engineering process. We defined the BaBe
methodology that includes the automated engineering of emergence during the
execution phase. This methodology includes the use of Bayesian behaviour networks
as adaptive hyperstructures. This methodology also associates sets of actions, which
we call competence sets, to Bayesian behaviour network node sets. Each competence
set defines one or more actions that must be taken depending on the states of nodes
due to inference in the Bayesian behaviour network.

4

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

1.6 Thesis Organization

Chapter 2 provides a background on complex adaptive systems and the emergence that
characterizes these systems. Common to all these systems are internal models, consisting
of hyperstructures. This chapter defines and discusses the role of hyperstructures in the
engineering of emergence in complex adaptive systems.

Chapter 3 gives a theoretical overview of Bayesian networks and describes inference
and learning in these networks. It then explains why these networks are suitable to be
used as hyperstructures in complex adaptive systems.

Adaptive agent architectures are agent architectures that can function as complex
adaptive systems. Agent architectures are software engineering models of agents. Chapter
4 gives an overview on agent architectures and underlying concepts of agents, agencies,
heterarchies and hierarchies and discusses the difference between deliberative, reactive
and adaptive agent architectures.

Agent-oriented software engineering refers to the software engineering methodologies
applied in agent architectures. These methodologies are currently applied mostly in
deliberative agent architectures. Chapter 5 compares object-oriented, component-based
and agent-oriented software engineering methodologies and gives a brief overview of two
agent-oriented software engineering methodologies, namely the Gaia methodology
(Wooldridge et al., 2000) and the coordination-oriented methodology (Zambonelli et al.,
2000).

Chapter 6 describes the BaBe adaptive agent architecture defined in this research. This
includes a detailed description of our Bayesian agents and agencies, and how they
collectively achieve belief propagation and learning in distributed Bayesian networks. A
specialized class of Bayesian networks, which we call Bayesian behaviour networks, is
presented and the application of these networks as hyperstructures in the BaBe
architecture is explained.

In Chapter 7, we describe our BaBe methodology as a new methodology that addresses
the absence of principled design methodologies for reactive and adaptive agent
architectures. As a background, the Gaia methodology and the coordination-oriented
methodology are described in more detail. This chapter compares the BaBe analysis,
design and emergence models with the Gaia models and coordination models.

Chapter 8 describes a prototype implementation of the BaBe adaptive agent
architecture and Chapter 9 concludes this thesis.

5

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

 6

Chapter 2
Complex Adaptive Systems, Emergence and Engineering:

The Basics

Atoms go their many ways –
each his own path lives.
For every way creates and makes but a moment,
that seems to us who know,
a moment that will die.
But yet, a flower’s atoms will create (or be)
a flower’s form – as it is, when it is
Forever

 - Thys Potgieter

2.1 Introduction

A complex adaptive system is characterized by complex behaviours that emerge as a result of
interactions among individual system components (or agents) and among system components
(or agents) and the environment.

Examples of complex adaptive systems include:

• Users “foraging” for information, navigating from web page to web page along
web links;

• The behaviour of consumers in a retail environment;

• The interactions between companies, consumers and financial markets in the
modern capitalist economy;

• Intelligent autonomous agents bidding on peoples’ behalf in Internet marketplaces;

• Bayesian networks, neural networks, genetic algorithms and artificial life systems.

The next section describes the properties and mechanisms common to all complex adaptive
systems. Of these mechanisms, the internal model mechanism is instrumental in the
engineering of emergence in these systems. All complex adaptive systems maintain internal
models consisting of structures called hyperstructures, representing regularities in the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

7

information about the system’s environment and its own interaction with that environment
(the input stream).

Emergent software engineering refers to the continuous process of adapting the
hyperstructures to accommodate new regularities in the input stream. The hyperstructures can
be adapted manually through human intervention, or automatically. Manual emergent
engineering is a very cumbersome process requiring constant involvement from the human
software engineer. In automatic emergent engineering, the hyperstructures are adaptive and
able to evolve, eliminating the need for human intervention.

In this chapter, we describe the properties and mechanisms common to all complex
adaptive systems. We give the background on hyperstructures and emergent engineering, and
describe the difference between manual and automatic emergent engineering in more detail.

2.2 Properties and Mechanisms of Complex Adaptive Systems

A complex adaptive system consists of many system components acting together by
interacting with each other and mutually affecting each other. Holland (1995) refers to a
system component as an agent and describes four properties and three mechanisms common
to all complex adaptive systems. We summarize Holland’s description below:

1. Aggregation (Property) – simple agents are organized into adaptive aggregates,
which in turn can form part of a higher level aggregation and so forth, yielding a
hierarchical organization.

2. Tagging (Mechanism) – Tags facilitate selective interaction. They allow agents to
select among agents or objects that would otherwise be indistinguishable.

3. Non-linearity (Property) – In a complex adaptive system, the whole does not equal
the sum of the parts. Non-linear interactions amongst agents almost always make
their collective behaviour more complicated than would be predicted from
summing or averaging their individual behaviours.

4. Flows (Property) – In general terms, this property refers to flows over a network of
nodes and connectors, where the nodes are agents, and the connectors designate the
possible interactions between the agents. The flows in these networks vary over
time.

5. Diversity (Property) – Diversity in a complex adaptive system is a dynamic pattern,
often persistent and coherent and the product of progressive adaptations. Each new

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

8

adaptation opens the possibility for further interactions and opportunities for new
interactions.

6. Internal Models (Mechanism) – Internal models are maintained in complex
adaptive systems. These models are used for anticipation and prediction. Agents
select patterns from the input stream and integrate these patterns into the structure
of the internal model. The modified internal model must then enable the system to
anticipate the consequences that follow when a similar pattern is encountered.

7. Building Blocks (Mechanism) – The re-use of basic building blocks to generate
internal models is a pervasive feature of complex adaptive systems. As an example,
the quarks of Gell-Mann (1994) are combined to yield nucleons, nucleons are
combined into atoms, atoms are combined into molecules, and so forth.

2.3 The Engineering of Emergence

2.3.1 What is Emergence?

Emergence, the most important characteristic of a complex adaptive system, is the collective
behaviour of interacting system components. Emergence leads to holism (Baas & Emmeche,
1997). A complex adaptive system is holistic, which means that the collective behaviour of
the system components is more than the sum of the behaviours of the individual system
components, for example a flock is more than a collection of birds and a traffic jam is more
than a collection of cars (Odell, 1998).

Minsky (1988) describes holism as a “lack of understanding” (of an observer) due to the
unexpected emergence of a phenomena that had not seemed inherent in the system
components, showing that “a whole is more than the sum of its parts”.

In the spirit of the Turing test, Ronald, Sipper & Capcarrěre (1999) formulated an
emergence test based on this lack of understanding, which they call “amazement”, as
follows:

Our emergence test centers on an observer's avowed
incapacity (amazement) to reconcile his perception of an
experiment in terms of a global world view with his awareness
of the atomic nature of the elementary interactions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

9

Ronald et al. described the emergence test in terms of the following three conditions,
namely design, observation and surprise of a system designer and a system observer (which
could be the same), as follows:

1. Design: The system has been constructed by the designer,
by describing local interactions between components (e.g.,
artificial creatures and elements of the environment), in a
language . 1L

2. Observation: The observer is fully aware of the design, but
describes global behaviours and properties of the running
system, over a period of time, using a language . 2L

3. Surprise: The language of design and the language of

observation are distinct, and the causal link between

the elementary interactions programmed in and the

behaviours observed in is non-obvious to the observer -

who therefore experiences surprise. In other words, there is
a cognitive dissonance between the observer’s mental
image of the system’s design stated in and his

contemporaneous observation of the system’s behaviour
stated in .

1L

2L

1L

2L

1L

2L

The shuffling back and forth between and , changing things on the one side and

checking the effects on the other side, forms the basis of the engineering process (Ronald &
Sipper, 2000). This can be either a classical engineering process in which surprises are not
tolerated, or an emergent engineering process in which surprises are managed.

1L 2L

Classical software engineering is characterized by the intolerance of surprises. Ronald &
Sipper refer to this absence of surprise as “unsurprise”. For example, in the software
engineering “waterfall model” (Sommerville, 1995) the requirement specifications are the
language of (desired) observation , formulated in consultation with the client. The

language is then translated into a system and software design – the language of design

, which is then used to implement and test the system during the implementation and unit-

testing phase. During the integration and the system-testing phase, the client measures the

2L

2L

1L

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

10

system performance against the observation language . During this phase, all surprises

must be eliminated. This is done by either changing the observation language in order to

accommodate the surprises, or by changing the design language and integrating the

changes into the system.

2L

2L

1L

Emergent software engineering refers to a software engineering approach that manages
surprises as part of the software engineering cycle. Ronald & Sipper view emergent
engineering as the management of a persistent - understanding gap, and they refer to

the form of surprise that is managed as “unsurprising surprise”.
1L 2L

2.3.2 Hyperstructures

Emergent phenomena are instances of some emergent higher-order structure that may be
explained by the lower-level dynamics generating the collective behaviour (Baas &
Emmeche, 1997). Baas & Emmeche refer to these structures as hyperstructures or “emergent
explanations”.

Hyperstructures are used for explanation and understanding. Gell-Mann (1994) refers to
hyperstructures as “schemas”, which he describes as follows:

a complex adaptive system acquires information about its
environment and its own interaction with that environment,
identifying regularities in that information, condensing those
regularities into a kind of “schema” or model, and acting in
the real world on the basis of that schema.

Gell-Mann refers to the information about the environment of a complex adaptive system
and the system’s interaction with the environment as the “input stream” of the system. A
complex adaptive system creates and maintains its hyperstructures by separating “regularities
from randomness” in its input stream (Gell-Mann 1994). The set of hyperstructures in a
complex adaptive system constitute the internal model of such a system. All complex
adaptive systems maintain internal models (Holland, 1995). Emergence occurs as soon as the
regularities identified in the input stream deviate from what is expected from the internal
model maintained by the complex adaptive system. Cariani (1991) calls this “Emergence
Relative to a Model”.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

11

According to Minsky (1988), emergence can usually be explained completely, once the
interactions between the system components are taken into account. The internal model,
consisting of hyperstructures, facilitates the explanation of emergence.

Baas & Emmeche defined the following formal framework for emergence and
hyperstructures:

Let be a collection of general systems or “agents”.

Let be "observation" mechanisms and be
interactions between agents.

I iSi ∈}{
1Obs 1Int

The observation mechanism measures the properties of the
agents to be used in the interactions. The interactions then
generate a new kind of structure

)(1112 ,Int,ObsSRS i=

which is the result of the interactions. This could be a stable
pattern or a dynamically interacting system. We call an
emergent structure, which may be subject to new observational
mechanisms . This leads to
Definition:

 and

2S

2Obs

pertyergent proP is an em

c

)(22 SObsP ∈)(12
iSObsP ∉

The observational mechanism may be internal or external.
Hyperstructures are multi-level emergent structures.

Definition:

 A hyperstructure of order N is given by

)(2 2 2 1 1 1
21

−−−−−−
−−

= NNN
i

NNN
i

N ,Int,Obs,S,Int,ObsSRS
NN

extending the construction in the definition of emergence. This
is a cumulative structure, not necessarily purely recursive.

In the framework above, I denotes the number of general systems or agents in the system.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

12

The observation mechanism of a complex adaptive system is responsible for the
identification of regularities in its input stream, as well as for the adaptation of the
hyperstructures to accommodate these regularities. The process of adaptation in a complex
adaptive system relies heavily on its observation mechanism. In terms of the and

languages of Ronald et al., hyperstructures can be viewed as constituting the language of
design and the observed properties or regularities of a system are described in an

observation language . For example, the emergent property

1L 2L

1L

2L P in Baas & Emmeche’s

framework above will be included in . 2L

The process of adaptation in a complex adaptive system involves a progressive
modification of the hyperstructures (Holland, 1975) in order to bridge the -

understanding gap. For example in Baas & Emmeche’s framework, can be viewed as the
language of design and can be viewed as the language of observation , if there

exists an emergent property such that

1L 2L
NS

1L
1 +NS 2L

Q

)(1 1 ++∈ NN SObsQ and)(1 NN SObsQ +∉

To bridge the - understanding gap, must be adapted to 1L 2L
NS

)(2 2 2 1 1 1 1
21

−−−−−−+
−−

= NNN
i

NNN
i

NNN
i

N ,Int,Obs,S,Int,Obs,S,Int,ObsSRS
NNN

.

1 +NS then becomes the language of design, . 1L

Observation mechanisms can be either internal or external. Complex adaptive systems in
nature have internal observation mechanisms, observing their own behaviours in order to
maintain the hyperstructures in their internal models. Most computer-based complex adaptive
systems have external observation mechanisms. In these systems, the observer is usually the
software engineer, maintaining the hyperstructures manually.

2.3.3 External Observation Mechanisms

In a complex adaptive system with an external observation mechanism, the internal model
consists of static hyperstructures, usually hand-built or compiled from specifications. We
refer to hyperstructures such as these as “static” because once implemented, their structure
can only be changed by re-engineering them. In most of these systems, the external
observation mechanism is the human software engineer, observing the behaviour of his or her

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

13

“creation”, operating in its environment. The engineer identifies regularities in the input
stream of the system and adapts the hyperstructures manually to include these regularities.

The Subsumption Architecture (Brooks, 1990) is an example of a system that uses an
internal model consisting of static hyperstructures. In this architecture, the hand-wired
arbitration network is a hyperstructure, consisting of a set of suppression and inhibition wires
as well as simple arbitration circuitry. These wires form a network connecting behaviour
modules with each other. The behaviours are augmented finite state machines (AFMS)
mapping perceptual input to action output, and behaviour modules can inhibit or subsume the
behaviour of other modules. Rosenblatt & Payton (1989) implemented a more sophisticated
version of the Subsumption Architecture in which the behaviours do not completely subsume
other behaviours, but bias decisions in favour of different alternatives. Static hyperstructures,
as described above, have to be handcrafted until the system exhibits the desired behaviour
when operating in its environment.

Maes (1990) used static hyperstructures, called behaviour networks, to represent
regularities in the input stream and to control action selection in response to environmental
states. These networks model the relationships between “competence modules” that react to
states of the environment, and that spread activation energy along links in the behaviour
network. The structure of these networks is specified by the system designer (also the
external observer), and then compiled into circuit diagrams, which are then implemented.
Once implemented, the structure of the behaviour networks can only be changed by
recompilation and re-implementation.

In the systems described above, the human software engineer is an external observation
mechanism that observes emergence relative to the internal model of the system. In these
systems, emergent engineering is a manual process, involving extensive simulation, and
testing in order to make sure that the system meets its requirements. This process involves
manual modification of the hyperstructures, either by specification and subsequent
compilation or by manually modifying the wiring structures in the implementation itself. We
call this form of emergent engineering manual emergent engineering.

2.3.4 Internal Observation Mechanisms

A complex adaptive system with an internal observation mechanism has hyperstructures that
are adaptive and able to evolve. The internal observation mechanism identifies regularities in
the input stream and automatically modifies the hyperstructures in the internal model to
include these regularities. Two examples of adaptive hyperstructures include the K-lines

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

14

constituting Minsky’s Society of Mind, and the genetic structures defined by Holland (1975).
We call this form of emergent engineering automatic emergent engineering.

The next two sections give a brief overview of Minsky and Holland’s internal observation
mechanisms.

2.3.4.1 Minsky’s Society of Mind

The mind is capable of self-observation and self-interaction. Consciousness may be seen as
an internal model maintained by the mind. In Minsky’s Society of Mind, internal observation
mechanisms called A-Brains and B-Brains maintain internal models consisting of
hyperstructures called K-Lines. Each K-Line is a wire-like structure that attaches itself to
whichever mental agents are active when a problem is solved or a good idea is formed
(Minsky, 1988).

Minsky describes how a system can watch itself, using a B-Brain. In Figure 1, the A-Brain
has inputs and outputs that are connected to the real word, and the B-Brain is connected to
the A-Brain. The A-Brain can sense and influence what is happening in the world, and the B-
Brain can see and influence what is happening inside the A-Brain.

Figure 1: Minsky’s A- and B-Brain (Minsky, 1988)

The A-Brain and B-Brain engineer emergence automatically, continuously adapting their
K-Lines in order to bridge the - understanding gap. 1L 2L

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

15

2.3.4.2 Holland’s Genetic Structures

Holland (1975) uses an adaptive plan as an internal observation mechanism. He defined a
formal framework for a complex adaptive system as a set of objects (a, , I,), where Ω τ

a is the set of attainable structures, the domain

 of action of the adaptive plan,
 is the set of operators for modifying the

 structures with

,...},{ 21 AA=

Ω ,...},{ 21 ωω=

∈ω Ω being a function ,
 where is some set of probability distributions over a,
I is the set of possible inputs to the system from the
 environment, and

Pa →:ω

P

τ: I X a is the adaptive plan which, on the basis of the
 input and structure at time t, determines what the operator
 is to be applied at time t.

→ Ω

In Holland’s formal framework, the adaptive plan (τ) is the internal observation
mechanism of the complex adaptive system and a is the set of hyperstructures. Holland
describes how a complex adaptive system can genetically adapt using a genetic adaptive plan
(). Such a plan develops from the hyperstructures, which are populations of chromosomes
(a), interacting with the environment. The genetic operators () include for example
mutation, crossover, inversion, and so forth.

τ
Ω

In this framework, the engineering of emergence is automatic. The adaptive plan
automatically applies operators that modify the population of chromosomes (the
hyperstructures) in order to adapt to environmental inputs.

2.4 Conclusion

A complex adaptive system consists of many system components or agents acting together
by interacting with each other and mutually affecting each other. Emergence refers to the
collective behaviour of these system components.

Hyperstructures are higher-order structures that emerge from the lower-level dynamics
generating collective behaviour (Baas & Emmeche, 1997). These structures are “emergent
explanations” and are instrumental in the engineering of emergence in complex adaptive
systems. Hyperstructures represent regularities in the input stream of a complex adaptive

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

16

system, and in turn constitute the internal model of such a system. Internal models are
mechanisms common to all complex adaptive systems (Holland, 1995).

The engineering of emergence in a complex adaptive system involves a continuous process
employing an (external or internal) observation mechanism to identify regularities in the
information about the system’s environment and about its own interaction with that
environment (the input stream) and updating the hyperstructures in the internal model
whenever new regularities are identified in the input stream. Emergence refers to the
unexpected deviation of the regularities in the input stream from what is expected from the
hyperstructures in the internal model.

If an external observation mechanism is employed to observe emergence relative to an
internal model, emergent engineering is a manual process, involving extensive simulation,
and testing in order to make sure that the system meets its requirements. This process
involves manual modification of the hyperstructures, either by specification and subsequent
compilation or by manually modifying the wiring structures in the implementation itself. We
call this form of emergent engineering manual emergent engineering. This is a cumbersome
process and far from ideal. In most of these systems, the external observation mechanism is
the human software engineer, observing the behaviour of his or her “creation”, operating in
its environment. The engineer identifies regularities in the input stream of the system and
adapts the hyperstructures manually to include these regularities.

A complex adaptive system with an internal observation mechanism has hyperstructures
that are adaptive and able to evolve. The internal observation mechanism identifies
regularities in the input stream and automatically modifies the hyperstructures in the internal
model to include these regularities. The automatic engineering of emergence eliminates the
need for human intervention. All complex adaptive systems in nature have internal
observation mechanisms and they maintain their own internal models using automatic
emergent engineering.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

17

Chapter 3
Bayesian Networks as Hyperstructures

To every probability there is an opposite possibility. This
possibility is compos’d of parts, that are entirely of the same
nature with those of the probability; and consequently have the
same influence on the mind and understanding. The belief,
which attends the probability, is a compounded effect, and is
form’d by the concurrence of several effects, which proceed
from each part of the probability. Since therefore each part of
the probability contributes to the production of the belief, each
part of the possibility must have the same influence on the
opposite side; the nature of these parts being entirely the same

 - David Hume (1888)

3.1 Introduction

All complex adaptive systems maintain internal models, consisting of hyperstructures, to
represent regularities in their input streams. An input stream consists of information about
entities in the environment of the system and the interaction of the system with these entities.
Regularities in the input stream are probabilistic in nature. Gell-Mann describes this
probabilistic nature as follows:

Any entity in the world around us, such as an individual human
being, owes its existence not only to the simple fundamental
law of physics and the boundary condition on the early
universe but also to the outcomes of an inconceivably long
sequence of probabilistic events, each of which could have
turned out differently.

 (Gell-Mann, 1995)

 Beliefs are formed as a “distillation of sensory experiences” during a process in which the
actual experiences are learnt in terms of averages, weights or qualitative relationships that are
used to determine future actions (Pearl, 1988). Bayesian networks (also called Bayesian

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

18

belief networks or causal networks) provide the ideal formalism to express these probabilistic
regularities. These networks encode beliefs and causal relationships between beliefs and
provide a formalism for reasoning about partial beliefs under conditions of uncertainty
(Pearl, 1988). A complex adaptive system can use a Bayesian network as a probabilistic
model of what the emergent effects are of certain interactions and behaviours in response to
certain environmental states (the causes). Such a causal model can then be queried by an
arbitration process to decide which action(s) are most relevant given a certain state of the
environment. Bayesian networks are therefore ideally suited to be used as hyperstructures in
the internal models of complex adaptive systems.

This chapter gives a background on Bayesian networks and describes learning and
inference in these networks. The suitability of Bayesian networks as hyperstructures is then
described in terms of Holland’s properties and mechanisms of complex adaptive systems.

3.2 Basic Concepts

In this section, the basics concepts and definitions needed to understand Bayesian networks
are given.

3.2.1 Propositions

A proposition is a statement or assertion about a state of the world.

3.2.2 Variables

A variable X is a set of propositions xi such that these propositions are mutually exclusive (for
all , with (xji, ji ≠ i ∧ xj) is false)1 and exhaustive (at least one of the propositions xi is
true). Variables are denoted by upper-case letters, for example (X, Y, Z), and the propositions
of variables in lowercase, for example (X=x, Y=y, Z=z), also shortened as (x, y, z). Sets of
variables are represented by boldface uppercase letters, for example (X, Y, Z).

A variable can be observable or latent. A latent or hidden variable is a variable of which
the states are inferred but never observed directly.

1 means “and” ∧

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

19

3.2.3 Probabilities

In order to deal with uncertainty, probabilities are attached to propositions. For example,
P(X=x) represents the probability that X=x, also shortened as P(x). Each probability reflects a
degree of belief rather than a frequency of occurrence.

Eqs. (1) to (11) below describes the fundamental principles of Bayesian methods, as
formulated in (Pearl, 1988).

Beliefs must obey the three basic axioms of probability theory, namely

 , (1) 1)(0 ≤≤ AP

 1 , (2)) (=positionProSureP

) if A and B are mutually exclusive. (3) ()()or (BPAPBAP +=

The third axiom states that the belief assigned to any set of events is the sum of the beliefs
assigned to its nonintersecting components. Therefore, since any event A can be written as
the union of the joint events (A and B) and (A and B¬), their associated probabilities are
given by

) , (4) ,(),()(BAPBAPAP ¬+=

where is short for . More generally, if is a set of

exhaustive and mutually exclusive propositions, then can be computed from

 using the sum

),(BAP) and (BAP niBi ...2,1, =

)(AP

niBAP i ...2,1),,(=

),()(∑=
i

iBAPAP . (5)

P(A) above is called the marginal probability of A (Nilsson, 1998) and the niBi ...2,1, =

are said to be marginalized out or summed out (Russell & Norvig, 2003). A direct
consequence of Eqs. (2) and (4) is that a proposition and its negation must be assigned a total
belief of unity,

1)()(=¬+ APAP . (6)

The basic expressions in the Bayesian formalism are statements about conditional
probabilities, for example represents the belief in A under the assumption that B is
known with absolute certainty. In , A is said to be conditioned on B.

)|(BAP
)|(BAP

Conditional probabilities can be defined in terms of joint events,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

20

)(

),()|(
BP

BAPBAP = , (7)

where is the belief in the joint event of A and B (also called a joint probability),
and is the marginal probability of B. The belief in joint events can be calculated using
the product rule

),(BAP
)(BP

) (8) ()|(),(BPBAPBAP =

From Eqs. (5) and (8), it follows that the probability of any event A can be computed by
conditioning it on any set of exhaustive and mutually exclusive events : niBi ...2,1, =

) (9) ()|()(i
i

i BPBAPAP ∑=

This equation states that the belief in any event A is a weighted sum over the beliefs in all
the distinct ways that A might be realized.

The product rule (Eq. (8)) can be generalized by the so-called chain-rule formula. It states
that for a set of n events , the probability of the joint event () can be

written as the product of n conditional probabilities:
nEEE ..., 21 nEEE ..., 21

 (10))()|()...,,...,|()...,(11212121 EPEEPEEEEPEEEP nnn −=

The inversion formula

)(

)()|()|(
eP

HPHePeHP = (11)

states that the belief in a hypothesis H in the presence of evidence can be computed by
multiplying the previous belief by the likelihood that e will materialize if

e
)(HP)|(HeP

H is true. is sometimes called the posterior probability and is called the
prior probability.

)|(eHP)(HP

Eq. (11) is called Bayes’ Rule and forms the basis of Bayesian techniques.

3.2.4 Conditional Independence

A variable, V, is conditionally independent of a set of variables, Vi , given a set Vj , if
, represented by the notation (Nilsson, 1998).)|(),|(jj VVV VPVP i =)|,(ji VVVI

Eqs. (12) to (16) describe conditional independence, as formulated in (Nilsson, 1998).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

21

If a variable, Vi, is conditionally independent of another variable, Vj, given a set V, the
notation is used, meaning)|,(Vji VVI

)|(),|(VV iji VPVVP = . (12)

From the product rule (Eq. (8)),

)|,()|(),|(VVV jijji VVPVPVVP = . (13)

Combining Eqs. (12) and (13) yields

)|()|()|,(VVV jiji VPVPVVP =

If V is empty, then and are said to be independent. iV jV

The form of independence described above, is called pairwise independence. As a
generalization of this form of independence, the variables V1,…,Vk are mutually conditionally
independent, given a set V if each of the variables is conditionally independent of all of the
others, given V. From Eq. (10)

),,...,|()|,...,,(11
1

21 VV VVVPVVVP i

k

i
ik −

=
∏= (14)

and, since each Vi is conditionally independent of the others given V,

)|()|,...,,(
1

21 VV ∏
=

=
k

i
ik VPVVVP . (15)

When V is empty,

)()...()(),...,,(2121 kk VPVPVPVVVP = , (16)

and the variables are said to be unconditionally independent.),...,,(21 kVVV

3.3 What is a Bayesian Network?

A Bayesian network is a directed acyclic graph (DAG) that consists of a set of nodes that are
linked together by directional links. Each node represents a random variable or uncertain
quantity. Each variable has a finite set of mutually exclusive propositions, called states. The
links represent informational or causal dependencies among the variables, where a parent
node is the cause and a child node the effect. The dependencies are given in terms of
conditional probabilities of states that a node can have given the values of the parent nodes

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

22

(Pearl, 1988) (Dechter, 1996) (Pearl & Russell, 2000). A Bayesian network can either be
singly-connected (without loops) or multiply-connected (with loops).

To each node X there is attached a conditional probability matrix P = {P(X | pa(X))}, where
pa(X) represents the value combinations of the parents of X. For example for variable X with
set of states and Y with set states , the conditional probability

matrix represents the conditional probability of Y given X as follows:

},...,,{ 21 mxxx },...,,{ 21 nyyy

)|(xyP

)|(xyP

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)|(...)|()|(
::::

)|(...)|()|(
)|(...)|()|(

mnmm

n

n

xyPxyPxyP

xyPxyPxyP
xyPxyPxyP

21

22221

11211

For a set of variables Z = (Z1, Z2 ….Zn) represented by a Bayesian network, the network
represents a global joint probability distribution over Z having the product form

 1)|(),...1(∏ == n
i izPnzzP)(izpa (Dechter, 1996) (Pearl, 1988) (17)

Figure 2 illustrates a Bayesian network, which we adapted from the user-words aspect
model proposed by Popescul, Ungar, Pennock & Lawrence (2001), which models the three-
way co-occurrence between users, words and documents in a document recommender
system. Our network models the relationship between users (U), the contents of browsed web
pages characterized in terms of concepts (C), and products bought from these pages (P). Our
simple model includes the three-way co-occurrence data among two users, two products and
two concepts.

The users in Figure 2 are represented by u є U = {mathematician (m), rugby player(r)}.
The products are represented by p є P = {book authored by Professor Michael Jordan on
neural networks (nn), book authored by Michael Jordan, the well-known basketball player,
on basketball (bb)}. The concepts inferred from the web pages the users viewed are
represented by c є C = {statistics(st), sport(sp)}. The users (U), products (P) and concepts
(C) form observations (u, c, p), which are associated with a latent variable class (Z). There
are two latent classes, namely z є Z = {class1(c1), class2(c2)}. In Figure 2, the conditional
probability matrices are shown next to the nodes, and marginal probabilities are indicated on
the nodes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

23

Figure 2: A Bayesian Network

The example Bayesian network above represents the joint distribution:

)|()|()|()(),,,(zpPzcPuzPuPpczuP = (18)

Using Bayes’ rule (Eq. (11)), an equivalent joint distribution for Eq. (18) is given by

 (19))|()|()|()(),,,(zpPzcPzuPzPpczuP =

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

24

 Using (Eq. (5)), the joint distribution over users, contents and products is given by

∑=
z

zpPzcPzuPzPpcuP)|()|()|()(),,((20)

by marginalizing z out.

In Eq. (20) above, we have a single cause (Z) influencing multiple effects (U, P and C), as
illustrated in Figure 3. This probability distribution is called a naïve Bayes model or
sometimes called a Bayesian classifier (Russell & Norvig, 2003).

Figure 3: Naïve Bayes Model

3.4 Dynamic Bayesian Networks

In a changing environment, some variables can have values that change over time. In
dynamic Bayesian networks, multiple copies of the variables are represented, one for each
time step (Pearl & Russell, 2000). Figure 4 illustrates a dynamic Bayesian network that
models the three-way co-occurrence data among users, products and concepts at different
time-steps. Each time-step corresponds to a different web page being browsed. This model
merges a Hidden Markov Model2 and a naïve Bayes model.

2 A Hidden Markov Model is a temporal probabilistic model, where each time step has one observed variable

depending on one hidden variable. The hidden variables are distributed according to a Markov process.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

25

Figure 4: A Dynamic Bayesian Network

3.5 Conditional Independence in Bayesian Networks

A Bayesian network represents conditional independencies between variables (Nilsson,
1998). Using the conditional independencies encoded in the Bayesian network graph
structure together with the conditional probability matrices, the full joint probabilities of all
the variables represented in the network can be reconstructed. In the next sections, we will
discuss two forms of independencies in the Bayesian network representation. The first form
involves the parents of nodes, and the second form is called d-separation.

3.5.1 Conditional Independence involving the Parents of a Node

In a Bayesian network, each node is conditionally independent of all its non-descendent
nodes, given its parent nodes. Pearl & Russell (2000) refer to this as the “local semantics” of
a Bayesian network. Pearl & Russell further refer to equation (17) as the “global semantics”
of a Bayesian network. Eqs. (17) and (18) are global distributions described in terms of local
distributions. For example, using the local semantics of the Bayesian network in Figure 2,

) (21) |(),|(zcPzucP =

The local semantics of Bayesian networks make this technology ideal for distributed
implementation.

3.5.2 D-Separation

D-separation is another form of conditional independence encoded in a Bayesian network.
Nilsson (1998) describes and illustrates d-separation, as follows:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

26

Two nodes X and Y are conditionally independent given a set of evidence nodes (that is,
) if, for every undirected path in the Bayesian network between X and Y, there is

some node, B, on the path having one of the following three properties (see Figure 5):

ε
)|,(εYXI

1. B is in , and both arcs on the path lead out of B (for example Bε l in Figure 5).

2. B is in ε , and one arc on the path leads in to B and one arc leads out (for
example B2 in Figure 5).

3. Neither B nor any descendant of B is in , and both arcs on the path lead in
to B (for example B

ε
3 in Figure 5).

Figure 5: Conditional Independence via Blocking Nodes (Nilsson, 1998)

When any one of the above conditions holds for a path, it is said that node B blocks the
path between X and Y, given . Note that the paths referred to are undirected paths, that is,
paths that ignore arc directions. If all paths between X and Y are blocked, then it is said that

 d-separates X

ε

ε and Y (direction-dependent separation) and the conclusion can be made that
X and Y are conditionally independent given . ε

In Figure 5, X is independent of Y given the evidence nodes because all three paths
between them are blocked. The nodes Bl, B2 and B3 are blocking nodes.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

27

3.6 Bayesian Learning

Bayesian learning can be described as finding a network and calculating the conditional
probability matrices for a set of training data consisting of a set of instances for the variables.
Table 1 is an example training set for the Bayesian network in Figure 2.

U:User C:Content P:Product Number of Instances

m st nn count1

m st bb count2

m sp nn count3

m sp bb count4

r st nn count5

r st bb count6

r sp nn count7

r sp bb count8

Total ∑
=

8

1
icount

i

Table 1: A Training Set

Note that there are no entries for Z, as Z is a latent variable, and it must be treated as
“missing data”. For a complex adaptive system, the training data is the input stream over a
given time period. A training set is characterized by the number of parameters it has as well
as the number of samples in the training set. For each combination of different values for
variables, there will be one entry in the training set table, called a parameter. For each
parameter, there is a count of the number of instances in the training data that had these
values for its variables. The total number of samples is the sum of all the instances in the
training set.

There are different conditions that can influence Bayesian learning. The structure of the
Bayesian network can be known or unknown and the variables can be observable or hidden.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

28

3.6.1 Known Structure

If the structure of the Bayesian network is known, then only the conditional probability
matrices need to be calculated. If there is missing data the calculations differ from the case
when there is no missing data.

3.6.1.1 No Missing Data

For a known network structure and no hidden variables, the values of the conditional
probability matrices are easy to calculate from the sample statistics for each node and its
parents (Nilsson, 1998).

3.6.1.2 Missing Data

If the network structure is known, but there are hidden variables or missing data, the
Expected Maximization (EM) algorithm is commonly used to calculate the conditional
probability matrices. This algorithm will not be described here, as a detailed study of
Bayesian learning falls outside the scope of this research. Russell & Norvig (2003) describe
this algorithm and its use in detail.

Nilsson (1998) describes how the EM algorithm can be used to calculate the conditional
probability matrices if there are missing data or hidden variables. The process starts by
assigning random values to all the cells of the conditional probability matrices. Conditional
probabilities (weights) are then calculated for the missing data, given the values of the
observed data. These weights are then used to estimate new conditional probability matrices,
until the matrices converge, which according to Nilsson, are guaranteed and mostly rapid.

3.6.2 Unknown Structure

If the structure is unknown and all the variables are observable, then the learning problem
involves a search through the possible structures to find the structure that represents the data
best, followed by the updating of the conditional probability matrices.

Nilsson (1998) describes a scoring metric that can be used to compare different structures
in order to choose the structure that represents the data best (Eqs. (22) and (23)), which we
summarize below:

The scoring metric measures the minimum description length of the joint probability of a
set of variables in a training set.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

29

Suppose the training data, Ξ , consists of m samples: where each is an n-

dimensional vector of values of the n variables. P(
m1 vv ,..., iv

Ξ) is then the joint probability
. Assuming that each datum is provided independently according to the

probability distribution specified by the Bayesian network B, then

),...,(m1 vvP

∏
=

=Ξ
m

i
iPP

1

)()(v (22)

The scoring metric is

2
log

)(log,(L
1

m
P

m

i
i

B-B) += ∑
=

Ξ v , (23)

where B is the number of parameters in network B, and m is the number of samples in

the training set . As an example, using Eqs. (5) and (18), the probability of the first entry in
Table 1 is:

Ξ

∑=

====

z
znnPzstPmzPmP

nnPstCmUP
EntryFirstP

)|()|()|()(
),,(

)(

 (24)

As Z is a hidden variable, the EM algorithm must first be used to fill the conditional
probability matrix of node Z, before Eq. (24) can be calculated.

The Bayesian network that has the minimum value for),(BΞL will have the minimum
description length. Nilsson describes how to find such a network, using a gradient descent
method, which we summarize below:

This method starts with the assumption that there are no conditional relationships between
variables (no arcs in the Bayesian network). Arcs are then added or deleted, one by one, or
their directions are deleted, and the networks that decrease),(BΞL is chosen. This
computation is decomposable into computations over each conditional probability matrix in
the network. Each total scoring metric is the sum of the local scoring metrics. Every time an
arc is added, deleted or reversed, only the local changes need to be taken into account
(Nilsson, 1998).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

30

Applied to our three-way aspect model illustrated in Figure 2, these calculations will be as
follows:

A local minimum must be found for L, which is:

2
log

)(log),(
,,

m
u,c,pPL

pcu

B-B += ∑Ξ (25)

where can be calculated as in Eq. (20), and the number of samples

and the number of parameters

)(u,c,pP

∑
=

=
8

1
icount

i
m 8=B (See Table 1).

Nilsson (1998) describes how the use of hidden variables can reduce the value of L
significantly. Hidden variables cannot be observed, and the gradient descent search process
must therefore invent them. Hidden nodes that can possibly simplify the causal relationships
between variables must be added during the search, and the values of these variables are then
“missing values” that must be estimated using the EM algorithm. If the addition of a hidden
node decreases the minimum description length of the network, it can be added as a node.

3.7 Bayesian Inference

Bayesian inference is the process of calculating the posterior probability of a hypothesis H
(involving a set of query variables) given some observed event (assignments of values to a
set of evidence variables e), see Eq. (11) (repeated below).

)(
)()|()|(

eP
HPHePeHP =

Bayesian inference takes the conditional independencies represented by the Bayesian
network into account.

Figure 6 illustrates the results of Bayesian inference in the network in Figure 2, in the
presence of evidence ={C = st}. Node C, the evidence node, is circled. The new posterior
probabilities updated during inference are indicated on nodes P, Z and U.

e

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

31

In the presence of the evidence, namely that a user is interested in statistical concepts, an
example posterior probability is:

 55.0)|()|(==== stCmUPeHP

The posterior probability of the hypothesis that he/she is a mathematician rises from 0.4 in
Figure 2 to 0.55. Another example:

55.0)|()|(==== stCnnPPeHP

The posterior probability of the hypothesis that he/she will be interested in a book on
neural networks authored by Professor Michael Jordan rises from 0.43 in Figure 2 to 0.55.

Z: Class

P: Product
C: Content

U: User

1.0

c1

c2

st 0.45

0.55
nn
bb

0.41

0.59
c1
c2

0.45

0.55

r
m

Figure 6: Bayesian Inference Example

Bayesian inference can be either exact or approximate. In exact inference, the posterior
probability of a hypothesis is calculated, but in approximate inference, the posterior
probability of a hypothesis is approximated using randomised sampling algorithms.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

32

Bayesian inference can be executed in a top-down or bottom-up fashion, or using a
combination of both. Top-down inference in a Bayesian network is called causal inference,
and bottom-up inference is called diagnostic inference.

• Causal or top-down inference is the process of determining the probabilities of
effects from given causes, that is, when the evidence is above a given node in
the Bayesian network. For example, calculating

e
)|(mUspCP == in Figure 2 is

an example of causal inference involving the calculation of the probability of the
effect from the causal evidence spC = mU = above node C.

• Diagnostic or bottom-up inference is the process of determining the probabilities
of causes from given effects, that is, when the evidence is below a given node
in the Bayesian network. For example, calculating

e
)|(stCmUP == in Figure 2

is an example of diagnostic inference involving the calculation of the probability
of the cause from the diagnostic evidence mU = stC = below node U.

• A combination of causal and diagnostic inference is the process of determining
the probabilities of values for a variable from given causes and effects, that is
when the evidence e contains values for nodes above and below a given node in
the Bayesian network. For example, calculating),|(1 nnPmUcZP === in
Figure 2 is an example of a combination of causal and diagnostic inference
involving the calculation of the probability that)(1cZP = from the combined
causal evidence above node Z and the diagnostic evidence below
node Z.

mU = nnP =

Bayesian inference is NP-hard (Pearl, 1988) (Dechter, 1996). In order to simplify
inference, Bayesian networks are simplified to trees or singly-connected polytrees. A tree is a
DAG in which each node has only one parent (Pearl, 1988). A singly-connected polytree is a
DAG in which the nodes can have multiple parents, but with the restriction that there is only
one path, along arcs in either direction, between any two nodes in the DAG (Nilsson, 1998)
(Pearl, 1988).

Some implementations of exact Bayesian inference use mechanical methods to calculate
probabilistic queries about variables given evidence from the environment. Nilsson (1998)
describes recursive algorithms that use conditional independencies and Bayes’ rule to rewrite
the probabilities that must be calculated in terms of the conditional probabilities specified by
the Bayesian network. In the variable elimination approach, summations are performed over

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

33

variables in order to eliminate them from the network (Pearl, 1988). The elimination
approach is based on non-serial dynamic programming algorithms, which suffer from
exponential space and exponential time difficulties. Dechter (1996) combined elimination
and conditioning in order to address the problems associated with dynamic programming.

Judea Pearl developed a distributed message-passing algorithm for trees (Pearl, 1982) and
a general algorithm for singly-connected polytrees called belief propagation (Kim & Pearl,
1983). This algorithm was extended to general multiply-connected networks by different
researchers. Two main approaches exist, namely Judea Pearl’s cycle-cutset approach and the
tree-clustering approach. The cycle-cutset and tree-clustering approaches work well only for
sparse networks with small cycle-cutsets or clusters. The belief propagation algorithms for
general multiply-connected networks generally have two phases of execution. In the first
phase, a secondary tree is constructed. This can for example be a “good” cycle-cutset used
during conditioning (Becker, Bar-Yehuda & Geiger, 2000) or an optimal junction tree used
by tree-clustering algorithms (Jensen, Jensen & Dittmer, 1994). In the second phase, the
secondary tree structure is used for inference. Becker et al. argue that finding a “good” cycle-
cutset is NP-complete and finding an optimal junction tree is also NP-complete (Becker &
Geiger, 1996). A number of approximation algorithms were developed to find the secondary
trees, as in (Becker et al.) (Becker & Geiger).

It is possible to use the original Bayesian network during belief propagation. Diez (1996)
describes a conditioning algorithm that uses the original Bayesian network during belief
propagation and detects loops using the DFS (Depth-First Search) algorithm.

Approximate Bayesian inference methods are based on randomised sampling algorithms. In
approximate inference, approximate answers are given to queries, and the accuracy of these
answers depends on the number of samples generated. Russell & Norvig (2003) describe
sampling applied to the computation of posterior probabilities, as well as variational
approximation methods. Pearl’s belief propagation algorithm is an approximation method for
general (multiply-connected) networks. The results will not necessarily be correct, and
messages might circulate indefinitely around loops, but the values obtained are usually very
close to the true values (Pearl, 1988) (Russell & Norvig, 2003).

A detailed study of Bayesian inference and learning falls outside the scope of this research.
The prototype implementation uses belief propagation and learning in singly-connected
Bayesian networks with known structure. An overview of belief propagation will be given in
the next section, and the belief propagation algorithm itself will be described in more detail
in Chapter 6.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

34

3.7.1 Belief Propagation

Belief propagation is the process of probabilistic inference in Bayesian networks using
message passing. Pearl (1988) describes two forms of belief propagation, namely belief
updating and belief revision.

(Pearl, 1988) describes belief updating as the process of

propagating the impact of new evidence and beliefs through
Bayesian networks so that each proposition eventually will be
assigned a certainty measure consistent with the axioms of
probability theory,

and the aim of belief revision as

not to associate a measure of belief with each individual
proposition, but rather to identify a composite set of
propositions – one from each variable – that best explains the
evidence at hand.

The composite set of propositions identified during belief revision is called the most
probable explanation (MPE) for the variables in the presence of evidence (e).

Dechter (1996) defines the MPE as the maximum assignment x in

∏ =
=

n

i ixx ,e)| P(xP(x)
1

)(maxmax ixpa (26)

(See Eq. (17) for the meaning of above).)(ixpa

Belief revision is very complex, and according to Pearl (1988)

We do not ordinarily reason that way, though; in trying to
explain the cause of a car accident, we do not raise the
possibility of lung cancer merely because accidents and lung
cancer can both lead to the same eventual consequence –
death. Computationally, it appears that in large systems, the
task of finding the most satisfactory explanation would require
insurmountable effort.

For this reason, we only consider belief updating in the rest of this thesis. When we refer to
belief propagation, we assume belief propagation using belief updating.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

35

Judea Pearl’s belief propagation algorithm is a general algorithm for exact inference in
singly-connected networks. The goal of this algorithm is to update the marginal probabilities
of each node in the network, taking into account the new evidence. Evidence is propagated
through the network using π -messages propagated between each parent and its children, and
λ -messages propagated between the children of each parent.

In a singly-connected Bayesian network, an arbitrary link XY divides the evidence into the
evidence above the link , and the evidence below the link, , illustrated in Figure 7. XYe+

XYe−

Figure 7: Separation of Evidence by a Link

The π - messages propagated from node X to each of its children Yi is the probability of
each setting of X and the evidence in ()). The iXYe+ ,(jXYexP + λ - messages propagated

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

36

)

from each child node Yi to its parent X is the probability of the evidence in given each

setting of X ().
jXYe−

|(xeP jXY
−

In a singly-connected Bayesian network, an arbitrary node X divides the evidence into that
connected to its causes (prior evidence) and that connected to its effects (observed
evidence), illustrated in Figure 8.

Xe+
Xe−

Figure 8: Separation of Evidence by a Node

The prior probabilities vector () of node X is calculated as the product of all the)|(XxP +e
π -messages obtained from the parents of node X, weighted by the conditional probability of
node X given its parents. The likelihood vector () of node X is calculated as the
product of all the

)|(xeP X
−

λ -messages obtained from the children of node X. The marginal
probability of node X is the normalized product of the prior probabilities vector and the
likelihood vector. This probability is referred to as the belief of node X.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

37

3.8 Bayesian Networks as Hyperstructures

Bayesian networks are ideally suited to be used as adaptive hyperstructures in internal
models. Bayesian learning can be used to adapt to environmental changes, and belief
propagation to reason about what action to take next given environmental conditions. A
system that uses Bayesian networks in this manner will satisfy Holland’s flows and diversity
properties and tagging and internal model mechanisms as follows:

1. Flows (Property) – If a Bayesian network is implemented using a set of agents,
where each agent implements a network node, and where the agents communicate
with each other according to the network links, using messages in correspondence
to the belief propagation algorithm, the flows property will be satisfied. The flows
are in terms of λ - messages exchanged between children and their parents and π -
messages exchanged between parents and their children during belief propagation.
The flows will vary over time, depending on evidence received from the
environment.

2. Tagging (Mechanism) – Tags facilitate selective interaction. In order to implement
the belief propagation algorithm, this mechanism must be implemented. Tagging
will enable parents to identify their children in order to send them π -messages and
children will be able to select their parents in order to send them λ -messages.

3. Diversity (Property) - Bayesian learning will enable a system to cope with diversity
by incrementally discovering regularities in the input stream. Each new adaptation
in the Bayesian network can be used to activate different or new actions or
interactions.

4. Internal Models (Mechanism) – A system that uses Bayesian networks as
hyperstructures in its internal model, will be able to anticipate and predict. The
ability of Bayesian learning to discover structure from data, will enable the
“mining” of regularities from the input stream and the integration thereof into the
Bayesian network topology. The modified internal model will then enable the
complex adaptive system to anticipate the consequences that follow when a similar
pattern is encountered.

A system that uses Bayesian networks as hyperstructures can only function as a complex
adaptive system if it satisfies Holland’s other properties and mechanisms as well. In order to
achieve this, the agents that implement the Bayesian networks must be organized into
adaptive aggregates (aggregation property), having collective behaviour that is more

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

38

complicated than would be predicted from summing or averaging their individual behaviours
(non-linearity property) and these agents must be implemented using re-usable components
(building blocks mechanism).

3.9 Conclusions

Bayesian networks can be used as hyperstructures in the internal model of a complex
adaptive system enabling such a system to understand and explain the causal relationships
between its own emergent behaviour and the local interactions between agents in the system
generating the collective behaviour.

Bayesian learning will enable the system to incrementally “mine” regularities from the
input stream, and to encode these regularities into the Bayesian network graph structure
constituting the hypergraphs in the internal model. Bayesian learning algorithms are
generally decomposable and can be implemented by multiple agents collectively learning
from experience.

Belief propagation is a general algorithm for exact inference in singly-connected Bayesian
networks. It uses message passing between nodes in a network in order to update the
marginal probabilities in the network taking into account new evidence. The belief
propagation algorithm exploits the conditional independencies encoded in the Bayesian
network graph structure. It uses localized message passing between parents and children and
between children and parents in order to propagate beliefs through the network. This
algorithm can also be applied to general (multiply-connected) Bayesian networks as an
approximation method. The results will not necessarily be correct, and messages might
circulate indefinitely around loops, but the marginal probabilities will be very close to the
true values.

A system that implements the Bayesian networks in its internal model using agents that can
collectively learn using Bayesian learning and that interact with each other in accordance to
the belief propagation algorithm, satisfies Holland’s flows and diversity properties as well as
the tagging and internal model mechanisms. In order to function as a complex adaptive
system, these agents must be implemented in such a way that they satisfy Holland’s other
properties and mechanisms, namely the aggregation and non-linearity properties, as well as
the building blocks mechanism.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

39

Chapter 4
Agent Architectures

And you, like me
like any river or creature
like any season or drum
will move any and every day
to a particular rhythm
without even thought to it

We live under the sun,
if we do, and die here
when we do, where all is
collected, collective, and old
as childbirth or death

- Keorapetse Kgositsile

4.1 Overview

A complex adaptive system in nature “moves to” the “rhythms” and regularities in its
environment by using agents, organised into adaptive aggregates (agencies), interacting with
each other and collectively acting in response to environmental changes. We refer to such a
collection of agents and adaptive aggregates as an adaptive agent architecture. There are two
other types of (non-adaptive) agent architectures, namely deliberative and reactive agent
architectures. An adaptive agent architecture can learn from its environment, whereas
deliberative and reactive agent architectures cannot.

An agent architecture consists of one or more agents. These agents are organised into one
or more agencies according to the functionality that they collectively achieve. These
agencies, in turn, are organised into an organisational structure, usually a hierarchy,
depending on their inter-relationships. Even though the concept of an agent is widely used in
the research community, there is a lot of confusion on what the term “agent” means. This
chapter will define the underlying concepts of agents and agencies, hierarchies and
heterarchies and will attempt to create some order out of the terminology chaos. It will then
proceed to define what an agent architecture is, and will describe the differences between

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

40

deliberative, reactive and adaptive agent architectures. Two representative deliberative and
reactive agent architectures are discussed and analysed with respect to Holland’s properties
and mechanisms.

Adaptive agent architectures are reactive agent architectures that can learn from
experience. This chapter describes how learning can be incorporated into a reactive agent
architecture in order for it to become adaptive.

4.2 Agents: what Confusion!

Agents are commonly viewed as the next-generation model for engineering complex,
distributed systems. There is, however, no consensus in the research community on what an
agent is. Some researchers refer to single beings as agents (complex agents), while other
researchers refer to independent components within a single being or system as agents
(simple agents).

Minsky (1988) first established the concept of simple unintelligent agents combined into
intelligent agencies. He describes the mind as a “society” of tiny components that are
themselves mindless. He refers to each of these components as agents. His simple agents
combine into (sub)societies, called agencies. The agencies are intelligent through the
interaction amongst the (unintelligent) agents. According to Minsky (1988), an agent is:

Any part or process of the mind that by itself is simple enough
to understand - even though the interactions among groups of
such agents may produce phenomena that are much harder to
understand

Most researchers use the term “agent” to refer to complex agents rather than to simple
agents. Jennings et al. (1998) define an autonomous agent as:

a computer system, situated in some environment, that is
capable of flexible autonomous action in order to meet its
design objectives.

Maes (1994) defines an agent as:

a system that tries to fulfil a set of goals in a complex, dynamic
environment. An agent is situated in the environment: it can

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

41

sense the environment through sensors and act upon the
environment using its actuators.

According to Maes, such an agent is autonomous if:

it operates completely autonomously, i.e. if it decides itself how
to relate its sensor data to motor commands in such a way that
the goals are attended to successfully

and adaptive if:

it is able to improve over time, i.e. if the agent becomes better
at achieving its goals with experience … i.e. being able to
change and improve behaviour over time.

4.3 Agencies – Order out of Chaos

Simple and complex agents share one common concept, namely the concept of agency.
Working with the concept of agencies rather than with the concept of agents, can help to
create order out of the terminology chaos. In this section, the concepts of agents and agencies
are defined, and a description is given of how complex and simple agents share the same
concept of agency.

The Oxford Dictionary defines an agent as something that acts or produces an effect and
an agency as the function of such an agent.

A software agent can be defined as:

a software entity that can interact with its environment (adapted from Object Management
Group, 2000).

Agents are grouped into agencies, where the definition of an agency is:

any collection of simple agents considered in terms of what it can accomplish as a unit,
without regard to what each of its constituent agents does by itself (adapted from Minsky,
1988).

An agent that can accomplish all its goals independently from other agents forms a single
agency consisting of this particular agent as its sole member, having the same functionality
as the agent.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

42

Agents that collectively accomplish goals are grouped into agencies according to the
functionality that they collectively achieve.

An agency can have one or more of the following characteristics. The following definitions
were adapted for agencies from the characteristics of complex agents given by the Object
Management Group (2000).

• Autonomy: the capability to act without direct external intervention. The agency
has some degree of control over its internal state and actions based on its own
experiences;

• Interactivity: the ability to communicate with the environment and other agencies;

• Adaptivity: the capability to respond to other agencies and/or the environment to
some degree. Advanced forms of adaptivity permit an agency to modify its
behaviour based on its experience;

• Sociability: the ability to interact in a friendly and pleasant manner;

• Mobility: the ability to transport itself from one environment to another;

• Proxy: the ability to act on behalf of someone or something;

• Proactivity: the capability of goal-oriented, purposeful behaviour. The agency does
not simply react to the environment;

• Intelligence: intelligence of an agency emerges from interactions amongst agents
in the agency, and from interactions between the agents and the environment
(Brooks, 1991);

• Rationality: the ability to choose an action based on internal goals and the
knowledge that a particular action will bring the agency closer to its goals;

• Unpredictability: the ability to act in ways that are not fully predictable, even if the
initial conditions are known;

• Temporally continuous: the ability to run continuous;

• Character: believable personality and emotional state;

• Transparency and accountability: must be transparent when required, yet provide
a log on demand;

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

43

• Coordinative: ability to perform some activity in a shared environment with other
agencies;

• Collaboration: Ability to cooperate with other agencies to achieve a common
purpose;

• Competitiveness: Ability to coordinate with other agencies except that the success
of one agency implies the failure of others (opposite of collaboration);

• Ruggedness: Ability to deal with errors and incomplete data robustly;

• Trustworthiness: Is truthful.

An agent can belong to more than one agency, if it contributes to the characteristics of
different agencies. An agent that is the sole contributor to the characteristics of an agency
will be the only member of that agency.

4.4 Hierarchies and Heterarchies

Agents can be organized into hierarchies or heterarchies. According to Minsky (1988), a
hierarchical organization is:

 like a tree in which the agent at each branch is exclusively
responsible for the agents on the twigs that branch from it

Heylighen, Joslyn & Turchin (2001) define a heterarchy as:

A form of organization resembling a network or fishnet.
Authority is determined by knowledge and function.

Heterarchies are more powerful than hierarchies (Minsky, 1988). We view a hierarchy of
agents as a simplified heterarchy of agents. Agencies in turn, can be organized into
hierarchies or heterarchies. As with agents, we view a hierarchy of agencies as a simplified
heterarchy of agencies.

Potgieter & Bishop (2001) define the relationship between agents, agencies and
heterarchies as follows:

An agency consists of a society of agents that inhabit some
complex dynamic environment, where the agents collectively
sense and act in this environment so that the agency
accomplishes what its composite agents set out to accomplish

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

44

by interacting with each other. If agents in a society belong to
more than one agency, the set of “overlapping” agencies forms
a heterarchy.

4.5 Multi-agent Systems

According to Jennings (2001), a collection of interacting autonomous agents forms a multi-
agent system. This definition applies to complex agents only.

The Object Management Group (2000) has a more general definition that applies to both
simple and complex agents. According to them, multi-agent systems are:

systems composed of agents, coordinated through their
relationships with one another.

We prefer to define multi-agent systems in terms of agencies, as follows:

A multi-agent system is a collection of interacting agencies.

4.6 Agent Architectures

4.6.1 What is an Agent Architecture?

Agent architectures are software engineering models of agents (Wooldridge & Jennings,
1995). Agents in an agent architecture are organised into agencies, which in turn are
organised into hierarchies or heterarchies.

Agent architectures provide a new and natural way to analyse, design and implement
complex software systems (Jennings et al., 1998).

Brooks (1991) identifies four desirable properties of agent architectures, namely
situatedness, embodiment, intelligence and emergence. We adapted Brooks’ definitions of
these characteristics in terms of agencies as follows:

• Situatedness: The agencies are situated in their environment (the world) – they do
not use abstract descriptions of their environment. The state of the environment
directly influences the behaviour of the agencies;

• Embodiment: The agencies experience their environment directly. Their actions
are part of dynamic interaction with the world, and this changes their experience of
the world;

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

45

• Intelligence: The agencies are observed to be intelligent. Their intelligence comes
from the state of the environment and how the agencies interact amongst
themselves and with the environment;

• Emergence: New global behaviours of the system emerge from the interactions
between agencies and their environment and from the interactions amongst
themselves.

There are three types of agent architectures, namely deliberative, reactive and adaptive
agent architectures.

A deliberative agent architecture maintains a symbolic internal world model that it
manipulates. This world model is a representation of the states of the environment, which is
then used by a generalized control strategy during reasoning to determine what actions to
take. The popular and widely used Belief-Desire-Intention (BDI) architecture (Rao &
Georgeff, 1995) is an example of a deliberative agent architecture. These architectures
exhibit varying degrees of situatedness and embodiment depending on the complexity of the
symbolic world models they maintain, but these architectures lack emergence.

A reactive agent architecture is an agent architecture that reacts and responds directly to
the states of the world. These architectures are characterized by situatedness, embodiment,
intelligence and emergence (Brooks, 1991). Examples of reactive agent architectures include
the Subsumption Architecture (Brooks, 1985) and agents that use behaviour networks (Maes,
1989).

An adaptive agent architecture is an agent architecture that can learn from experience in
addition to the characteristics identified by Brooks (situatedness, embodiment, intelligence
and emergence) – therefore able to function as a complex adaptive system.

In order for an agency to achieve its goals, it must perform an ongoing process of action
selection - that is the process of deciding what to do next. Deliberative agent architectures
use deliberative planning in which an agency constructs a sequence of steps that will
guarantee to move an agent from its present state to its goal state. Reactive planning in
reactive agent architectures chooses only the next action, given the current state of the
environment. Adaptive planning in adaptive agent architectures chooses only the next action,
given the current state of the environment and experience.

The difference between deliberative, reactive and adaptive agent architectures can be
described as knowledge vs. control. In a deliberative agent architecture, the states of the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

46

environment are separate from the control. In a reactive or adaptive agent architecture, the
states of the environment are part of the control.

4.6.2 Deliberative Agent Architectures

4.6.2.1 Overview

A deliberative agent architecture is an agent architecture that maintains an explicit symbolic
model of the world, and it uses logical or pseudo-logical reasoning based on pattern matching
and symbolic manipulation for decision-making (Wooldridge & Jennings, 1995). These
architectures are by far the most popular and widely used agent architectures.

Wooldridge & Jennings describe the following problems associated with these architectures,
namely:

• How to translate the world into and accurate symbolic description in time to be
useful (this will determine the degree of situatedness); and

• How to symbolically represent information about complex real-world processes
and how to reason about this information in time for the results to be useful (this
will determine the degree of embodiment).

These problems, together with the lack of emergence, make deliberative agent
architectures unsuitable for the implementation of complex adaptive systems, although they
may be well suited to other complex systems. In the next section, the popular Belief-Desire-
Intention and Belief-Desire-Joint-Intention agent architectures are described. Even though
these architectures fall outside the scope of this thesis, they are described as they use well-
principled software engineering methodologies. The methodology proposed in this thesis to
engineer emergence, extends software engineering methodologies currently applied to
deliberative agent architectures as a point of departure.

4.6.2.2 The Belief-Desire-Intention (BDI) Architecture

The Belief-Desire-Intention (BDI) Architecture is a deliberative agent architecture for single
complex agents, developed by Rao & Georgeff (1995). This architecture implements a single
agency consisting of a single complex agent determining the functionality of the agency. A
BDI agent has a mental state consisting of three components, namely beliefs, desires and
intentions, representing the information, motivational and deliberative states of the agent.
The beliefs represent information about the agent’s environment, the desires represent the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

47

different “options” available to the agent and the intentions represent chosen states that the
agent has committed resources to (Jennings et al., 1998).

Each agent maintains a behavioural model containing all possible states of the
environment, and all possible actions that can be taken by the agent. This model is referred to
as the “possible worlds” model. We summarize Rao and Georgeff’s description of the
possible worlds model below:

The states of the environment and possible actions that an agent can take are modelled by a
decision tree that consists of choice nodes, chance nodes and terminal nodes. The choice
nodes represent the options available to the system and the chance nodes represent the states
of the environment. A probability function maps chance nodes to real-valued probabilities
and a pay-off function maps terminal nodes to real numbers. A deliberation function chooses
one or more best sequences of actions to perform at a given node. The objectives of the agent
are identified by particular paths through the tree structure, each labelled by the objective it
realizes and if necessary, a benefit or payoff obtained by traversing this path. This decision
tree and its deliberation functions are then transformed into beliefs, desires and intentions as
separate relations over the set of possible worlds.

The process of creating the possible world decision trees starts with the full decision tree.
The process starts at the root node, and each arc is traversed. For each unique state labelled
on an arc emanating from a chance node, a new decision tree is created, identical to the
original tree, except that the chance node is removed and the incident arc to the chance node
is now connected to the successor of the chance node. This process is carried out repeatedly
until there are no more chance nodes left. This process yields a set of decision trees, where
each decision tree corresponds to a different possible world with a different probability of
occurrence. The payoff function is finally assigned to the appropriate paths.

The resulting possible worlds-model contains two types of information, namely the
probabilities across the worlds and the payoff functions assigned to paths. This information is
used to define accessibility relations. The probabilities are represented in the belief-
accessibility relation and the payoffs in the desire-accessibility relation. Given a decision tree
and the above transformations, an agent can use the deliberation function to decide on the
best course of action. A third accessibility function can now be defined over the possible
worlds, namely the intention-accessibility relation corresponding to the intentions of the
agent. For each desire-accessible world, there exists a corresponding intention-accessible
world that contains only the best course(s) of action determined by the deliberation function.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

48

The possible world model consists of a set of possible worlds, where each possible world
is a tree structure. An index within a possible world is called a situation. With each situation
is associated a set of belief-accessible worlds, desire accessible worlds, and intention-
accessible worlds. These worlds correspond to what the agent believes to be possible, desires
to bring about, and intends to bring about, respectively.

The abstract BDI architecture uses three data structures representing the agent’s beliefs,
desires and intentions, together with an input queue of events, including internal and external
events.

Rao & Georgeff ‘s main interpreter loop is given below:

BDI-Interpreter
initialize-state();
repeat
 options := option-generator(event-queue);
 selected-options := deliberate(options);
 update-intentions(selected-options);
 execute();
 get-new-external-events();
 drop-successful-attitudes();
 drop-impossible-attitudes();
end repeat;

We summarize Rao & Georgeff’s description of the operation of their abstract BDI
architecture below:

At the beginning of every cycle, the option generator reads the event-queue and returns a
list of options. Next, the deliberator selects a subset of these options that can be adopted and
add these to the intentions structure. If there is an intention to perform an atomic action, the
agent executes it. Any events that have occurred during the interpreter cycle are then added
to the queue. Internal events are added as they occur. Next, the intention and desire structures
are modified by dropping all successful desires and satisfied intentions, as well as impossible
desires and unrealisable intentions.

Many BDI architectures have been implemented using Rao & Georgeff’s abstract BDI
architecture as basis. Examples include the Procedural Reasoning System (PRS) and
dMARS(distributed MultiAgent Reasoning System) (Rao & Georgeff, 1995). In PRS, an

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

49

agent’s beliefs are similar to PROLOG facts, its desires are the tasks allocated to it, and its
intentions represent the desires that it has committed to achieving (Wooldridge, 1997).

The BDI architecture cannot function as a complex adaptive system, as it does not satisfy
all Holland’s properties and mechanisms. The following properties and mechanisms are not
satisfied by this architecture:

• the aggregation property, tagging mechanism and flows property are not satisfied
as this agent architecture has a single agent in a single agency;

• the non-linearity property is not satisfied as the possible worlds model is a static
knowledge structure, which cannot exhibit emergent properties;

• the diversity property is not satisfied, as the possible worlds model is static and it
cannot be updated as events occur in the environment.

 The BDI architecture satisfies the following two of Holland’s mechanisms:

• the internal model mechanism – the possible worlds model forms the internal
model mechanism of the BDI architecture;

• the building blocks mechanism – the belief, desires, intentions and actions in this
architecture can be implemented as re-usable components.

4.6.2.3 The Belief-Desire-Joint-Intention Architecture

One of the agent architectures proposed to overcome the limitations of single complex agents
having individual intentions, was the Belief-Desire-Joint-Intention architecture described by
Jennings (1993).

Jennings defines a joint intention as

A joint commitment to perform collective action while in a
certain shared mental state.

What this means, is that an agency, consisting of more than one complex agent, has a
mental state of beliefs, desires and joint intentions, and each individual agent in the agency
has individual intentions.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

50

In Figure 9, we illustrate the major processes in the Belief-Desire-Joint-Intention
architecture using an object process diagram (OPD)3, which we constructed from the
description in (Jennings, 1993). In Figure 9, the objects are indicated by rectangles and
processes by ellipses. We summarize Jennings’ description of the processes in the Belief-
Desire-Joint-Intention architecture below:

There are two sources of events. Local events can be due to local problem solving or to
changes in the environment through the deliberative actions of the agents. Community events
occur elsewhere in the society. They can be detected directly through the receipt of a
message, or indirectly through perception or deduction. The monitor-event process monitors
these events. This process modifies the beliefs of an agent and decides when to raise a new
objective. This new objective is used by the means-end analysis reasoning process to decide
if this local objective should be met, and how best to realize it. For example, the agent might
already have other active intentions that might satisfy the new objective.

The means-end analysis process uses its library of recipes, which are sequences known by
an agent for fulfilling particular objects, together with its current intentions. It then reasons if
the objective must be pursued locally or in a collaborative fashion. If collaboration is
required, a new social act must be established. The agents that must collaborate can be
identified by one controlling agent, or by negotiation amongst agents in the community.

The individual actions are then identified using the intentions, joint intentions and
capabilities of the potential collaborators. Joint intentions cannot be executed directly, but
they are used during problem solving to bind the individual actions of the agents together. At
all times, coherency checking is done between individual intentions and joint intentions.

The Belief-Desire-Joint-Intention architecture satisfies the following of Holland’s
mechanisms and properties:

• the aggregation property – joint intentions group agents into agencies. The agents
in these agencies must collaborate to achieve these joint intentions;

• the tagging mechanism and flows property - agents have joint intentions, and they
collaborate, communicate and negotiate with each other, using messaging and
selective interaction;

• the internal model mechanism – implemented by the possible worlds model;

3 Object process diagrams are design diagrams proposed for UML 2.0 (Sight Code Inc., 2001)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

51

• the building blocks mechanism – the belief, desires, intentions, joint intentions and
actions in this architecture can be implemented as re-usable components.

Monitor
Events

Means-End
Analysis

Recipes

Joint
Intentions

Capabilities of
Others

Desires

Check
Coherency

Resolve
Inconsistency

Check
compatibility

Local Event Community Event

New
Objective

New Local
Objective

Intention
Consistent Inconsistent

Define Individual
Acts

New
Social Act

Identify
Potential

Participants

Intentions

Beliefs

Initialize
State

INPUT TO EVERY
OTHER PROCESS

Figure 9: The Belief-Desire-Joint-Intention Agent Architecture

 The Belief-Desire-Joint-Intention architecture cannot function as a complex adaptive
system. This architecture does not satisfy Holland’s non-linearity and diversity properties, as

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

52

the possible worlds model is a static knowledge structure that cannot exhibit emergent
properties and it cannot be updated as events occur in the environment.

4.6.3 Reactive Agent Architectures

4.6.3.1 Overview

Reactive agent architectures are characterized by situatedness, embodiment, intelligence and
emergence (Brooks, 1991). The next few sections give a brief overview of two representative
reactive agent architectures.

4.6.3.2 The Subsumption Architecture

The Subsumption Architecture (Brooks, 1985) is a reactive agent architecture for single
robots. Each robot (complex agent) consists of a set of task accomplishing behaviours as
simple agents, organized into multiple nested agencies. Each simple agent is a competence
module that is a finite state machine mapping perceptual input to action output (Jennings et
al., 1998).

Competence modules are organized into a hierarchy in which the level of abstraction and
authority increases from the bottom level upwards (Jennings et al., 1998). Each competence
module achieves a competence level that is an informal specification of the desired behaviour
of the robot in its environment (Brooks, 1988).

In Figure 10, we represent the competence levels in terms of a state diagram, which we
constructed from the description in (Brooks, 1985).

In our state diagram, each competence level is “nested” within in a higher competence
level. Each level of competence defines a class of valid behaviours, and each higher level of
competence adds additional constraints on the valid behaviours. A higher-level competence
module can inhibit the input of a lower level competence module and send its own output as
input to the lower level competence module. A higher-level competence module can also
suppress the output of the lower level competence module, therefore preventing it from
executing - “subsuming” its behaviour (Brooks, 1985).

The complexity of a robot increases with the number of competence levels it has.
Developing a robot that exhibits coherent behaviour is a process of carefully developing and
experimenting with new competence levels, usually by placing the robot in its environment
and observing the results (Jennings et al., 1998). Overall behaviour emerges from the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

53

behaviours of the individual competence modules when the robot is placed in its
environment.

Competence Level 5

Competence Level 4

Competence Level 2

Competence Level 0

Competence Level 1

Competence Level 3

Competence Level 6

Competence Level 7

Reason about behavior of Objects

Plan Changes in the World

Identify Objects

Monitor Changes

Build Maps

Explore

Wander

Avoid Objects

Figure 10: The Subsumption Architecture

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

54

Brooks (1985) describes the different levels of competence in the Subsumption
Architecture as follows:

• Competence Level 0: Avoid contact with moving or stationary objects;

• Competence Level 1: Wander aimlessly about without hitting things;

• Competence Level 2: “Explore” the world by seeing places in the distance which
look reachable, and head for them;

• Competence Level 3: Build a map of the environment and plan routes from one
place to another;

• Competence Level 4: Notice changes in the static environment;

• Competence Level 5: Reason about the world in terms of identifiable objects and
perform tasks related to certain objects;

• Competence Level 6: Formulate and execute plans which involve changing the state
of the world in some desirable way;

• Competence Level 7: Reason about the behaviour of objects in the world and modify
plans accordingly.

The engineering methodology followed in this architecture is a manual process in which
the software engineer must analyse the environment as well as the tasks that the competence
modules must accomplish. The behaviour of each competence level must be designed as well
as the interactions between the competence modules. Goals are implicit, known only to the
designer (Maes, 1994). The competence levels are designed and built layer by layer. The
process starts with building a complete robot achieving only competence level 0. It is
debugged thoroughly, and the next competence level is designed, built and debugged. This
process is repeated for the next competence level and so forth (Brooks, 1985).

In Figure 11 we illustrate the interactions between competence levels 0 and 1 in terms of a
state diagram, which we constructed from the LISP-like specification of the avoid module
defined in (Brooks, 1985).

The Subsumption Architecture uses an internal model consisting of static hyperstructures.
The hand-wired arbitration network is a hyperstructure, consisting of a set of suppression and
inhibition wires as well as simple arbitration circuitry. These wires form a network
connecting competence modules with each other. These hyperstructures have to be
handcrafted until the system exhibits the desired behaviour when operating in its

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

55

environment. The engineering of emergent behaviours in the Subsumption Architecture
consists of a laborious manual process of experimentation, trial and error (Jennings et al.,
1998). In a robot with many layers, the emergent behaviour becomes too complex to be
understood by the human software engineer (Jennings et al.).

Avoid Objects

Actuator

Sensor Input

Input Force

Input
Heading

select
direction

[Uninhibited]

[Uninhibited]

Follow
Force

[Unsupressed &
resultforce > 1.0]

Wander

Inhibit Suppress

Figure 11: Communication between Competence Levels 0 and 1

The Subsumption Architecture satisfies the following of Holland’s properties and
mechanisms:

• the aggregation property - the competence modules are aggregated into a
hierarchical structure of competence levels;

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

56

• the internal model mechanism is implemented by a set of suppression and
inhibition wires as well as simple arbitration circuitry. These wires implement the
hyperstructures as a network connecting competence modules with each other;

• the building blocks mechanism is implemented as each competence level re-uses
the competence modules in the lower competence levels;

• the non-linearity property is satisfied, as emergence is one of the main
characteristics of this architecture. The overall behaviour of the robot is emergent
and cannot be predicted from the individual behaviours of the competence
modules;

• the tagging mechanism and flows property are satisfied by competence modules
interconnected through a network of wires, selectively suppressing and inhibiting
each other (tagging). The competence modules are nodes interacting with each
other through the hand-wired circuitry. The flows in the network vary over time,
through constant interaction with the environment.

This architecture does not satisfy Holland’s diversity property. It cannot progressively
adapt to environmental changes, as it does not support learning. If learning is integrated into
this architecture as discussed by Maes & Brooks (1990), this property will be satisfied,
enabling this architecture to function as a complex adaptive system.

4.6.3.3 Behaviour Networks

In the reactive agent architecture of Maes (1989) a behaviour network is used to control
action selection in response to environmental states. These networks model the relationships
between “competence modules”. The competence modules react to states of the environment,
as well as to the spreading of activation energy along links in the behaviour network.

Figure 12 is an object-process diagram (OPD) for a simple toy robot, which we constructed
from the example given in (Maes, 1989). This toy robot has two hands, which it must use to
spray-paint itself and sand a board. This OPD represents the competence modules as
processes and the states of the environments that will influence these modules are linked by
arrows from the states to the competence modules. Arrows from the processes to the states
that will be changed indicate the effect of the competence modules on the environmental
states. The objects are indicated by rectangles, the states of objects are indicated by rounded
rectangles within objects and processes are indicated by ellipses. The states of objects
represent propositions about the states of the environment.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

57

Self Painted ?
No

Operational ?
Yes No

Board in Hand ?

YesNo

Board Somewhere ?

Yes
No

Sprayer In Hand ?
Yes No

Hand Empty ?

Sander Somewhere?

Yes No

Sander In Hand ?
YesNo

Yes No

Put Down
Sprayer

Put Down
Sander

Pick Up
Board

Hand 1 Empty ? Hand 2 Empty ?

Pick Up
Sprayer

Place Board
in Vise

Pick Up
Sander

Sand Board
In Vise

Spray Paint
Self

Sand Board
in Hand

Put Down
Board

Board in Vise ?
No Yes

Board Sanded ?
NoYes

Sprayer Somewhere ?
Yes No

Yes No Yes No

Yes

Figure 12: Object Process Diagram for a Simple Toy Robot

The initial state of the environment is represented by the lightly shaded states, namely hand
1 is empty, hand 2 is empty, the sander is somewhere, the board is somewhere and the robot
is operational. The goals of the environment are indicated by the dark shaded states, namely
that the toy robot must have painted itself and that the board must be sanded.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

58

Each of the competence modules can be viewed as a simple agent, and they are grouped
together into a single agency – the autonomous agent.

Maes (1989) describes each competence module i is a tuple , as follows:)(iiii α,d,a,c

• is a list of preconditions that must be fulfilled before the competence module can

become active and execute the behaviour;
ic

• is an add list of predicates which are expected to become true by execution of

the behaviour. Some of these predicates can be global goals that an autonomous
agent must achieve;

ia

• is a delete list of predicates, which are expected to become false by the

execution of the behaviour;
id

• is the level of activation of the competence module. iα

A competence module is executable at time t when all its preconditions are observed to be
true at time t . The competence modules react to states of the environment, and change the
states after their execution.

The software engineer designs an autonomous agent in terms of a behaviour network (also
called a spreading activation network), consisting of a number of nodes, representing
competence modules, linked together by causal links. In Figure 13 we illustrate the behaviour
network for the simple toy robot problem, which we constructed from the toy robot example
and the definitions of the successor, predecessor and conflicter links described in (Maes,
1989). We summarize these descriptions below:

Behaviour nodes are linked together by three types of links: successor links, predecessor
links and conflicter links. These links represent causal relations among the competence
modules. The links between competence modules can be described as follows:

• a successor link from a competence module x to every competence module y of
which a precondition might come true after the execution of module x. (We
indicated these links by the directional links in Figure 13 – the arrow points to the
successor node);

• a predecessor link from a competence module to every competence module that can
make a precondition true (For each successor link there is a predecessor link in the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

59

opposite direction as the successor link – we did not indicate these links in Figure
13);

• a conflicter link from a competence module to every competence module that
would make a precondition false. (We indicated these links by red dashed lines that
end in circles in Figure 13).

Pick Up
Sprayer

Place Board
In Vise

Pick Up
Board

Put Down
Sprayer

Spray
Paint Self

Put Down
Board

Pick Up
Sander

Put Down
Sander

Sand Board
In Hand

Sand Board
In Vise

Figure 13: A Behaviour Network

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

60

A compiler analyses the behaviour network and generates a circuit that will implement the
desired goal-seeking behaviour (Maes, 1994). Once implemented, the competence modules
will activate and inhibit each other along the links specified in the behaviour network, so that
after some time the activation energy accumulates in the competence modules that represent
the “best” actions to take given the current state of the environment and current global goals
of the autonomous agent (Maes, 1989) (Maes, 1990).

Once the activation level of a competence module surpasses a certain threshold, and if the
module is executable, it becomes active and executes real actions (Maes, 1989). The pattern
of spreading of activation and the input of new activation energy into the network is
determined by the current state of the environment and the current global goals of the
autonomous agent. Maes (1989) describes the spreading of activation, which we summarize
below:

• Activation by the State: There is an input of activation energy coming from the
state of the environment towards modules that partially match the current state. A
competence module matches the current state of the environment if at least one of
its preconditions is observed to be true;

• Activation by the Goals: Each competence module that achieves one of the global
goals (if it is a member of the add-list of the competence module) receives
activation energy;

• Inhibition by the Protected Goals: Each competence module that would undo one
of the global goals that has already been achieved (protected goals) gets inhibited –
that is some of its activation energy is removed. A competence module will undo a
goal if the goal is in its delete list;

• Activation of Successors: An executable competence module x spreads activation
forward to successors y along the successor links for which a shared proposition

 is not true, where is the add-list of x, and is the precondition-list

of y. This is to make the successor modules more executable since more of their
preconditions will become true after competence module x has executed;

yx cap ∩∈ xa yc

• Activation of Predecessors: A competence module x that is not executable
spreads activation backward to predecessors y for which a shared proposition

 is not true, where is the precondition-list of x, and is the add-list yx acp ∩∈ xc ya

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

61

of y. This is to make the predecessors that “promise” to fulfil preconditions that are
not yet true more executable after module x has executed;

• Inhibition of Conflicters: Every competence module x (executable or not)
decreases (by a fraction of its own activation level) the activation level of the
conflicters y for which the shared proposition is true. This is to prevent a module
that will undo its true preconditions from becoming active.

The algorithm performs in a loop, and in every time step the following computation takes
place over all the competence modules, summarized below from (Maes, 1989):

1. Compute the impact of the state of the environment, goals and protected goals;

2. Increase or decrease activation levels through successor, predecessor and conflicter
links;

3. Use a decay function to ensure that the overall activation level remains constant.

4. Competence modules that fulfil the following conditions become active:

(i) It must be executable;

(ii) Its level of activation must surpass a certain threshold;

(iii) When two competence modules fulfil these conditions, one is chosen
randomly;

(iv) If no module fulfils (i) and (ii), the threshold is lowered by 10 %.

The above four steps are repeated infinitely.

The behaviour networks implement the hyperstructures representing regularities in the
input stream, identified by the software engineer. These networks control action selection in
response to environmental states. These networks model the relationships between
“competence modules” that react to states of the environment, as well as to the spreading of
activation energy along links in the behaviour network. The networks are specified by the
system designer (also the external observer), and then compiled into circuit diagrams, which
are then implemented. Once implemented, the structure of the behaviour networks can only
be changed by recompilation and re-implementation. For this reason, these hyperstructures
are static. Testing if the autonomous agent meets its requirements consists of a process of
(human) observation, extensive testing and simulation.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

62

This architecture satisfies the following of Holland’s properties and mechanisms:

• the internal model mechanism is implemented by the behaviour network;

• the competence modules can be implemented as re-usable components;

• the non-linearity property is satisfied, as this architecture exhibits emergent
behaviour. The spreading of activation energy through the network, in response to
environmental states, causes emergent properties. The global behaviour of the agent
cannot be predicted from the individual behaviours of the competence modules;

• the tagging mechanism and flows property are satisfied by competence modules
interconnected by the behaviour network links. The competence modules can
selectively interact with each other through successor links, predecessor links and
conflicter links. Activation energy flows through the network in response to
environmental changes. The flows in the network vary over time, through constant
interaction with the environment.

The following of Holland’s properties and mechanisms are not satisfied by this
architecture:

• the competence modules are not aggregated;

• the diversity property is not satisfied, as this architecture cannot progressively
adapt to environmental changes, as it does not support learning.

If learning is integrated into this architecture as discussed by Maes & Brooks (1990), the
last property above will be satisfied.

4.6.4 Adaptive Agent Architectures

4.6.4.1 Overview

An adaptive agent architecture is an agent architecture that can function as a complex
adaptive system. These agent architectures have the same characteristics as reactive agent
architectures, namely situatedness, embodiment, intelligence and emergence with the added
characteristic that they can learn from experience.

Reactive agent architectures that cannot learn from experience are adaptive only in a
restricted sense in that they are able to deal with unexpected situations, but they cannot learn
from environmental feedback. They do not become better at achieving goals with experience

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

63

(Maes, 1994). They therefore do not have Holland’s diversity property. The next section
describes how learning can be implemented into a reactive agent architecture in order to
convert it to an adaptive agent architecture.

4.6.4.2 Learning

Maes (1994) describes the following requirements for learning, summarized below:

• Learning should be incremental – every experience should contribute to the
learning process;

• Learning should be biased towards learning knowledge that is relevant to the goals.
In complex environments, not all possible facts about the environment can be
learnt;

• Learning should cope with noise, probabilistic environments, etc.;

• Learning should be autonomous;

• Learning should be unsupervised;

• It must be able to add prior knowledge – learning everything from scratch is a
timely process.

Maes (1994) further describes three different classes of learning that can be implemented
in reactive agent architectures, namely reinforcement learning, classifier systems and model
builders, as follows: Given an agent with:

• A set of actions it can perform;

• A set of situations it can find itself in; and

• A scalar reward signal that it receives when the agent does something.

Reinforcement learning involves the learning of an action policy, or a mapping from
situations to actions so that an agent that follows that action selection policy maximizes the
cumulative discounted reward it receives over time. Q-learning is reinforcement learning in
which the agent tries to learn for every situation-action pair what the “value” is of taking that
action in that situation (Maes, 1994), (Maes & Brooks, 1990). These techniques have been
applied to multi-agent systems as well (Claus & Boutilier, 1998).

Classifier systems can be viewed as a special case of reinforcement learning systems. The
agent attempts to learn how it can optimise the reward it receives for taking certain actions in

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

64

certain situations. An agent has a set of rules or “classifiers”, and data about each rule’s
performance. The system maintains a “strength” for each rule that represents how “good”
that rule is (Maes, 1994).

Model builders learn a causal model of their actions. A probabilistic model is built
representing what the effects are of taking an action in a particular situation. This causal
model can then be used during arbitration to decide what action is the most relevant given a
certain situation and a certain set of goals (Maes, 1994).

Adaptive agent architectures that use Bayesian networks as hyperstructures in their internal
models satisfy all of Maes’ requirements for learning described above.

4.6.5 A Comparison between the Different Agent Architectures

In Table 2, the different types of agent architectures that we discussed are compared in terms
of the Holland’s properties and mechanisms.

Agent Architectures Deliberative Reactive

 BDI BDJI SA BN

Aggregation X √ √ X

Tagging X √ √ √

Non-linearity X X √ √

Flows X √ √ √

Diversity X X X X

Internal Models √ √ √ √

Building Blocks √ √ √ √

 Table 2: Comparison between Agent Architectures

In Table 2, the following abbreviations are used:

• BDI – Belief-Desire-Intention architecture;

• BDJI - Belief-Desire-Joint-Intention architecture;

• SA – Subsumption Architecture (no learning capabilities);

• BN – Agent Architecture using Behaviour networks (no learning capabilities).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

65

4.7 Conclusion

Even though there are different interpretations of the meaning of the term “agent”, simple
and complex agents share one common concept, namely the concept of agency. Agents are
grouped into agencies according to the functionality that they collectively achieve and
agencies are organised into hierarchies or heterarchies. A heterarchy is more powerful than a
hierarchy.

The difference between deliberative, reactive and adaptive agent architectures can be
described as knowledge vs. control. In a deliberative agent architecture, the states of the
environment are separate from the control, which make it impossible for these architectures
to act upon emergence in the environment. In a reactive or adaptive agent architecture, the
states of the environment are part of the control, to which these architectures react
immediately.

The Belief-Desire-Intention (BDI) and Belief-Desire-Joint-Intention (BDJI) deliberative
agent architectures both lack Holland’s non-linearity property, due to the absence of
emergence in these architectures. These architectures also lack Holland’s diversity property
due to their inability to learn from experience. The BDI architecture consists of a single
complex agent. This architecture only satisfies Holland’s internal model and building blocks
mechanisms. The BDJI architecture consists of a multiple complex agents joined into
agencies by joint intentions, satisfying the aggregation property. It has the same internal
model mechanism as the BDI architecture, which can be implemented using re-usable
building blocks. The BDJI architecture additionally satisfies the flows property and the
tagging mechanism, as the agents communicate with each other and collaborate amongst
themselves to achieve their joint intentions.

The Subsumption Architecture (SA) and behaviour networks (BN) reactive agent
architectures consist of multiple simple agents organised into one or more agency. The BN
architecture lacks the aggregation property, as it is a single agency consisting of multiple
simple agents. The SA architecture consists of multiple simple agents, organised into a
hierarchy of agencies, therefore satisfying the aggregation property. Both these architectures
lack Holland’s diversity property due to their inability to learn from experience. A BN
architecture that can learn from experience will still lack the aggregation property, but a SA
that supports learning will satisfy all of Holland’s properties and mechanisms, and will
therefore be able to function as a complex adaptive system.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

66

Chapter 5
Agent-Oriented Software Engineering

5.1 Introduction

Agent-oriented software engineering refers to the software engineering methodology
followed in an agent architecture. These methodologies currently involve analysis, design
and implementation of complex software systems as collections of autonomous agents
(Jennings, 2001) and are currently used in deliberative agent architectures to engineer
complex systems in such a way that the correct behaviour results.

The next section discusses the tools of the trade, namely decomposition, abstraction and
organization, employed by agent-oriented software engineering methodologies in order to
address complexity.

Complex agents are commonly viewed as next-generation or “smart” components, and
agent-oriented software engineering is viewed as an extension of conventional component-
based software engineering. This chapter provides the necessary background to understand
component-based software engineering, and then discusses the difference between an object,
a component and a complex agent. It then describes examples of component-based agent
architectures that use complex agents as next-generation components.

Agent-oriented software engineering currently makes no provision for the engineering of
emergence. Complex systems are engineered in such a way that the correct behaviour results.
The aim of this research effort is to extend agent-oriented software engineering to include the
engineering of emergence. This chapter describes agent-oriented software engineering and
gives a brief overview of two representative agent-oriented software engineering
methodologies, namely the Gaia methodology and the coordination-oriented methodology.

5.2 Managing Complexity

Jennings (2001) describes the fundamental tools of the trade to help manage complexity,
which we summarize below:

• Decomposition: The process of dividing a large problem into smaller, more
manageable chunks, each of which can then be dealt with in relative isolation. This
helps to manage complexity as it limits the designer’s scope;

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

67

• Abstraction: The process of defining a simplified model of the system that
emphasizes some of the details or properties while suppressing others. This process
limits the designer’s interest at a given time;

• Organization: The process of defining and managing the interrelationships
between the various problem-solving components. This enables the designer to
group basic components together, which is treated as a higher-level unit of analysis.
It also provides a means of describing the high-level relationships between various
units.

Agent-oriented software engineering manages complexity using the tools described above.
These methodologies address decomposition using components or agents and abstraction by
defining software engineering models at different levels of abstraction. These models include
detailed specifications of the components, the interactions between different components as
well as organizational relationships between components.

Agent-oriented software engineering extends existing paradigms such as the object-
oriented and component-based software engineering approaches. According to Griss & Pour
(2001), an agent is a

Proactive software component that interacts with its
environment and other agents as a surrogate for its user, and
reacts to significant changes in the environment.

Griss & Pour (2001) refer to agents as “next-generation” components and to agent-oriented
software engineering as an extension to conventional component-based software engineering
approaches. The next section will give a brief overview of component-based software
engineering, and subsequent sections will describe what the differences are between
component-based and agent-oriented software engineering.

5.3 Component-based Software Engineering – A Brief Overview

Component-based software engineering uses component-based design strategies. A design
strategy can be viewed as an architectural style consisting of high level design patterns
described by the types of components in a system and their patterns of interaction (Bachman
et al., 2000). Bachman et al. defined a reference model for component-based concepts, which
we summarize below, using Figure 14:

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

68

A component (1) is a software implementation that can be executed on a physical or a
logical device. A component implements one or more interfaces that are imposed on it (2).
By doing this, the component satisfies certain obligations, called a contract (3). These
contractual obligations ensure that independently developed components obey certain rules
so that components can interact (or not interact) in predictable ways, and can be deployed
into standard run-time environments (4). A component-based system is based upon a small
number of distinct component-types, each of which plays a specialized role in a system (5)
and is described by an interface (2). A component model (6) is the set of component types,
their interfaces, and additionally, a specification of the allowable patterns of interaction
among component types. A component framework (7) provides a variety of runtime services
(8) to support and enforce the component model.

6. Component
 Model

1. Component
implementation

2. Component
type-specific

interface

4. Independent
Deployment

5. Component types
and contracts

8. Coordination
services

(transactions,
persistence, ...)

3. Implements interface
and satisfies contract

7. Component framework

Figure 14: The Component-Based Design Pattern (Bachman et al., 2000)

Hopkins (2000) defines a component as follows:

A software component is a physical packaging of executable
software with a well-defined and published interface.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

69

In the current UML specification, UML1.4 (UML Revision Task Force, 2001), a
component is described as follows:

A component represents a modular, deployable, and
replaceable part of a system that encapsulates implementation
and exposes a set of interfaces.

Hopkins further identifies the engineering drivers in the development of a component-
based system as:

• Reuse: The ability to reuse existing components to create a more complex system;

• Evolution: A componentized system is easier to maintain. In a well-designed
system, components can be changed without affecting other components in the
system.

Components publish their interfaces and communicate with each other within component
models such as Microsoft’s DCOM (Distributed Component Object Model), the Object
Management Group’s CORBA (Common Object Request Broker Architecture) and Sun’s
Enterprise JavaBeans.

5.4 A Comparison between Objects, Components and Complex Agents

5.4.1 Overview

As complex agents are commonly viewed as “next-generation components”, we need to
understand the similarities and differences between objects, components and complex agents.

5.4.2 Similarity between Objects, Components and Complex Agents

Components, objects and agents have identity, their own state and behaviour (Object
Management Group, 2000). Components and agents have interfaces through which they can
communicate with each other, and with other entities.

5.4.3 Difference between Objects, Components and Complex Agents

Components within complex agents have been developed using components as simple agents
(micro level). The research community, however, is experiencing difficulties in
implementing complex agents in their entirety using conventional component-based

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

70

approaches. Jennings (2001) describes the differences between objects, components and
complex agents, which we summarize below:

• Objects are generally passive in nature – they need to be sent a message before they
become active;

• Although objects encapsulate state and behaviour, they do not encapsulate
behaviour activation (action choice), as is the case in complex agents. An object
can invoke any publicly accessible method on any other object. Once the method is
invoked, the actions can be performed;

• Abstraction mechanisms such as design patterns and components and frameworks
are still insufficient for the development of (complex) agent systems;

• Object-oriented approaches provide only minimal support for specifying and
managing organizational relationships as static inheritance hierarchies define these
relationships.

The next section discusses component-based agent architectures based on complex agents
as next-generation components.

5.5 Component-Based Agent Architectures

Griss & Pour (2001) describe a component-based agent architecture illustrated in Figure 15.

Figure 15: Component-Based Agent Architecture (Griss & Pour, 2001)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

71

We summarize Griss & Pour’s description of this architecture below:

In this component-based architecture, complex agents are grouped into agencies according
to conceptual and physical locations. These agencies have the responsibilities to locate and
send messages to mobile and detached agents and to collect knowledge about groups of
agents. The agency’s core is the agent platform, which is a component model that provides
local services for agents and includes proxies to access remote services such as agent
management, security, communication persistence and naming. The agent platform provides
agent transport for mobile agents as well as specialized agents that reside in other, possibly
remote agencies. The agent infrastructure can be augmented by standard service agents, such
as broker agents, auctioneer agents, and so forth. The agent platform and the service agents
can monitor and control message exchanges between agents, and detect any violation of rules
of engagement.

Agents interact with each other using interaction standards such as agent-communication
languages (ACL). These languages are declarative and define the overall structure and
interaction pattern between agents. The agent communication language is associated with the
component model, and messages are broken up into independent parts, namely message type,
addressing, context and content. Message parts can describe the domain; others can describe
an expected conversation pattern. The component model manages the messages and the
agents. Example agent communication languages include KQML (Finin, Fritzson, McKay &
McEntire, 1994) and FIPA’s ACL (Foundation for Intelligent Physical Agents [FIPA], 2000).

Agent architectures that use agent-communication languages to interact, use different
approaches to identify components for re-use. Skarmeas & Clark (1999) describe the use of
an active message-board for inter-component (inter-agent) communication. This message-
board forwards messages to other components depending on the message content. The
components in this agent-architecture are illustrated in Figure 16. These components include
domain dependent components, the agent head, a meta component, a message board and a
knowledge base.

The agent head communicates with other agents or non-agent applications. Circles in
Figure 16 indicate domain dependent components. These components implement the
behaviours or actions that an agent must execute. The meta-component manipulates and
reconfigures the domain dependent components, depending on environmental conditions.

The knowledge base component maintains information shared by all the other components.
This includes, for example, the beliefs, intentions and plans of the agent, together with

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

72

knowledge of other agents, and the capabilities of the domain dependent or behavioural
components.

Agents communicate with each other through the shared knowledge maintained by the
knowledge base component, as well interacting through messages using the active message
board component. Each agent registers itself on the message board, and “advertises” itself on
this messages board by sending active message patterns to the message board. “White Pages”
are maintained with agent identifications, and “Yellow Pages” are maintained containing
advertisements. Incoming messages are forwarded to all applicable agents by consulting the
“Yellow Pages” and the “White Papers”. A receiving agent can reply directly to a sender
agent, or via the message board.

The agent head component deals with all incoming messages. It fulfils a security function,
and places messages on the message board to be forwarded to the appropriate agent
components, depending on the message contents.

Meta
Component Message Board Knowledge

Base

Head

Components

Figure 16: Internal Agent Components (Skarmeas & Clark, 1999)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

73

5.6 Agent-Oriented Software Engineering Methodologies

5.6.1 Overview

Abstraction, the focus on relevant details while ignoring others, forms an important part of
agent-oriented software engineering. With increasing complexity in systems, visualization,
modelling and the use of well-principled methodologies are essential. Rumbaugh first applied
this way of modelling and design to object-orientation with his well-known Object Modelling
Technique (OMT), using three models, namely an object model, a dynamic model and a
functional model (Rumbaugh, Blaha, Premerlani, Eddy & Lorensen, 1991).

Agent-oriented software engineering involves the modelling of different aspects of the
agent-based system, at different levels of abstraction. Different approaches construct
different models, but they all have the same end-goal in sight, namely addressing
decomposition, abstraction and organization using a set of models. Each of these models
provides a different view of the agents in the system and the interactions between them, at
different levels of abstraction.

UML (Unified Modelling Language) defined by the Object Management Group (OMG)
has become widely accepted as a visual modelling tool for object-oriented and component
based systems. As agents are commonly viewed as next generation objects or components, a
number of researchers are exploring ways to extend UML in order to make it more suitable to
agent-oriented software analysis and design. One example is Agent UML or AUML (Odell,
Van Dyke Parunak and Bauer, 2001), which will make UML more suitable to the
specification of agent interactions and interaction protocols.

Current agent-oriented software engineering methodologies do not make provision for the
engineering of emergence. These methodologies attempt to prevent emergence, rather than to
engineer it.

The next sections describe two agent-oriented software engineering approaches, namely
the Gaia and coordination-oriented software engineering methodologies.

5.6.2 The Gaia Methodology

The Gaia methodology (Wooldridge et al., 2000) is an agent-oriented software engineering
methodology that involves a process of generating increasingly detailed models during the
analysis and design phases. This approach is not based on any particular agent architecture.
The main goal of the Gaia analysis phase is to understand the system and its structure – that

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

74

is, understanding the organization of the system. Wooldridge et al. (2000) define an
organization as:

A collection of roles, that stand in a certain relationships to
one another, and that take part in systematic, institutionalized
patterns of interaction with other roles.

Classical design aims to transform abstract models derived during analysis into a
sufficiently low level of abstraction so that they can easily be implemented, whereas the Gaia
design phase aims to transform the analysis models into a sufficiently low level of abstraction
so that traditional object-oriented techniques can be used to implement the agents
(Wooldridge et al., 2000).

 The Gaia methodology was intended for use in closed systems of distributed problem
solvers, in which a fixed number of complex agents collaborate to achieve a global goal
(Zambonelli et al., 2000). This methodology attempts to control emergence by engineering it
before the fact. It uses interaction protocols in order to specify all possible interactions
between the fixed number of complex agents.

The Gaia models are described in more detail in Chapter 7.

5.6.3 Coordination-Oriented Methodology

Zambonelli et al. (2000) claims that most current agent-oriented methodologies are ill suited
to open environments, as they do not adequately address agencies. They addressed this
problem by developing a coordination-oriented methodology suited to open environments,
which makes provision for global laws that agents in an agency must obey when interacting
with other agents. This methodology tries to anticipate all potential actions that autonomous
agents might take. They impose restrictions on the interactions, which they call “social laws”.
These “social laws” ensure that agents that adhere to these laws need not worry about
undesirable interactions no matter what goals or plans they adopt (Durfee, 2001), therefore
restricting emergence.

Zambonelli et al.’s models consist of three elements, namely

• the coordinables: entities whose mutual interaction is ruled by the model (the
agents);

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

75

• the coordination media: the abstractions enabling agent interactions, as well as the
core around which components are organized. Examples include semaphores,
monitors, channels and blackboards;

• the coordination laws: the behaviour of coordination media in response to
interaction events.

Zambonelli et al. describe two classes of coordination models, namely data-driven and
control-driven behaviour models. We summarize these two models below:

In data-driven coordination models, coordinables interact with the external world through
the exchange of data-structures through the coordination media. The coordination media acts
as a shared dataspace. The coordinables request data, either reading it or extracting it from
the coordination media. The coordination laws determine how datastructures are represented
and how they are stored, accessed and consumed. The coordination media handles the
interaction space through entities interacting using data exchange and synchronization over
data occurrences (Zambonelli et al.).

Data-driven coordination models can be applied to deliberative agent architectures.
Skarmeas & Clark (1999) describe the use of an active message-board for inter-component
(inter-agent) communication. This message-board is the coordination media, forwarding
messages to other components (coordinables) depending on the message content using
coordination laws.

In control-driven coordination models, the coordinables interact with each other and the
environment through well-defined input/output ports, representing the coordination media.
The observable behaviours of the coordinables are in terms of state changes and events
occurring at these ports. The coordination laws establish how events and state changes occur
and how they propagate through the coordination media. The coordination media handle the
interaction space by controlling how the events that occur in the environment connect to the
coordinables and how it propagates through the system. There is no concern for the data
exchanged between the coordinables (Zambonelli et al.).

Control-driven coordination models can be extended in order to engineer reactive agent
architectures such as the Subsumption Architecture (Brooks, 1985) and autonomous adaptive
agents using behaviour networks. (Maes, 1989).

Zambonelli’s coordination models are described in more detail in Chapter 7.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

76

5.7 Conclusion

Agent-oriented software engineering uses decomposition, abstraction and organization to
engineer complex systems. Decomposition is achieved by using a component-based approach
or an extension of a component-based approach. Current agent-oriented software engineering
approaches achieve abstraction by defining software engineering models at different levels of
abstraction. These models include detailed specifications of the complex agents, the
interactions between different agents, as well as the organizational relationships between
agents.

The research community is experiencing difficulty in implementing complex agents in
their entirety using conventional component-based frameworks. This is due to the fact that
these frameworks use objects and components that are passive in nature and that do not
encapsulate behaviour activation and because the organizational relationships in these
frameworks are static inheritance hierarchies. Re-usable components have been developed
for use within complex agents, such as the internal agent components used by Skarmeas &
Clark (1999).

Agent-oriented software engineering has so far only been applied in deliberative agent
architectures. The Gaia approach (Wooldridge et al., 2000) is applicable to closed systems of
deliberative agents in which a fixed number of agents collaborate to achieve a global goal.
Zambonelli et al. (2000) extended this methodology to open environments with their
coordination-oriented methodology, in which the deliberative agents must adhere to social
laws. These methodologies currently attempt to control emergence by engineering it before
the fact. This is done by restricting the interactions between the agents by using interaction
protocols (Wooldridge et al., 2000) and imposing social laws (Zambonelli et al., 2000).

The coordination-oriented methodology can either be data-driven or control-driven. Data-
driven control models can be applied to deliberative agent architectures as described by
Skarmeas & Clark (1999). Control-driven models can be extended so that it can handle
emergence in order to engineer reactive and adaptive agent architectures.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

77

Chapter 6
BaBe: An Adaptive Agent Architecture

6.1 Overview

An adaptive agent architecture implements a complex adaptive system. Such an architecture
has the four properties identified by Brooks (1991), namely situatedness, embodiment,
intelligence and emergence. These agents are situated in the world (situatedness). Their
actions must be part of a dynamic interaction with the environment (embodiment). They are
observed to be intelligent (intelligence). The intelligence of agencies emerges from the
interaction between the simple agents and their environment and between themselves and
other agents (emergence). In addition to these characteristics, such an agent architecture is
able to learn from experience.

An adaptive agent architecture can be constructed from simple agents, organised into
agencies that collectively learn from and adapt to their environments. If these agents have the
same functionality, they can be implemented as re-usable components. In this research, we
implemented the BaBe agent architecture using three re-usable components, together with a
set of behavioural components. The three re-usable BaBe components are used to assemble
distributed Bayesian behaviour networks that incrementally learn from the environment and
activate component behaviours depending on environmental states.

We refer to the Bayesian networks used in BaBe as Bayesian behaviour networks. These
networks are used in a similar way as the behaviour networks defined by (Maes, 1989).
Behaviour networks, however, allow for causal modelling using Booleans only, whereas
Bayesian behaviour networks allow for powerful probabilistic reasoning in the presence of
uncertainty. We use Judea Pearl’s belief propagation algorithm for Bayesian inference in
these networks. This chapter describes our Bayesian behaviour networks, and gives the
necessary background on the belief propagation algorithm.

We assemble a Bayesian behaviour network using the BaBe components. These
components are simple agents, organised into agencies, which in turn are organised into a
heterarchical structure. These agencies are adaptive aggregates that collectively learn from
and act in their environments. This chapter describes and illustrates the Bayesian agencies in
our prototype implementation. We further describe how these agencies can be applied in a

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

78

web personalization example and we analyse our BaBe architecture with respect to Holland’s
properties and mechanisms.

6.2 Bayesian Behaviour Networks

We define a Bayesian behaviour network as a Bayesian network that models the regularities
in the input stream of an adaptive agent architecture. The nodes in such a Bayesian behaviour
network are grouped into what we call competence sets, where each competence set has an
associated set of actions that must be performed depending on the states of the nodes in the
competence set.

In Figure 17, we illustrate a simple Bayesian behaviour network, born out of my frustration
whilst seeking for papers or books authored by Professor Michael Jordan, the well-known
statistician, and ending up with hundreds of papers or books on Michael Jordan, the well-
known basket-ball player.

Figure 17 illustrates a fictitious model of the browsing behaviour of users visiting an
electronic bookstore website. This network models the relationships between the type of user
that browses the site (A), their interests (B), the sequence of hyperlinks that they clicked to
access the pages (C), content categories of all the pages on the website (D), the information
content of the advertisements on the web pages (E), the pages they view (F), the pages that
they will visit next (H) and the buying behaviour per page (G).

Our example website has hyperlinks to the following pages:

• Page 1: books by Judea Pearl on causality and probabilistic reasoning;

• Page 2: books by Professor Michael Jordan on graph theory and probability theory;

• Page 3: books by / related to Michael Jordan, the well-known basketball player;

• Other Page: any other page on the website.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

79

Figure 17: A Bayesian Behaviour Network

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

80

The hyperlink paths to these pages are:

• Path 1: Engineering and Science → Mathematics → Graph Theory → Page 1 or 2;

• Path 2: Engineering and Science → Mathematics → Probability and Statistics →
Page 1 or 2;

• Path 3: Computers and Internet → Artificial Intelligence → Machine Learning →
Neural Networks → Page 2;

• Path 4: Computers and Internet → Programming → Software Engineering →
Algorithms → Page 1 or 2;

• Path 5: General Interest → Sports and Adventure → Basketball → Page 3.

Each node has a conditional probability table, for example, the conditional probability
matrix associated with node B is presented in Table 3.

P(B:InterestCategory | A:UserProfile)

A:UserProfile B:

Interest

Category

Engineer

Mathematician

Computer

Scientist

Software

Engineer

Basketball

Player

Graph

Theory

0.1 0.25 0.1 0.2 0.01

Statistics 0.2 0.34 0.1 0.1 0.01

Machine

Learning

0.1

0.1

0.25

0.1

0.01

Neural

Networks

0.3

0.2

0.25

0.2

0.01

Algorithms 0.25 0.1 0.25 0.3 0.01

Basketball 0.05 0.01 0.05 0.1 0.95

Table 3: Conditional Probability Matrix for Node B

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

81

In our simple network in Figure 17, buying behaviour (G) depends on the current page that
is being browsed (F), and the categories of interest of a particular user (B), which in turn
depends on the user profile (A). For simplicity, users are profiled on their profession only.
The website contents are categorized into content categories (D), which are distributed
between different pages (F). In order not to clutter the diagrams, only a few content
categories are indicated next to node D. The choice of a page (F) depends on how well its
contents matches the content categories (D) that the user is looking for and how well the
content categories were advertised to the user (E). The content categories (D) that a user is
looking for is related to the hyperlinks (C) to the page that the user is browsing. The
relationship between the current page (F) that is being viewed and the next page (H) that will
most probably be browsed next is also modelled in this network.

The marginal probabilities (beliefs) are indicated next to each of the nodes in Figure 17.
For example, the beliefs of the user profile node (A) indicate that mathematicians and
basketball players browse this site with equal probability of 0.125. The beliefs of the
hyperlink paths node (C) indicate that Path 5 will most probably be chosen (0.5) and the
beliefs of the content categories (D) indicate that the basketball category is most likely to be
searched for (0.3). The beliefs of the page node (F) show that the Michael Jordan (the well-
known basketball player) page will most probably be viewed (0.44). The beliefs of the
advertisements node (E) show that the advertisements that led the user to this page were
informative with a probability of 0.7. The beliefs of node (G) show that the probability that a
user will buy a book when visiting a page is 0.35. The probability that a user would be
interested to view books by Michael Jordan (the professor) next is 0.2.

Figure 18 illustrates the results of Bayesian inference in the presence of evidence. A
mathematician that browses a website listing books by Judea Pearl (the evidence) is most
probably interested in statistics (0.34), graph theory (0.25) and neural networks (0.2). He
would have chosen hyperlink path 4 with the highest probability (0.28) in order to search for
algorithms related to his field if interest. He will buy a book from this page with a probability
of 0.55. The probability that this user will be interested to view books by Professor Michael
Jordan next has now risen to 0.6 and the probability that the advertisements were informative
has now increased to 0.74.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

82

Figure 18: Belief Propagation in a Bayesian Behaviour Network

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

83

6.3 Competence Sets

We define a competence set as a tuple , where is a set of constraints on a

subset of nodes and their states in a Bayesian behaviour network, and
iΘ),(ii ΑC iC

iΑ is the set of actions

that must be executed if all the constraints in iC are met.

A possible collection of competence sets for Figures 17 and 18 is as follows:

Let , where },,,{ 4321 ΘΘΘΘΘ =

• = {{}, {the set of actions associated with the personalization of the web pages
depending on the beliefs of nodes B and D}. This set specifies that the specified
actions must be executed unconditionally as there are no constraints in this set;

1Θ

• = {{}, {the set of actions associated with the dynamic creation of hyperlinks
to web pages, depending on the beliefs of nodes C and D}}. This set specifies that
the specified actions must be executed unconditionally as there are no constraints
in this set;

2Θ

• = {{the belief that the advertisements were uninformative (node E) must be

greater than 0.4}, {inform the marketing department how informative
advertisements were – display the beliefs of node E and how it influenced the
buying (the beliefs of node G)}}. This set specifies that the specified actions must
be taken if the belief that the advertisements were uninformative exceed a
threshold of 0.4;

3Θ

• = {{}, {the set of actions associated with the displaying of links to web pages
that might interest the user next, depending on the beliefs of node H}}. This set
specifies that the specified actions must be executed unconditionally as there are
no constraints in this set.

4Θ

Using Bayesian behaviour networks, systems can “observe” their environmental states as
well as their own behavioural states and adapt their behaviours accordingly.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

84

6.4 Pearl’s Belief Propagation Algorithm

We use Judea Pearl’s belief propagation algorithm for inference in our Bayesian behaviour
networks. In a singly-connected Bayesian network, that is a network without loops, an
arbitrary node X divides the evidence into that connected to its causes (prior evidence)
and that connected to its effects (observed evidence). A link XY divides the evidence into
the evidence above the link, and the evidence below the link, . All the evidence is
denoted by e .

Xe+

Xe −

XYe +
XYe−

In Judea Pearl’s belief propagation algorithm, the evidence is propagated through a
Bayesian network using messages propagated between each parent and its children, and
between each child and its parents. The messages propagated in a network, as described by
Pearl (1998), are given by Eqs. (27) to (31), and illustrated in Figure 19.

The prior probabilities vector is the summarized effect on the belief of X by prior
evidence , and is represented by: +e

∏∑
=

+ =≡
n

i
iX

www
nX wwwwxPxPx

n 1,...,
21)(),...,,|()|()(

21

ππ e (27)

The likelihood vector is the summarized effect on the belief of X by diagnostic (or
observed) evidence, , and is represented by: −e

)()|()(
1

xxePx
m

j
jYX ∏

=

− =≡ λλ (28)

The summarized effect of evidence above link XYj is represented by:

∏
≠

+ =≡
jk

YXYY xxexPx
kjj

)()(),()(λππ (29)

The summarized effect of evidence below link XYj is represented by:

∑ ∑ ∏
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=≡

=

−

j p
jjj

y vv
k

p

k
YpjjXYY vvvvxyPyxePx

,... 1
21

1

)()...,,|()()|()(πλλ (30)

where V1,…,Vp are causes of Yj other than X.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

85

The belief of node X is represented by:

)()()|()(xxexPxBEL λαπ=≡ (31)

where α is a normalization constant to be computed after finding)(xπ and)(xλ .

1W 2W nW

X

1Y 2Y
mY

)(1wxλ

)(2wxπ

)(xλ
)(xπ

)(
2

xyλ

)(
1

xyπ

Figure 19: Belief Propagation

Pearl (1988) describes the boundary conditions for belief propagation as follows:

1. Root nodes: If node X has no parents, then)(xπ is the prior probability P(x).

2. Anticipatory nodes: If node X has no children, then)1,1,1()(K=xλ .

3. Evidence nodes: If evidence X=x’ was received for any node X in the network (not
necessarily a leaf node) then)01,,0()(KK=xλ with 1 at the x’-th position.

6.5 The BaBe Components

We assemble our Bayesian behaviour networks from BaBe components. These components
include node components, link components, belief propagation agents grouped into belief

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

86

propagation agencies, and competence components grouped into competence agencies. The
components, agents and agencies in the BaBe architecture are illustrated in Figure 20.

Figure 20: BaBe Agent Architecture Components

Collectively the belief propagation agents propagate evidence through the network and
activate component behaviours depending on the beliefs of the Bayesian behaviour network
nodes.

We implemented prototype node and link components using EJB entity beans,
administering and ensuring persistence for the evidence, π ’s and λ ’s, beliefs and

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

87

conditional probability matrices for the underlying Bayesian behaviour network nodes. The
node components reflect beliefs about the current environmental states, as environmental
evidence is presented to the node components as soon as it occurs. As soon as evidence is
received from the environment, the history data is updated, and the conditional probability
matrices are incrementally updated using Bayesian learning.

We developed prototype belief propagation agents. These components are homogeneous as
they are identical EJB message beans, listening on different JMS queues corresponding to the
links of the Bayesian behaviour network links. These agents propagate beliefs amongst
themselves using Judea Pearl’s belief propagation algorithm.

Belief propagation agents communicate with each other through simple tags, as well as
through data in a database administered by the node and link components. Using only the
link and node components, belief propagation agents collectively propagate beliefs in a
distributed Bayesian behaviour network that learns from the environment and that can be
queried by competence agencies to determine which component behaviours to activate next.
Each competence agency queries the beliefs of a set of node components and activates one or
more component behaviours, depending on the beliefs of the queried node components. Each
behaviour component executes a particular behaviour, and queries one or more node
components in order to use the beliefs in actions that must be executed.

Each of the above components will be discussed in more detail in the next sections.

6.5.1 The Node Component

The node components are homogeneous components. Node components are identical, but
each node component corresponds to a different node in the underlying Bayesian behaviour
network. The component diagram for any node X is illustrated in Figure 21. This component
maintains and administers:

• the conditional probability matrix (CPM) for each node X;

• the prior probabilities vector)(xπ - see Eq. (27);

• the likelihood vector)(xλ - see Eq. (28);

• history of occurrences for each state;

• the latest evidence received for the states of the node;

• a list of the incoming links to the node;

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

88

• a list of the outgoing links to the node;

• the name of the node, as well as a list of the states of the node.

Node X

getNode

getNrStates

getStates

getOutgoingLinks

getIncomingLinks

setCPM

getCPM

multiplyCPM

getPI

getLAMBDA

setLAMBDA

getBelief

setNoEvidence

setEvidence
parent states

node state

 learn flag
getEvidence latest

evidence

)(xπ

setPI)(xπ

)(xλ

)(xλ

)(xBEL

multiplyTransposeCPM

∏∑
=

n

i
iX

www
n wwwwxP

n 1,...,
21)(),...,,|(

21

π

∏
=

n

i
iX w

1

)(π

∑
pvv

pjj vvvxyPy
,...

21
1

)...,,|()(λ

)(jyλ

),...,,|(21 nwwwxP

),...,,|(21 nwwwxP

reset

))()((xx λαπ=

Belief Calculations

Bayesian Network Structure

Environmental Interfaces

Conditional Probability Matrix

Figure 21: Node Component Diagram for Node X

In Figure 21, the interfaces are grouped into four groups, namely the Bayesian network
structure interfaces, the conditional probability matrix interfaces, the belief calculation
interfaces and the environmental interfaces.

The Bayesian network structure interfaces enable access to the name of the node that the
component administers, retrieval of the number of states of this node, a list of descriptions of
the states and a list of the incoming links and the outgoing links of this node.

The conditional probability matrix interfaces enable access to the conditional probability
matrix, and using these interfaces, calculations can be performed on the conditional
probability matrix or its transpose - see Eqs. (27) and (30).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

89

The belief calculation interfaces allows access to)(xπ ,)(xλ and - see Eqs. (27),
(28) and (31).

)(xBEL

The environmental interfaces enable interaction with the environment. If the learn flag is
true, the evidence received from the environment is added to the history data, and the
conditional probability matrix is updated. This is an incremental learning process. As a
detailed study of Bayesian learning falls outside the scope of this research, our prototype
implementation includes learning in networks with known structure and no hidden variables.
In future research, in the case of learning in the presence of missing data, the interface
setNoEvidence must activate the execution of the EM algorithm. Russell & Norvig (2003)
describe this algorithm in detail.

If the learn flag is false, no learning takes place, but the evidence is taken into account
during belief propagation. This form of evidence setting is done when “what-if” queries are
executed against the Bayesian behaviour network.

6.5.2 The Link Component

The link components are homogeneous components. Link components are identical, but each
link component corresponds to a different link in the underlying Bayesian behaviour
network. The link component for any link XYj is illustrated in Figure 22.

The link component maintains and administers)(x
jYπ - see Eq. (29),)(x

jYλ - see Eq.

(30) and synchronization flags (PIFlag and LAMBDAFlag).

In Figure 22, the interfaces are grouped into three groups, namely the Bayesian network
structure interfaces, the synchronization interfaces and the belief calculation interfaces.

The Bayesian network structure interfaces enable access to the name of the parent node
and child node of the link that the component administers, retrieval of a list of the other
outgoing (sibling) links of the parent node as well as retrieval of a list of the other incoming
links of the child node.

The belief calculation interfaces allows access to)(x
jYπ and)(x

jYλ - see Eqs. 29 and 30.

The synchronization interfaces are used by the belief propagation agents to synchronize the
calculation of products of π ’s or λ ’s of sibling links. The PIFlag keeps track if link XYj has

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

90

calculated)(x
jYπ or not, and the LAMBDAFlag keeps track if link XYj has calculated

)(x
jYλ or not.

Link XY

getPI

getLAMBDA

setLAMBDA

setPI

reset

 findOtherParentLinks

 findOtherChildrenLinks

getParent

getChild

setPIFlag

setLAMBDAFlag
getPIFlag

getLAMBDAFlag
 getStretchedPi

getShrinkedLambda
setIncomingPIFlags

setOutgoingLAMBDAFlags
allIncomingPIsCalculated

allOutgoingLAMBDAsCalculated

)(x
jYλ

)(x
jYλ

)(x
jYπ

)(x
jYπ

j

Belief Calculations

 Synchronization

Bayesian Network Structure

 Figure 22: Link Component Diagram for Link XYj

The allIncomingPIsCalculated interface enables access to a flag that indicates if all the
siblings of this link, that are also incoming links of this link’s child node, have calculated
their link π ’s yet. As soon as this flag is true, the product of π ’s of all the incoming links of
the child node can be calculated. As soon as this product is calculated, the
setIncomingPIFlags interface is used to set setIncomingPIsFlag in the link component to true.
As soon as this flag is set, the link component will clear all the PIFlags of all the child node’s
incoming links and then set setIncomingPIsFlag to false again – ready for the calculation of
the next product of π ’s.

The allOutgoingLAMBDAsCalculated interface enables access to a flag that indicates if all
the siblings of this link, that are also outgoing links of this link’s parent node, have calculated
their link λ ‘s yet. As soon as this flag is true, the product of λ ’s of all the outgoing links can

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

91

be calculated. As soon as this product is calculated, the setOutgoingLAMBDAFlags interface
is used to set setOutgoingLAMBDAsFlag in the link component to true. As soon as this flag
is set, the link component will clear all the LAMBDAFlags of all the parent node’s outgoing
links and then set setOutgoingLAMBDAsFlag to false again - ready for the calculation of the
next product of λ ’s.

6.5.3 The Belief Propagation Agents

The belief propagation agents are homogeneous components. These agents are identical EJB
message beans, but agent listens on a different JMS queue implementing a link in the
underlying Bayesian behaviour network. The messages communicated on the JMS queues
are simple tags – LAMBDA tags or PI tags. These tags determine the direction of
propagation in the Bayesian network. Figure 23 is a state diagram for a belief propagation
agent that illustrates the processes triggered by these tags.

As soon as a belief propagation agent receives a tag, it first identifies the queue it received
the tag on, in order to know which link in the Bayesian network the queue corresponds to.
Once the link is known to the belief propagation agent, it creates the link and node
components needed to access the underlying Bayesian behaviour network information.

A PI tag will trigger the calculation of the link’s π . If all the child node’s incoming links
have calculated their link π ’s, then the child node’s π is calculated. As soon as the child
node’s π is updated, PI tags are sent to the queues corresponding to its outgoing links if it is
not a leaf node. The belief propagation agent will then go into a wait state for the next tag to
arrive on its queue.

A LAMBDA tag will trigger the calculation of the link’s λ . If all the parent node’s
outgoing links have calculated their link λ ’s, then the parent node’s λ is calculated. As soon
as this node’s λ is updated, LAMBDA tags are sent to the queues corresponding to the
parent node’s incoming links if it is not a root node, otherwise PI tags are sent to the queues
corresponding to its outgoing links – reversing the propagation direction. The belief
propagation agent will then go into a wait state for the next tag to arrive on its queue.

Each belief propagation cycle is a two-phase process, which is activated as soon as a set of
evidence is received from the environment. The propagation of LAMBDA tags upwards
from the leaf nodes through the network gathers evidence from the environment, followed by
the flow of PI tags downwards from the root nodes, gathering a priori information. A
LAMBDA tag will cause propagation of LAMBDA tags upwards in the direction of

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

92

predecessor nodes, except if the parent of the link is a root node. In this case, the direction
will be reversed and PI tags will be propagated towards the children nodes. A PI tag will
cause propagation of PI tags in the direction of children nodes, except if the child of the link
is a leaf node.

Wait for
Tag on

Queue XYjReceived PI Tag

[All incoming link PI's
for child Y calculated]

Calculate child Y's PI :

)(yπ

Calculate link XYj PI:

)(x
jYπ

[Y not a
leaf node ?]

Send PI tags
to

Y's children queues

Calculate parent X's
LAMBDA:

Calculate link XYj
LAMBDA:

Send LAMBDA tags
to

Y's parent queues

REVERSE DIRECTION
Send PI tags

to X's children queues

Received LAMBDA Tag

)(x
jYλ

[All outgoing link LAMBDA's
for parent X calculated]

[X is a root node ?]

[X is a not
a root node ?]

)(xλ

 Figure 23: The Belief Propagation Agent

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

93

In the next two sections, the processes triggered by the different tags are described in more
detail. These processing steps must be studied in conjunction with Judea Pearl’s belief
propagation algorithm, as well as the node and link component diagrams in Figures 21 and
22.

6.5.3.1 Handling PI tags

Each PI tag received on a queue representing link XYj, triggers the following processing
steps:

1. Create a link component corresponding to the link XYj

a. Use the getParent and getChild node component interfaces to determine the
names of the parent (X) and the child node (Yj) of this link.

b. Use the findOtherParentLinks interface to retrieve a list of the names of all
siblings of this link that have the same parent as this link – in other words, all the
other outgoing links of the parent node. The returned list of links will be {XY1,
XY2 … XYj-1, XYj+1 …XYm}.

c. Use the findOtherChildrenLinks interface to retrieve a list of the names of all
siblings of this link that have the same child as this link – in other words, all the
other incoming links of the child node. The returned list of links will be {V1Yj,
…VpYj}.

2. For each of the other sibling links that are outgoing links of the parent link X, create a
link component and use the getLAMBDA interface to retrieve mkx

kY ...1),(=λ .

Calculate the product of these link λ ’s, namely ∏
≠ jk

Y x
k

)(λ .

3. Use the getBelief interface to retrieve the belief of node X, namely , and

calculate

)(xBEL

∏
≠

=
jk

YY xxBELx
kj

)()()(λπ , using the product of λ ’s calculated in the

previous step. Note that this equation differs from Eq. (29) in that is used
instead of

)(xBEL
)(xπ .

4. Use the link component for link XYj to:

a. set)(x
jYπ using the interface setPI. Use the setPIFlag interface to set the flag

to indicate that this link has now calculated its π .

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

94

b. Test if the other incoming sibling links have calculated their s'π yet, by
accessing the allIncomingPIsCalculated interface.

c. If this link is the last link to calculate its π , the π for child node Yj can now be
calculated. Use the interface setIncomingPIFlags to set a flag that will indicate to
the link component to clear all the PIFlags for all the incoming links to node Yj –
ready for the next belief propagation cycle.

i. For each of the other sibling links that are incoming links of the child node
Yj, create a link component and retrieve pivijY ...1),(=π , using the getPI

interfaces of these link components. Calculate the product of the link π ’s.

ii. Create a node component for child node Yj and use its
multiplyTransposeCPM interface to calculate the product of the conditional
probability matrix and the product of the incoming link π ’s, calculated in
the previous step. The result is)(jyπ which is updated using node

component Yj’s setPI interface.

iii. If node Yj has children nodes, then use node component Yj’s
getOutgoingLinks interface to get a list of names of all the outgoing links
of this child node. Place a PI tag on the JMS queue corresponding to each
of these link names.

6.5.3.2 Handling LAMBDA tags

Each LAMBDA tag received on a queue, representing link XYj, triggers the following
processing steps:

1. Create a link component corresponding to the link XYj.

2. Use the getParent and getChild node component interfaces to determine the names of
the parent (X) and the child node (Yj) of this link.

3. Use the findOtherParentLinks interface to retrieve a list of the names of all siblings of
this link that have the same parent as this link – in other words, all the other outgoing
links of the parent node. The returned list of links will be {XY1, XY2 … XYj-1, XYj+1

…XYm}.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

95

4. Use the findOtherChildrenLinks interface to retrieve a list of the names of all siblings
of this link that have the same child as this link – in other words, all the other
incoming links of the child node. The returned list of links will be {V1Yj, …VpYj}.

5. For each of the other sibling links that are incoming links of the child node Yj, create
a link component and retrieve piviY j

...1),(=π . Calculate the product of the link

π ’s.

6. Create a node component for child node Yj and use the getLAMBDA interface to
determine child node’s)(jyλ . Use the multiplyCPM to calculate the product of

)(jyλ and the conditional probability matrix. Multiply this product with the product

of the incoming link π ’s calculated in the previous step. The result is)(x
jYλ .

7. Use the link component for link XYj to:

a. set)(x
jYλ using the interface setLAMBDA. Use the setLAMBDAFlag

interface to set the flag to indicate that this link has now calculated its λ .

b. Test if the other outgoing sibling links have calculated their λ ’s yet, by
accessing the allOutgoingLAMBDAsCalculated interface.

c. If this link is the last link to calculate its λ , the λ for parent node X can now
be calculated. Use the interface setOutgoingLAMBDAFlags to set a flag that
will indicate to the link component to clear all the LAMBDAFlags for all the
outgoing links from node X, ready for the next belief propagation cycle.

i. For each of the other sibling links that are outgoing links of the parent
node X, create a link component and retrieve mjxjY ...1),(=λ .

Calculate the product of these link λ ’s. The result is)(xλ which must
be updated using the setLAMBDA interface.

ii. If node X has parent nodes, then use parent node X’s
getIncomingLinks interface to get a list of all the incoming links of
this parent node. Place a LAMBDA tag on the communication queue
corresponding to each of these link names.

iii. If node X has no parent nodes, then use parent node X’s
getOutgoingLinks to get a list of names of all the outgoing links of this

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

96

node. Place a PI tag on the communication queue corresponding to
each of these link names.

6.6 Bayesian Agencies

There are two types of Bayesian agencies in the BaBe agent architecture, namely belief
propagation agencies and competence agencies. In Figure 24, a state diagram for these
agencies is presented.

Wait for
Evidence

Set Evidence
for nodes

Evidence
Received

Update
CPM for
nodes

[Learn]

Evidence
set

Belief
Propagation

Cycle
Complete

Competence
Agency 1

Monitor
beliefs of nodes

in
constraint set

Belief Propagation Agency
Collective Belief Propagation

by
belief propagation agents

Constraints
satisfied

Execute
competence 1

actions

Competence
Agency 2

Monitor
beliefs of nodes

in
constraint set

Constraints
satisfied

Execute
competence 2

actions

Competence
Agency N

Monitor
beliefs of nodes

in
constraint set

Constraints
satisfied

Execute
competence N

actions

Figure 24: Bayesian Agencies State Diagram

Collective belief propagation by the belief propagation agents in response to the
environmental evidence is a continuous process. As soon as evidence is received from the
environment, it is presented to the appropriate nodes via node component interfaces, and the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

97

conditional probability matrices are updated if learning is activated. As soon as all the node
components received their evidence, the belief propagation agencies perform a belief
propagation cycle – gathering evidence from the node components and updating the beliefs
of the nodes. The competence agencies use these beliefs to determine if certain component
behaviours or actions must be executed or not. Each competence agency monitors a set of
constraints on the beliefs of a subset of nodes – the constraint set. If all the constraints in a
constraint set are met, the competence agency can execute its actions.

Figure 25 illustrates how the Bayesian agencies are organized into a heterarchy in order to
collectively implement the Bayesian behaviour network illustrated in Figures 17 and 18.

The belief propagation agency consists of all the belief propagation agents (ABAgent,
BGAgent, etc.). The heterarchy in Figure 25 consists of a belief propagation agency and four
competence agencies, namely the personaliseAgency, the marketingAgency, the
hyperLinkAgency and the nextPageAgency. These agencies overlap and “share” node
components with the belief propagation agency, thus forming a heterachy.

The BaBe adaptive agent architecture achieves self-awareness by using Minsky’s model of
an A-Brain and a B-Brain. The belief propagation agencies can be viewed as A-Brains,
connected to the environment and continuously inferring beliefs about and learning from the
latest environmental states. The competence agencies can be viewed as B-Brains, inspecting
the beliefs of the Bayesian behaviour network nodes underlying the belief propagation
agencies (the A-Brains) and acting according to these beliefs.

Each competence agency implements a competence set = , where is a set

of constraints on a subset of nodes and their states in the Bayesian behaviour network, and
the

iΘ),(ii ΑC iC

iΑ is a set of component actions that must be executed if all the constraints in iC are met.

In an enterprise, example component actions will include parts of the business processes or
workflows in the enterprise. These actions are packaged into one or more re-usable
components, called competence components.

 Each competence agency accesses the node components for the nodes in the constraint set.
The beliefs of these nodes are accessed using the getBelief node interfaces, and tested to
determine if the beliefs satisfy all the constraints in the constraint set. If all the constraints are
met, the competence components are executed.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

98

Figure 25: Heterarchy of Bayesian Agencies

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

99

In Figure 26 below, the components for the Bayesian behaviour network in Figure 25 is
given. The BeliefPropagationAgentJAR contains all the belief propagation agents, all
identical, but listening on different JMS queues. The NodeBeanJAR contains the node
component, and the LinkBeanJAR contains the link component. The CompetencesJAR
contains the competence components, namely MarketerBean, NextPageManagerBean,
HyperLinkManagerBean and PersonaliserBean. The competence components have interfaces
to the behaviours or actions that the competence agencies can execute.

The personaliseAgency implements competence set = {{}, personaliseWebPage}. It
(unconditionally) calls the personaliseWebPage interface of the PersonaliserBean.

1Θ

Figure 26: Example BaBe Components

Figure 27 is a screen dump of the output of personaliseWebPage, which in this simple
example displays the beliefs of nodes B and D, after belief propagation in the presence of a

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

100

mathematician browsing a website listing books on Bayesian networks by Judea Pearl. (Note
that the probabilities are the same as in Figure 18).

Figure 27: PersonaliseAgency Output

The hyperLinkAgency implements competence set = {{}, hyperLink}. It
(unconditionally) calls the hyperLink interface of the HyperLinkManagerBean, which
accesses the beliefs of nodes C and D.

2Θ

The marketingAgency implements competence set = {{BEL(E = Uninformative) >

0.4}, market}. It calls the market interface of the MarketerBean if the belief that the
advertisements are uninformative exceeds 0.4, which accesses the beliefs of nodes E and G.

3Θ

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

101

The nextPageAgency implements competence set = {{ }, displayLinktoNextPage}. It
(unconditionally) calls the displayLinktoNextPage interface of the NextPageManagerBean,
which uses the beliefs of node H.

4Θ

6.7 Bayesian Agencies in Web Personalization

Figure 28 illustrates how Bayesian agencies can be used in a simplified web personalization
application. There are two sets of Bayesian agencies in this example, namely the clickstream
and the content Bayesian agencies. The clickstream Bayesian agencies collectively
implement a dynamic Bayesian network, modelling a two-way contents-product aspect
model at each time step.

The content Bayesian agencies collectively implement a Bayesian behaviour network that
models a hierarchical concept model, representing the relationships between words extracted
from web pages and higher-level concepts, at different levels of abstraction. In Figure 28,
during time step t, a bag of words, BOW(t) = {w2, w4, w5} is extracted from the
PageView(t) that a user browses. BOW(t) is then presented to the content Bayesian agencies
that collectively reduce the dimensionality of the words to a bag of concepts BOC(t) = {co1,
co4}. Content agency 1 adds concept co1 to BOC(t) and content agency 2 adds co4 to
BOC(t) because their beliefs exceeded a certain threshold as a result of the collective belief
propagation by the content Bayesian agencies. Each BOC is “filled” through the emergent
behaviour of agencies 1, 2 and 3.

Clickstream agency(t) uses BOC(t) as evidence together with products purchased from
PageView(t) to predict the contents and products that might interest the user next. The
behaviour associated with Clickstream agency(t) is the personalization of PageView(t+1).
BOW(t+1) is next extracted from the personalized PageView(t+1) viewed by the user. This
process is repeated until the session ends.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

102

Figure 28: Bayesian Agencies in Web Personalization

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

103

6.8 Applicability, Use and Value of the BaBe Agent Architecture

6.8.1 A General Application of the BaBe Agent Architecture

A general J2EE-based application of the BaBe agent architecture is illustrated in Figure 29.
This application consists of three tiers, namely a client-tier, a business-tier and an enterprise
information system (EIS) – tier. The client-tier consists of a Bayesian network administration
client and one or more user clients, running on one or more client machines. The business-
tier consists of the Bayesian agencies, competence and environment components deployed on
one or more J2EE servers. The EIS-tier consists of one or more database or legacy machines.

Figure 29 illustrates the distribution of the BaBe system components between the three
tiers.

1. The Business-Tier:

- Bayesian Agencies
The Bayesian agencies form the heart of the BaBe system. These agencies
collectively implement a Bayesian behaviour network. The knowledge engineer
uses the Bayesian Network Administration Client to initialize or to modify the
Bayesian behaviour network. The Bayesian agencies update this network from
relationships learnt from evidence received from the environment components in an
ongoing process of responding to environmental changes.

- Competence Components
These components contain the business logic of the enterprise, and are packaged by
code developers in collaboration with the system and knowledge engineers.

- Environment Components
The environment components are generated by the administration client from
specifications supplied by the administrator of the system. These components
ensure persistence and act as an interface between the Bayesian agencies and the
data sources in the environment.

2. The Client-Tier:

- The Administration Client
The administrator of the system uses the administration client to specify all
relevant data sources. The administration client then generates and deploys the
environment components.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

104

Figure 29: BaBe – A General Application

- The Bayesian Network Administration Client
Using this client, a knowledge engineer can capture his/her prior knowledge about

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

105

the domain and relationships within the domain. He/she can also view the
Bayesian behaviour networks collectively implemented by the Bayesian agencies,
and change it if necessary. This client allows the knowledge engineer to associate
competence sets and Bayesian network node sets. Each competence set defines
one or more actions packaged into one or more competence components.

- User Clients
The users of the system use these as interfaces to query the system to determine
relationships between data entities, query trend predictions, etc.

3. The EIS-Tier:
This tier consists of legacy systems, databases, documents, media files, and other data
sources in the distributed environment of the enterprise.

The Bayesian agencies are by default in learning mode. As soon as any of the data sources
in the environment changes, the environment components gather evidence from all related
sources and present the evidence to the node components of the Bayesian agencies. This in
turn triggers the learning in the Bayesian agencies. Belief-propagation in the agencies will
cause certain competence components to be activated, depending on the beliefs of the nodes
in the underlying Bayesian behaviour network. The competence components, in turn act in
the environment, effecting changes to data sources or documents.

When a user client queries the Bayesian network for patterns of interest, the Bayesian
agencies temporarily change their mode from learning mode to query mode. Using the
evidence supplied by the user client, the Bayesian agencies perform belief propagation, and
return the result to the user client. The Bayesian agencies immediately return to learning
mode, and process all the evidence that was received whilst processing the query.

6.8.2 The Limitations of the BaBe Architecture

One of the limitations of the BaBe application is that it implements Bayesian inference in
singly-connected Bayesian networks only. The belief propagation agencies propagate beliefs
through the networks according to Judea Pearl’s belief propagation algorithm for singly-
connected networks. It is possible to apply this algorithm to multiply-connected networks, as
the algorithm is an approximation method for multiply-connected networks. The results will
not necessarily be correct, and messages might circulate indefinitely around loops, but the
values obtained are usually very close to the true values (Pearl, 1988) (Russell & Norvig,
2003).

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

106

The other limitations of the BaBe architecture are caused by the static nature and
inflexibility of the J2EE platform. This platform requires the complete system functionality
and adaptation logic to be specified at build time, after which the system is deployed. For
example, when the Bayesian network administration client changes the Bayesian behaviour
network structure, or when the Bayesian agencies discover new relationships between data
sources, new queues must be created, and new belief propagation agents, node and link
components must be deployed. If the Bayesian agencies find that relationships between data
sources become insignificant, queues must be deleted, belief propagation agents must be
destroyed and the associated node and link components must be destroyed. The competence
agencies activate competence components as emergent responses to the belief propagation in
the underlying Bayesian behaviour network. If a competence component must be changed, it
must be recompiled and redeployed. If a new competence component is added, it must be
deployed. The J2EE platform does not allow any of these activities during runtime. Any one
of the above activities will require a new deployment of the entire BaBe architecture – a
cumbersome process.

A new generation of component-based frameworks is emerging, namely reflective
component-based frameworks. These frameworks will allow all of the above activities to be
performed during execution time. BaBe will only realise its full potential when deployed in a
reflective component-based framework. Kon, Costa, Blair & Campbell (2002) describe a
reflective component-based system as a collection of components that can be configured and
reconfigured by the application in order to adapt to changes in the environment. Examples of
reflective component-based systems include for example dynamicTao (Kon, Román, Liu,
Mao, Yamane, Magalhães & Campbell, 2000), X-Adapt (McGuren & Conroy, 2002) and
Chisell (Keeney & Cahill, 2003).

6.8.3 The Benefits of the BaBe System

BaBe is unique. As the first component-based complex adaptive computer system, it will set
a new standard in the modelling of the dynamics of change. It implements an adaptive agent
architecture with an internal model that is dynamic and that can change automatically in
response to patterns mined from environmental changes. Traditional systems have either
static models or models that must be updated manually. For example, the BDI (Belief-
Desire-Intention) (Rao & Georgeff, 1995) and BDJI (Belief-Desire-Joint-Intention)
(Jennings, 1993) deliberative agent architectures have static models, and the Subsumption
Architecture (Brooks, 1985) and the behaviour networks of Maes (1990) have to be

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

107

maintained manually. The Bayesian behaviour networks implemented by the Bayesian
agencies sense changes in real-time by the environment components from the different data
sources in the environment and the patterns are integrated into the Bayesian behaviour
networks as they emerge.

Bayesian agencies can be integrated into the static BDI and BDJI models. One way to do
this is to place the possible worlds model under the control of the Bayesian agencies, so that
this model always reflects the current state of the environment. Rather than maintaining an
input queue of events that is serviced on a cyclic basis, the Bayesian agencies will react to
environmental changes as they occur and activate competence components to update the data
structures representing the agent’s beliefs, desires, intentions and joint intentions.

A major benefit of BaBe is its component-based architecture. For example, when the
administrator defines new data sources using the administration client, the necessary
environment components are deployed, and the Bayesian agencies immediately take these
new data sources into account when mining patterns in the data. The business logic of the
application is packaged into the heterogeneous competence components, which are
controlled by homogeneous components assembling the Bayesian agencies. The component-
based architecture and the re-usability of the components make this system scalable, and able
to evolve.

The BaBe application benefits from the underlying support provided by the J2EE server,
which includes services such as security, transaction management, Java Naming and
Directory Interface (JNDI) lookups, and remote connectivity.

6.8.4 How and where can the general BaBe application be used?

Organisations are complex systems that are characterised by high numbers of component
entities, and a high degree of interactions. The outcome of any change to the system cannot
always be predicted. Also, a sequence of changes can occur over time, following an initial
disturbance. Humans find such changes and sequences difficult to understand and anticipate.

The BaBe application can be deployed in an environment to highlight the impact of
emergent properties and to control the behaviour of the system in response to emergence.
The Bayesian agencies organize themselves into distributed Bayesian behaviour networks,
collectively modelling the dynamics of change. The Bayesian agents can collectively “mine”
the complex web of interrelationships including for example internal relationships within the
company and interrelationships implicit in knowledge regarding products and services,

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

108

business processes and business units; specific projects and project implementations;
customers and the marketplace. The enterprise can then use this self-understanding to adapt
its business processes and to formulate new knowledge or business strategies in response to
the ever-changing marketplace in order to sustain its competitive advantage.

One use of the general BaBe application is to implement a dynamic, self-defining trading
network. A supply chain is a sequence of logistical activities that move raw materials,
transform them into goods, and move them to the end consumer or customer. A value chain
is the whole process of creating value across the product life cycle, from conceiving the
product, through manufacture, onward distribution, sales and into the hands of a customer.

A value chain consists of a network of commercial relationships that are fluid, and form in
response to consumer demand, shaping themselves in real time to best satisfy the consumer
demand, faster and at lower cost. The general BaBe application can ensure that all
participants in such a network are included, and that business decisions, negotiations and
transactions can occur at machine speed, independent of human intervention.

6.9 The BaBe Agent Architecture: A Complex Adaptive System

Humans find it difficult to understand and anticipate the effects of emergence in complex
computer systems. Complex adaptive systems, a branch of complexity theory research, can
be used to model the dynamics of change caused by emergence. A complex adaptive system
is characterized by complex behaviours that emerge as a result of interactions among
individual system components and among system components and the environment.

The BaBe agent architecture can function as a complex adaptive system, as it satisfies all
of Holland’s properties and mechanisms as discussed below:

1. The Aggregation Property – the simple agents in the BaBe architecture are
organised into adaptive aggregates. Belief propagation agents are organised into
belief propagation agencies, and competence components are organised into
competence agencies. These agencies are organised into a heterarchy through shared
node components in the underlying Bayesian behaviour network. The belief
propagation agencies collectively propagate belief in the presence of evidence. If the
network is in learning mode, the conditional probability tables of the nodes are
updated. The competence agencies query the network nodes and activate
competence components if certain conditions are met.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

109

2. The Tagging Mechanism – The component interfaces facilitate selective interaction.
Evidence from the environment is presented to nodes using the node component
interfaces. Belief propagation agents communicate with their neighbours by placing
LAMBDA and PI tags on queues, representing the Bayesian behaviour network
structure. Belief propagation agents update the beliefs of the nodes by accessing the
link and node component interfaces. The competence agencies query the beliefs of
nodes, using the node interfaces, and depending on the beliefs of the nodes, activate
behaviours via the competence component interfaces.

3. The Non-linearity Property – The BaBe agent architecture exhibits emergent
behaviour. Its overall behaviour is more than what can be predicted from the
behaviours of the individual competence components and belief propagation agents.

4. The Flows Property – The belief propagation agents collectively propagate
LAMBDA and PI tags through the Bayesian behaviour network given the current
environmental state. This is a continuous process of receiving environmental
evidence and sending LAMBDA and PI tags on message queues representing the
Bayesian behaviour network topology.

5. The Diversity Property – The Bayesian agencies can incrementally adapt by using
Bayesian learning to discover new regularities or destroying redundant ones. Each
new adaptation in the underlying Bayesian behaviour network can cause the
competence agencies to activate different or new actions and interactions.

6. The Internal Models Mechanism – The BaBe agent architecture uses Bayesian
behaviour networks as adaptive hyperstructures in its internal model. The powerful
inference capabilities of these networks enable the Bayesian agencies to collectively
anticipate and predict. The ability of Bayesian learning to discover structure from
data, enable the Bayesian agencies to collectively “mine” regularities from the input
stream and integrate it into the Bayesian behaviour network topology. The modified
internal model will then enable the Bayesian agencies to anticipate and act upon the
consequences that follow when a similar pattern is encountered.

7. The Building Blocks Mechanism – The Bayesian behaviour networks in the internal
model are assembled from BaBe components. These components include
homogeneous node components, link components and belief propagation agents
grouped into belief propagation agencies, as well as heterogeneous competence
components grouped into competence agencies.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

110

The ability to act as a complex adaptive system empowers BaBe to model and act upon the
dynamics of change. This technology enables BaBe to develop robust strategies in a rapidly
evolving environment, highlighting the possible impact of emergent properties and acting in
response to this knowledge.

6.10 Conclusion

The BaBe agent architecture can function as a complex adaptive system, learning from and
acting upon emergence. BaBe can be deployed in an uncertain environment to model and act
upon the dynamics of change caused by emergence. Humans find it very difficult to
comprehend emergence in computer systems and to anticipate the consequences of
emergence. The BaBe architecture can assist the human by modelling and adapting to the
effects of emergence in uncertain and unpredictable environments such as value chains and
knowledge management applications.

The BaBe agent architecture is a component-based adaptive agent architecture. It consists
of simple components, grouped into Bayesian agencies. These agencies, in turn, are
organised into heterarchies, exploiting the power inherent in these organisational structures.

The BaBe components include node components, link components, belief propagation
agents grouped into belief propagation agencies, and competence components grouped into
competence agencies. Collectively the belief propagation agents, node components, link
components and competence components assemble the Bayesian behaviour networks as
hyperstructures in BaBe’s internal model.

The belief propagation agents are homogeneous components that collectively propagate
beliefs, given the current environmental state, in singly-connected Bayesian behaviour
networks. The node components incrementally learn from environmental states by keeping
history data and updating the conditional probability matrices in response to evidence
received from the environment. The competence agencies overlap and “share” node
components with the belief propagation agencies, thus forming a heterachy. Each
competence agency activates one or more competence components as emergent properties of
the belief propagation in the underlying Bayesian behaviour network. The competence
components are heterogeneous components that capture domain-specific behaviours such as
parts of business processes or workflows in an enterprise. The node components and belief
propagation agents collectively ensures situatedness of the Bayesian agencies as the
underlying Bayesian behaviour network always reflects beliefs about the current
environmental states.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

111

BaBe can function as a complex adaptive system as it satisfies all of Holland’s properties
and mechanisms. The BaBe components collectively implement the internal model and
building blocks mechanism. The Bayesian agencies are adaptive aggregates, which have non-
linear properties due to their capability to exhibit emergent behaviour. The overall behaviour
of the Bayesian agencies are more than what can be predicted from the individual behaviours
of the belief propagation agents and the competence components. The Bayesian learning
contributes to the diversity property of this architecture. The belief propagation algorithm
implements the flows property, as it is a continuous process of receiving environmental
evidence and sending tags on message queues representing the Bayesian behaviour network
topology. These tags trigger the update of the beliefs of each node given the environmental
states.

The BaBe component interfaces implement the tagging mechanism that enables the belief
propagation and competence agencies to interact with each other in accordance to the
structure of the underlying Bayesian behaviour network. The belief propagation agencies and
competence agencies interact through the BaBe component interfaces. Environmental
evidence is represented to the node components via their interfaces, which is used to update
the conditional probability tables of the nodes. The node component interfaces supply access
to the beliefs of nodes, queried by the competence agencies. Belief propagation agents
communicate with each other using queues representing links in the underlying Bayesian
behaviour network.

The Bayesian agencies are self-aware. A belief propagation agency can be viewed as an A-
Brain that is connected to the real world. As soon as evidence is received from the
environment, the belief propagation agents collectively perform belief propagation. The
competence agencies can be viewed as constituting the “B-Brain”. These agencies can “see”
inside the “A-Brain” by inspecting the beliefs of nodes and acting upon these beliefs by
activating competence components. The actions of the competence components can change
the state of the environment, influencing the collective belief propagation in the belief
propagation agency – the “A-Brain”. These actions are therefore part of the dynamic
interaction with the environment, ensuring embodiment of the Bayesian agencies.

We described a general application of the BaBe architecture based on the J2EE platform.
This platform does not support runtime configuration of components and middleware
services as can be done in the new generation of component-based frameworks, namely
reflective component-based frameworks. BaBe will only realize its full potential if
implemented using a reflective component-based framework.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

112

Chapter 7
The BaBe Methodology

The presence of emergence in engineering may be a natural
consequence of the modern trend which is leading engineering
into areas where we expect machines to do things which we
cannot really specify, but, like intelligence and life, can only
say “I will know it when I see it!”

 - E. Ronald & M. Sipper

7.1 Overview

According to Minsky (1988) the process of understanding any large and complex “thing”
(system) can be broken up into three subprocesses, as follows:

First we must know how each separate part works. Second we
must know how each part interacts with those to which it is
connected. And third, we have to understand how all these
local interactions combine to accomplish what the system does
– as seen from the outside.

Agent-oriented software engineering currently focuses only on Minsky’s first two steps.
These methodologies design the individual agents and the interactions between them, but fail
to address the understanding of emergent behaviour – Minsky’s third step above.

Minsky described a model of how the human mind observes its own emergent behaviour,
by the division of the brain into an A-Brain and a B-brain in order to allow the mind to
“watch itself”. The A-brain is connected to the real world in order to sense and act upon
what is happening there. The B-brain, in turn, is connected to the A-brain, so that the A-brain
is the B-brain’s “world”. The B-brain can then “see” and influence what happens inside the
A-brain.

The BaBe agent architecture is based on Minsky’s model and “watches itself” in the way
described above. A belief propagation agency can be viewed as an A-Brain that is connected
to the real world. As soon as evidence is received from the environment, belief is propagated

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

113

through the underlying Bayesian behaviour network. The competence agencies can be
viewed as constituting the “B-Brain”. These agencies can “see” inside the “A-Brain” by
inspecting the beliefs of nodes and acting upon these beliefs and possibly changing the state
of the environment, influencing the beliefs propagated by the belief propagation agency – the
“A-Brain”.

The BaBe methodology involves the design of the initial topology of the Bayesian
behaviour network used by the belief-propagation agency (the “A-Brain”) and the design of
the competence agencies (the “B-Brain”). This methodology extends the Gaia methodology
and the coordination-oriented methodology in order to cope with emergence. This chapter
describes the models in the Gaia methodology and the coordination-oriented methodology,
which form the basis of the BaBe methodology. It then describes how these models are
adapted in the BaBe methodology, and describes the added emergence model that copes with
emergence.

7.2 The Gaia Models

The Gaia methodology involves a process of generating increasingly detailed models during
the analysis and design phase. These models are concerned with the design of individual
agents and the communication between them.

Figure 30 illustrates the different models in the Gaia analysis and design phases. During
the Gaia analysis phase, the following models are defined (Wooldridge et al., 2000):

• roles model - A description of each role in terms of responsibilities, permissions,
interaction protocols, and activities;

• interactions model – description of each protocol in terms of data exchanged and
partners involved.

During the Gaia design phase, the following models are defined (Wooldridge et al., 2000):

• agent model - the complex agent types and instances composing the system, where
each agent type can be viewed as a set of agent roles;

• services model - the services to be provided by each complex agent in order to
realize its role;

• acquaintance model - a description of the lines of communication between different
complex agents, in terms of symbolic communication protocols.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

114

requirements
statement

roles model interactions model

agent model services model acquaintance model

Analysis

Design

Figure 30: Relationships between the Gaia Models (Wooldridge et al., 2000)

We summarize the Gaia methodology, as described by Wooldridge et al. (2000), below:

The Analysis Process:

1. Identify the roles of the system. These roles will correspond to:

• Individuals, either within an organization or acting independently;

• Departments within an organization;

• Organizations themselves.

Output: A prototypical roles model – a list of key roles that occur in the system,
described informally.

2. For each role, document the associated protocols. These protocols are the patterns
of interaction that occur between the various roles.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

115

Output: An interaction model, capturing the inter-role interactions.

3. Using the protocols as basis, elaborate the roles model.

Output: A fully elaborated roles model, documenting the key roles in the system,
their permissions and responsibilities, together with the protocols and activities in
which they participate.

4. Iterate steps 1-3 above.

The Design Process:

5. Create a complex agent model:

• Aggregate roles into complex agent types, and refine to form an agent type
hierarchy;

• Document the instances of each agent type.

6. Develop a services model from activities, protocols and roles.

7. Develop an acquaintance model from the interaction model and agent model.

7.3 Coordination Models

The coordination-oriented methodology is based on the Gaia methodology. Zambonelli et al.
(2000) extended the Gaia methodology in order to make it more suitable to open
environments as they claimed that most current agent-oriented methodologies are ill suited to
open environments. The coordination-oriented methodology added global laws that agents in
an agency must obey when interacting with other agents.

Zambonelli et al.’s models consist of three elements, namely

• the coordinables: entities whose mutual interaction is ruled by the model (the
agents);

• the coordination media: the abstractions enabling agent interactions, as well as the
core around which components are organized. Examples include semaphores,
monitors, channels and blackboards;

• the coordination laws: the behaviour of coordination media in response to
interaction events.

Figure 31 illustrates the coordination models in the coordination-oriented methodology.
These models are the same as in the Gaia methodology with the social model added in the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

116

analysis phase, and the acquaintance model replaced by a model of the behaviour of the
coordination media in the design phase. The social model defines social laws that must be
obeyed by agents. The social model, together with the interactions model, forms the basis for
the model defining the expected behaviour of the coordination media.

requirements
statements

roles model interactions model

agent model services model behavior of the
coordination media

Analysis

Design

social laws

Figure 31: Coordination Models (Zambonelli et al., 2000)

7.4 The BaBe Models

7.4.1 Overview

The BaBe methodology involves the modelling of different aspects of the system at different
levels of abstraction, extending the Gaia and coordination-oriented models.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

117

The BaBe coordination model elements are:

• the coordinables: the entities involved in mutual interaction, are:

- the belief propagation agents;

- the node components;

- the link components; and

- the competence agencies and the competence components.

The belief propagation agents, node components and link components are part
of the BaBe agent architecture. Only the competence agencies and the
competence components need to be addressed in the BaBe methodology.

• the coordination media: The components that enable agent interactions form
part of the BaBe agent architecture. These components include:

- belief propagation agents, communicating with each other using simple tags
placed on communication queues implementing Bayesian behaviour
network links; and

- node and link components administering shared data in a database.

• the coordination laws: the behaviour of coordination media in response to
interaction events. The BaBe agent architecture provide interfaces enabling the
following interactions:

- interactions with the environment: evidence from the environment is
presented to applicable node components as soon as it is received. If the
Bayesian behaviour network is in learning mode, the conditional probability
matrices are incrementally updated with the new evidence. Each node
component administers evidence history, the newest evidence as well as the
conditional probability matrices for that node.

- interactions between belief propagation agents, node and link
components: evidence received from the environment triggers belief
propagation. The belief propagation agents calculate beliefs using Judea
Pearl’s belief propagation algorithm. Belief propagation agents
communicate by sending and receiving simple tags on message queues
representing the Bayesian behaviour network topology. These tags trigger
the update of π and λ values for each link and each node given the

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

118

environmental evidence. The π and λ values are stored in a database,
administered by node and link components. The belief of each node is a
normalized product of the π and λ values for that node.

- interactions between competence agencies and node components: the
competence agencies monitor the beliefs of nodes, revised by the belief
propagation agents during each belief propagation cycle. Depending on the
beliefs of the nodes the competence agencies decide if component
behaviours must be activated or not.

The BaBe models and the relationships between them are illustrated in Figure 32.

During the BaBe analysis phase, the following models are defined:

• environment model – description of observable behaviours of coordinables and
events as objects with states.

• roles model – the description of each role in terms of responsibilities, permissions
and activities.

• interactions model – interactions between roles, and between roles and the
environment.

During the BaBe design phase, the following models are defined:

• agency model – this model describes the competence agencies;

• internal behaviour model – this model describes the initial configuration of the
Bayesian behaviour network(s) and describes how evidence from the environment
will be presented to the network(s);

• external behaviour model – this model describes the competence of each
competence agency.

During the BaBe execution phase, the emergence model is implemented by the Bayesian
agencies. This model functions as the internal model of the complex adaptive system.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

119

requirements
statement

roles model interactions model

agency model
external behavior

model

Analysis

Design

Execution

internal behavior
model

emergence model
emergent
behaviors

environment
model

Figure 32: The BaBe Methodology

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

120

7.4.2 The Environment Model

The environment model must capture all the known state changes and events that can occur
in the environment as objects with states.

User Profile

Mathematician

Computer
Scientist

HyperlinkPaths
Path 1

Software
Engineer

Engineer

Basketball
Player

Path 2

Path 3

Path 4

Path 5

Interest Category

Neural
Networks

Algorithms

Basket Ball

Content Category
Engineering and

Science

Mathematics

Graph Theory

Statistics

Computers and
Internet

Artificial Intelligence

Machine Learning

Neural Networks

Programming

Software Engineering

Algorithms

General Interest

Sport and Adventure

Basketball

Advertisements
Informative

Uninformative

Page
Page 1: Judea Pearl

Page 2:
Prof Michael Jordan

Buy ?
True

False

Graph
Theory

Statistics

Machine
Learning

Next Page
Page 1: Judea Pearl

Page 2:
Prof Michael Jordan

Page 3: Michael
Jordan (Basketball))

Page 4:
Other Page

Page 2: Michael
Jordan (Basketball)

 Figure 33: Example Environment Model

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

121

For each object, the states of the objects that are known can be indicated. In the analysis
phase, the states will most probably not be known, as some states might only emerge during
the execution phase. In Figure 33, example environmental objects are illustrated.

7.4.3 The Roles Model

This model describes each role in terms of responsibilities, permissions and activities. A role
is created to do something in reaction to environmental states. In the submission for UML2.0,
Financial Systems Architects, MEGA International, Mercury ComputerSystems &
TogetherSoft (2002) describe a role as follows:

A role is used to specify an action, association or relationship
without identifying a particular participant in that action,
association or relationship. That is, a role serves as a
placeholder, used when the modeller does not want to be more
specific at that place in the model.

The BaBe roles model is nearly the same as the Gaia roles model, but differs with respect
to one characteristic. In Gaia, a role is described in terms of four attributes, namely
responsibilities, permissions, activities and protocols. In BaBe, a role is described in terms of
three attributes, namely responsibilities, permissions and competence. These characteristics
are illustrated in Figure 34.

role

responsibilities

safety
properties

permissions

liveness
properties

competence

Figure 34: The BaBe Roles Model

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

122

A responsibility determines functionality. Wooldridge et al. distinguish between two types of
responsibilities, namely liveness and safety properties, and describe these properties as
follows:

• Liveness properties describe what must be achieved by a given role, given certain
environmental conditions; and

• Safety properties impose constraints on the behavioural states of a role.

Permissions are the “rights” associated with each role, that is a specification of the
resources available to the role in order to realise its responsibilities. These resources are the
objects described by the environment model.

A competence specifies the computations associated with each role. (In Gaia, activities
refer to computations carried out without interacting with other roles, and protocols are
computations carried out through interaction with other roles).

The BaBe roles model can be documented using a set of role schemata. These role schemas
are similar to the Gaia role schemas. See Figure 35.

Role Schema name of role

Description short English description of role

Competence activities in which the role plays a part

Permissions “rights” associated with the role

Responsibilities

 Liveness Liveness responsibilities

 Safety safety responsibilities

 Figure 35: BaBe Role Schema

Object Process Diagrams (Sight Code Inc., 2001) are ideally suited to visualize role
models. Figures 9 and 12 are examples of Object Process Diagrams (OPD’s). In these
diagrams, processes are represented by ellipses, informational objects by rectangles, and
states of these objects by rounded rectangles within the rectangles that represent the objects.

Liveness responsibilities can be represented using an OPD as in Figure 36. In this OPD,
the example role achieves states p1 and q1, given environmental states m2 and n2.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

123

role

object M
state
m2

state
m1

object N
state
n2

state
n1

object P
state
p2

state
p1

object Q
state
q2

state
q1

Figure 36: Liveness Properties OPD

Safety responsibilities can be represented using an OPD as in Figure 37. In this OPD,
object M must be in state m2 and object N must be in state n2 for the role to achieve its
competence.

role

Object M
state
m2

state
m1

Object N
state
n2

state
n1

Figure 37: Safety Properties OPD

Figure 38 illustrates an example role for the bookstore example. Using the states of the
interest category object, as well as the states of the content categories determined by
traversed hyperlinks, the role personalizes the web page and outputs the changed web page
contents.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

124

Interest Category Content Category

personalise
WebPage

Web Page
Contents

Figure 38: Example Role

7.4.4 Interactions Model

The interactions model captures the interactions between roles. These interactions are not
restricted to symbolic communication protocols. Roles can interact through states of objects,
as illustrated in Figure 12. Roles can also interact through the exchange of messages, which
can be illustrated using OPD diagrams or any of the UML behaviour diagrams.

A number of researchers view agents as next generation objects or components (Odell, Van
Dyke Parunak and Bauer, 2001) and is extending the UML to Agent UML (AUML), which
will make it more suitable to the specification of agent interactions and interaction protocols.

The BaBe agent architecture enables causal interaction between objects with states. In the
interactions model, one or more Bayesian behaviour networks can be constructed, using the
objects in the environment model. The system designer need not worry about the interactions
between agents during belief propagation, as it is inherent in the BaBe agent architecture.

7.4.5 Agency Model

The agency model consists of the definition of the competence sets to be implemented by the
competence agencies. Each competence agency implements a competence set = ,

where is a set of constraints on a subset of Bayesian behaviour network nodes and their

states, and the

iΘ),(ii ΑC

iC

iΑ is a set of component actions that must be executed if all the constraints in

iC are met. Each competence agency consists of a set of competence components. The

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

125

agency accesses the node component interfaces of the nodes in the constraint set in order to
determine if the component behaviours must be executed or not. (As an example, see Figures
25-27 and the accompanying descriptions).

7.4.6 Internal Behaviour Model

This model consists of one or more Bayesian behaviour network(s) and the sources of
evidence from the environment that will be presented to Bayesian behaviour network nodes,
using the interfaces of the node-components.

7.4.7 External Behaviour Model

This model describes the competences of the competence agencies. Each of the component
actions in the competence sets of the competence agencies must be described in detail. In an
enterprise, example component behaviours will include parts of the business processes or
workflows in the enterprise. These behaviours must be packaged into one or more re-usable
components - the competence components.

7.4.8 The Emergence Model

The emergence model consists of Bayesian behaviour networks, initialised by the software
engineer and implemented by the Bayesian agencies. The belief propagation agencies will
incrementally update the networks during learning by updating the conditional probability
matrices or discovering new links with each new set of evidence received from the
environment. The competence agencies inspect the beliefs of nodes and act upon these
beliefs by activating competence components. The actions of the competence components
can change the state of the environment, influencing the collective learning and belief
propagation in the belief propagation agencies. The feedback arrow to the emergence model
in Figure 32 indicates this process.

The Bayesian behaviour networks can be viewed as the language described in the

emergence test defined by Ronald et al. (1999). Bridging the - gap involves the

learning of the conditional probability matrices from the observed external and internal
behaviours, as well as the discovery of new relationships between behaviours.

1L

1L 2L

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

126

7.5 The BaBe Methodology

7.5.1 Graphical Diagrams

The BaBe models can be defined using any of the following, where applicable:

• Use case diagrams (UML)

• BaBe Role Schemas (derived from Gaia Role Schemas) - Example: Figure 35

• Class diagrams (UML)

• Behaviour Diagrams

− Object Process Diagrams (Sight Code Inc., 2001) - Examples: Figures 9, 12, 36,
37, 38

− State chart diagrams (UML) - Examples: Figures 10, 11, 23 and 24

− Activity diagrams, Interaction Diagrams, Sequence Diagrams, Collaboration
Diagrams (UML)

− Bayesian behaviour networks (BaBe) - Example: Figure 17

• Implementation Diagrams

− Component Diagrams (UML) - Examples: Figures 21 and 22

− Deployment Diagrams (UML)

7.5.2 The Analysis Process

1. Identify observable behaviours of coordinables and events in terms of objects with states.
Output: An environment model.

2. Identify the roles of the system.
Output: A prototypical roles model – a list of key roles that occur in the system,
described informally.

3. For each role, document the associated patterns of interactions that occur between the
various roles.

4. Design the causal relationships between objects.

Output: An interaction model, capturing the inter-role interactions and a prototypical
Bayesian behaviour network.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

127

5. Elaborate the roles model using the Bayesian behaviour network as basis.
Output: A fully elaborated roles model, documenting the key roles in the system, their
permissions and responsibilities, together with their competences.

6. Iterate steps 1-5 above.

7.5.3 The Design Process

1. Create an agency model

a. Aggregate roles into competence sets, and assign a competency agency to
each competence set;

b. Document each competence agency.

Output: An Agency Model, documenting the competence sets and their associated
competence agencies.

2. Elaborate the Bayesian behaviour network defined in the interactions model, as well
as specifications of all interactions presenting evidence to the Bayesian behaviour
network nodes.

Output: An Internal Behaviour Model documenting the Bayesian behaviour network
and its interfaces with the environment.

3. Design the competences to be provided by each agency in order to realize its role.

Output: An External Behaviour Model, documenting all the component actions in the
competence sets of the competence agencies.

4. Iterate steps 1-3 above

7.5.4 The Execution Phase

7.5.4.1 A General Application implementing the Execution Phase of the BaBe

Methodology

A general application implementing the execution-phase of the BaBe methodology is
illustrated in Figure 39. This is a subset of the general Babe application illustrated in Figure
29.

Using the Bayesian Network Administrator Client, as well as the Agency Model generated
during the design phase, the software engineer manually initializes or modifies the Bayesian

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

128

behaviour network configuration and configures the competence agencies, so that it checks
the constraints on the Bayesian network nodes to decide if competence components must be
activated or not.

Figure 39: General Application for the BaBe Methodology Execution Phase

The Bayesian agencies consist of the competence agencies and belief propagation agencies
that are deployed together. They share node components, updated by the belief propagation
agents and queried by the competence agencies to determine if their associated competence
components must be activated or not.

7.5.5 The Limitations of the BaBe Execution Phase Application

The limitations of the execution phase application are caused by the static nature and
inflexibility of the J2EE platform. If the structure of the Bayesian behaviour network
underlying the Bayesian agencies is modified, or if the competence agencies are changed, the
entire BaBe agent architecture must be redeployed. These limitations will be overcome by
deploying BaBe using a reflective component-based framework.

7.5.6 The Benefits of the BaBe Execution Phase Application

Using the BaBe execution phase application, the user will be able to visualize the emergence
model. The software engineer will be able to view the effect of the emergent behaviours on
the emergence model illustrated in Figure 32. This interface will enable the software

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

129

engineer to update the Bayesian behaviour network and competence agencies if iterating
through the analysis and design phases causes the agency model and internal behaviour
model to change.

7.5.7 How and where can the BaBe Execution Phase Application be used?

The BaBe execution phase application can be used to engineer the emergence model in an
interactive fashion in any environment that the BaBe agent architecture is deployed, assisting
it to control the behaviour of the system in response to emergence. The software engineer can
visualize how the Bayesian agencies organize themselves into distributed Bayesian behaviour
networks, collectively modelling the dynamics of change.

Using this application, the software engineer can view the complex web of
interrelationships that the Bayesian agencies mined from their environment, including for
example relationships between products and services, business processes and business units;
specific projects and project implementations; customers and the marketplace. The software
engineer can then use this understanding to adapt the competence agencies assisting the
enterprise to adapt its business processes and to formulate new knowledge or business
strategies.

7.6 Conclusion

The BaBe methodology modifies and extends the Gaia and the coordination-oriented
methodologies. It includes Gaia models and coordination models, and has an additional
emergence model.

The BaBe methodology uses the Gaia and coordination-oriented roles and interactions
models. The coordination-oriented methodology added the social laws model to the Gaia
methodology, which our BaBe methodology replaced with an environmental model. This
model captures all the known states of the environment. BaBe modifies the Gaia roles model
by replacing Gaia’s activities and protocols with competences. These competences include
general interactions and activities and are not restricted to symbolic communication
protocols.

The BaBe agency model replaces the Gaia and coordination-oriented agent model. The
competences apply to agencies rather than individual agents. The agency model consists of
the competence sets defined in terms of constraints on the beliefs of the Bayesian behaviour
network nodes and actions that must be performed should the constraints be met.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

130

The BaBe internal behaviour model replaces the Gaia and coordination-oriented services
model. This model defines all the interactions between the Bayesian behaviour network
nodes and the environment, for example how environmental evidence will be presented to the
network nodes, and how the network will be queried.

The BaBe external behaviour model replaces the Gaia acquaintance model and
coordination model that defines the behaviour of the coordination media. This model refines
the competences of the competence agencies.

The BaBe analysis and design models can be constructed using any suitable graphical
diagrams, such as the UML use case diagrams, state chart diagrams and so forth.

The BaBe methodology has an additional run-time model, namely the emergence model.
This model consists of Bayesian behaviour networks, initialised by the software engineer and
implemented by the Bayesian agencies. The belief propagation agencies incrementally
update the networks during learning by updating the conditional probability matrices with
each new set of evidence received from the environment. The competence agencies inspect
the beliefs of nodes and act upon these beliefs by activating competence components. The
actions of the competence components can change the state of the environment, influencing
the collective learning and belief propagation in the belief propagation agencies. The
collective self-awareness of these agencies assists the human software engineer to bridge the
gap between the implementation and the understanding of emergent behaviour of the BaBe
adaptive agent architecture.

We described a J2EE-based general application that implements the execution phase of the
BaBe methodology. This application can be used by the software engineer to interact with
the emergence model, visualizing the effects of emergence and adapting the behaviour of the
architecture if necessary. The J2EE platform is static because it requires the entire BaBe
agent architecture to be redeployed if the software engineer modifies the configuration of the
Bayesian behaviour network, the competence agencies or competence components.

If the BaBe architecture is deployed in a reflective component-based framework that
allows runtime configuration of components and middleware services, the modifications to
the emergence model made by the software engineer can take immediate effect as a reflective
component-based framework allows dynamic reconfiguration and deployment.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

131

Chapter 8
BaBe: The Prototype

8.1 Overview

With the prototype implementation of the BaBe agent architecture, we wanted to prove that it
is possible to use a commercially available component architecture to implement an adaptive
agent architecture.

As a detailed study of Bayesian belief propagation and learning falls outside the scope of
this research, our prototype implementation includes learning in Bayesian networks with
known structure and no hidden variables and belief propagation in singly-connected
polytrees using Judea Pearl’s belief propagation algorithm.

We implemented prototype node and link components using EJB entity beans. The
prototype node component implements the component specified in Figure 21. The prototype
link component implements the component specified in Figure 22. The prototype belief
propagation agents are all identical EJB message beans, operating in accordance with the
specification in Figure 23. These agents listen on different JMS queues, corresponding to the
links of the Bayesian behaviour network.

In this chapter, we illustrate the operation of our prototype BaBe components using the
Bayesian behaviour network illustrated in Figures 17 and 18. We describe how we manually
configured this Bayesian behaviour network and how we manually deployed the belief
propagation agents. We include screen dumps of the original beliefs (marginal probabilities)
of the nodes. We then illustrate how we set evidence and the resulting belief propagation,
taking this evidence into account, without any learning taking place. After this, we illustrate
the setting of evidence and the resulting belief propagation, taking this evidence into account,
this time with learning.

In Chapter 6, we described the competence sets and the competence agencies. We
illustrated the functioning of an example competence component, and will not repeat the
description in this chapter.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

132

8.2 Configuring the Bayesian Behaviour Network

The configuration of the Bayesian behaviour network was done manually. The JMS queues
for the links in Figure 17 were created using the j2eeadmin tool, as follows:

j2eeadmin -addJmsDestination DF queue
j2eeadmin -addJmsDestination EF queue
j2eeadmin -addJmsDestination CD queue
j2eeadmin -addJmsDestination AB queue
j2eeadmin -addJmsDestination FG queue
j2eeadmin -addJmsDestination FH queue
j2eeadmin -addJmsDestination BG queue
j2eeadmin -addJmsFactory DFCF queue
j2eeadmin -addJmsFactory EFCF queue
j2eeadmin -addJmsFactory CDCF queue
j2eeadmin -addJmsFactory ABCF queue
j2eeadmin -addJmsFactory FGCF queue
j2eeadmin -addJmsFactory FHCF queue
j2eeadmin -addJmsFactory BGCF queue

Figure 40: JMS Link Definitions

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

133

Figure 41 shows the assignment of the belief propagation agents to the JMS queues, using
the J2EE deployment tool.

Figure 41: Bayes Components

Figure 42 shows the output of the J2EE server on start-up, with the belief propagation
agents listening on the JMS queues representing the links in the Bayesian behaviour network.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

134

Figure 42: J2EE Server Start-up Trace

Figure 43 displays the beliefs of the Bayesian network in the absence of evidence. These
beliefs are also illustrated in Figure 17.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

135

Figure 43: Original Beliefs – No Evidence

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

136

8.3 Querying the Bayesian Behaviour Network

Figure 44 displays the output of a client setting evidence in order to query the Bayesian
behaviour network. In query mode, the node components do not learn from the evidence
presented to them.

Figure 44: Setting Evidence for a Query

Figure 45 is the output trace of the belief propagation agency, in response to the evidence
presented to it in Figure 44 above. This evidence is also illustrated in Figure 18.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

137

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

138

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

139

Figure 45: Belief Propagation Agency Output

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

140

Figure 46 shows the beliefs of the nodes after belief propagation (compare with Figure 18)

Figure 46: Beliefs of Nodes after Belief Propagation (Evidence and No Learning)

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

141

8.4 Learning the Bayesian Behaviour Network

Figure 47 displays the output of a client presenting evidence to the Bayesian behaviour
network. In learning mode, the node components learn from the evidence presented to them,
in this case that a user that browsed Michael Jordan’s the basketball player’s page next,
bought a product from the web page that he browsed before.

Figure 47: Setting Evidence that must be learnt

Figure 48 displays the results after belief propagation in the presence of the evidence
presented in Figure 47.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

142

Figure 48: Beliefs of Nodes after Belief Propagation (Evidence and Learning)

Figure 49 illustrates the new beliefs after learning, in the presence of no evidence from the
environment. Compare the new beliefs, with the original beliefs in Figure 43. The beliefs of
nodes F, G and H have changed, to incorporate the new evidence from the environment.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

143

Figure 49: New Beliefs after Learning

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

144

8.5 The Limitations of the BaBe Prototype

The BaBe prototype is limited in that the configuration of the Bayesian behaviour network is
a manual process and the prototype does not implement full Bayesian learning. Learning is
limited to Bayesian networks with known structure, and with no hidden variables. Due to the
known structure, it is possible for the configuration and deployment process to be done
manually. The JMS queues that represent the links in the Bayesian behaviour network are
created manually using the j2eeadmin utility. The belief propagation agents are then
deployed manually to listen on these links using the J2EE deployment tool.

8.6 Conclusion

In this chapter, we illustrated the operation of our prototype Bayesian agencies, and how the
Bayesian behaviour network is configured.

We illustrated collective belief propagation in the absence and presence of evidence from
the environment, and how the network can be queried. We showed the flow of LAMBDA
and PI messages in the Bayesian behaviour network in response to environmental evidence.

We demonstrated learning and illustrated how new evidence is incrementally integrated
into the conditional probability tables. This learning mechanism is limited in that it assumes
known structure and no hidden variables or missing data. The configuration and deployment
is a manual process, which we demonstrated.

With the prototype implementation of the BaBe agent architecture, we proved that it is
possible to use a commercially available component architecture, namely Sun’s Enterprise
JavaBeansTM component architecture, to implement an adaptive agent architecture. This is
possible because the BaBe agent architecture use simple agents as components, rather than
attempting to implement complex agents.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

145

Chapter 9
Conclusions and Future Research

9.1 Future Research: The BaBe Architecture

In this thesis, we described the use of Bayesian behaviour networks as internal models in
complex adaptive systems. We described prototype EJB components that are assembled into
distributed Bayesian behaviour networks, collectively performing Bayesian learning and
Bayesian belief propagation in singly-connected Bayesian behaviour networks. As a detailed
study of Bayesian belief propagation and learning falls outside the scope of this research, our
prototype implementation includes learning in Bayesian networks with known structure and
no hidden variables and belief propagation in singly-connected polytrees using Judea Pearl’s
belief propagation algorithm.

Future research will involve a full implementation of Bayesian learning, where Bayesian
agents collectively and incrementally discover structure from data in the presence of known
values for variables as well as in the presence of missing data. We will also complete the
collective belief propagation capabilities of the Bayesian agencies in order to cope with
multiply-connected Bayesian behaviour networks.

The major shortcomings of the current BaBe architecture are due to the ”black-box” nature
of the J2EE platform. In this platform, configuration between components and middleware
services is only supported at deployment-time using a deployment descriptor. This
configuration cannot be changed during runtime. BaBe needs to adapt to its environment in a
dynamic fashion. This cannot be achieved if the BaBe architecture must be redeployed after
any change to the competence components, Bayesian behaviour network configuration or the
competence agencies, as enforced by the current J2EE platform. In our future work, we plan
to deploy the BaBe architecture in a reflective component-based framework.

A reflective system can reason about and act upon itself. Such a system contains metadata
representing some part of itself, object data representing its functional application or domain
and a program to manipulate the object and metadata. The metadata can be inspected to
describe some part of the system, and changed to adapt the system (Keeney & Cahill, 2003).
Figure 50 illustrates our reflective BaBe agent architecture that we plan to implement in our
future research.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

146

Figure 50: Reflective BaBe Architecture

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

147

This architecture is based on the Chisell architecture (Keeney & Cahill, 2003). The
reflective BaBe architecture is divided into a base level and a meta level. The base level
consists of the components, their interfaces and a policy specification. This policy
specification contains adaptation rules for the system. These rules specify how to adapt the
system in an application-aware manner but do not contain low-level execution environment
information. The competence sets form an integral part of the policy document. In this
architecture, the competence agencies are decoupled from the belief propagation agencies.
The meta-level adaptation manager contains as a subset the competence agencies. The
adaptation manager accesses low-level middleware services using the context and resource
monitors, and the competence agencies test their constraints against the Bayesian network
nodes using the Bayesian node monitors. The adaptation manager then evaluates the rules in
the policy document and modifies middleware services, or activates, destroys or modifies
components as specified by the policy rules. The user must be able to view/modify the
adaptation policy in an interactive fashion.

Our future research will also involve the implementation of a commercially viable
application using the BaBe reflective agent architecture. BaBe can be used to implement
applications in any environment in which a system must dynamically adapt to an uncertain
and complex environment. Example applications include customer relationships
management, knowledge management and supply-chain optimisation. A particularly
interesting application is the use of Bayesian agencies to sustain the competitive advantage of
an enterprise.

9.2 The Complex Adaptive Enterprise: Sustaining the Competitive Advantage
using Bayesian Agencies

9.2.1 Introduction

The challenge facing every modern enterprise is not only how to achieve its competitive
advantage, but how to sustain this competitive advantage. In a world where the market,
customer profiles and demands change constantly and the events in the global marketplace
are unpredictable, it becomes increasingly difficult for an enterprise to sustain its competitive
advantage. Under these conditions of uncertainty, complexity and constant change, it
becomes very important for an enterprise to be able to learn from its experience and to adapt

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

148

its behaviour in order to constantly outperform its competitors. An enterprise that has these
characteristics is a complex adaptive enterprise.

The interrelationships between the resources in a complex adaptive enterprise amongst
themselves and within the marketplace are not only unlimited but mostly hidden. These
interrelationships can therefore affect so many different resources throughout the enterprise
that it is impossible for the human mind to comprehend. One of the main challenges of the
modern enterprise is to understand this complex web of interrelationships and to integrate
this understanding into its business processes and strategies in such a way that it can sustain
its competitive advantage.

9.2.2 The Chain of Sustainability

According to the resource-based theory, there are dynamic relationships between enterprise
resources, the capabilities of the enterprise and the competitive advantage of the enterprise
(April, 2002). The complex adaptive enterprise maintains a chain of sustainability that
constantly evolves from the interactions between the individual resources and the interactions
between the resources and the dynamically changing marketplace in order to sustain a
competitive advantage (April, 2002). April’s chain of sustainability is illustrated in Figure
51. We summarize April’s description of the chain of sustainability very briefly in the rest of
this section.

Resources or assets are the basic components in the chain of sustainability. Example
resources are products, employee skills, knowledge, and so forth. There are two types of
resources, namely tangible and intangible resources. Examples of tangible resources include
real estate, computer hardware and software. These resources are important to the strategy of
the enterprise, but are usually not a source of competitive advantage as these resources can
usually be acquired with ease by the competition. Examples of intangible resources include
organizational cultures, technological knowledge, know-how shared among employees,
patented processes and designs, trademarks, and accumulated learning and/or knowledge, as
well as experience. Intangible resources often play a critical role in the competitive
advantage of the enterprise, as it can rarely be separated from the skills and knowledge of the
employees, and can therefore not be acquired by the competition.

The resources in an enterprise are combined into complementary resource combinations
(CRCs) according to the functionality that these resources collectively achieve. The
collective behaviour of the resources in a CRC produces greater value to the enterprise than
the individual resource behaviours. The resources in a CRC therefore complement each

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

149

other. CRCs are the unique inter-relationships between tangible and intangible resources and
are the source of competitive advantage in an enterprise. An enterprise can take the same
tangible resources as its competitors, and uniquely combine these resources with intangible
resources and produce better quality products and services more efficiently than its
competitors. While the pool of assets or resources is the source of the set of CRCs in an
enterprise, the CRCs are the main source of its competitive advantage.

The behaviours of the CRCs define the strategic architecture of an enterprise, which is
defined as the capabilities of an enterprise, when applied in the marketplace. It is the
customer’s perspective of the capabilities of the enterprise. There are two types of
capabilities, namely key capabilities and core capabilities. Key capabilities refer to
capabilities that are merely necessary for the enterprise to be a player in their market or
sector and ensure competitive parity. These include services to support internal customers
(for example human resources, legal, accounting skills and processes) as well as those skills
and systems that are pre-conditions for doing business in the industry in which the enterprise
operates. These capabilities will increase the probability of economic survival, but are
typically not the capabilities that account for the real competitive advantage of the enterprise.
Core capabilities, on the other hand, refer to capabilities that are valuable and profit
producing in the marketplace, and are those capabilities that an enterprise relies on for its
competitive advantage. The list of core capabilities includes a set of abilities describing
efficiency and effectiveness, for example faster, more responsive, more flexible, higher
quality, and so forth. These capabilities apply to all the business processes in the enterprise.
The CRCs in an enterprise serve as the basis for developing these key and core capabilities.

Social complexity refers to the complex behaviour exhibited by a complex adaptive
enterprise, when its CRCs are embedded in a complex web of social interactions. These
CRCs are referred to as socially complex resource combinations (SRCs). In social
complexity, the source of competitive advantage is known, but the method of replicating the
advantage is unclear. Examples include corporate culture, the interpersonal relations among
managers or employees in an enterprise and trust between management and employees.
Socially complex resource combinations (SRCs) depend upon large numbers of people or
teams engaged in co-ordinated action such that few individuals, if any, have sufficient
breadth of knowledge to grasp the overall phenomenon.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

150

Figure 51: The Chain of Sustainability (April, 2002)

Casual ambiguity refers to uncertainty regarding the causes of efficiency and effectiveness
of an enterprise, when it is unclear which resource combinations are enabling specific
capabilities that are earning the profits. In order for an enterprise to sustain its competitive
advantage, it must initially understand, for themselves, what these clusters of CRCs are that
are driving and enabling their strategic capabilities to generate profit and, once understood, to
build in more causally ambiguous knowledge components and then embed that
understanding within the business processes and thinking within the enterprise.

In moving from basic assets or resources, through to CRCs, and eventually to key and core
capabilities, the enterprise wants it all to be rare and difficult to imitate by competitors.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

151

9.2.3 The Relationship between Emergence and Knowledge in the Complex Adaptive
Enterprise

Emergence, the most important characteristic of a complex adaptive enterprise and the main
contributor to the competitive advantage of the enterprise, is the collective behaviour of
interacting resources in the CRCs. New knowledge is produced by the individual resources in
the CRCs. The individual resources in a CRC collectively formulate new ideas, validate
them, and this knowledge is then propagated across the enterprise, affecting the individual
and collective behaviours of the resources within the CRCs.

According to April (2002), examples of this knowledge include:

− knowledge related to internal relationships within the company;

− knowledge related to products and services;

− knowledge related to business processes and business units;

− knowledge related to specific projects and project implementations;

− knowledge related to customers;

− knowledge related to the marketplace.

This knowledge can be tacit or explicit. According to April, tacit knowledge is usually
defined as that which cannot be written down or specified.

Emergence therefore contributes to the creation of knowledge and causes social
complexity and causal ambiguity, which are difficult to be imitated by competitors. This
emergence must however be understood and engineered.

9.2.4 Future Research: BaBe and the Engineering of Emergence in the Complex
Adaptive Enterprise

Self-awareness in a complex adaptive enterprise is instrumental in the maintenance of its
chain of sustainability. Enterprises need to understand the interrelationships between the
individual behaviours of the resources and the emergent behaviours of the CRCs and SRCs.
This will enable the enterprise to understand its own social complexity and causal ambiguity.

In future research, we want to capture the knowledge in the complex adaptive enterprise
using Bayesian behaviour networks. We want to package business processes and workflows
into re-usable components, which will be selectively activated by the competence agencies
depending on the collective belief propagation in the belief propagation agencies.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

152

In order for the employees of an enterprise to understand its own knowledge, the Bayesian
agencies must be used to adaptively present knowledge to employees in a way that is
determined by the profile of the employee. As an example, knowledge presented to a
manager must assist him/her to make strategic decisions, whereas knowledge presented to a
technical person must improve his/her learning and skills. Bayesian agencies can also use
knowledge about the marketplace for personalised marketing such as illustrated in the
simplified web personalization example in Figure 28.

9.3 Conclusion

Cariani (1991) expresses the problem of the engineering of emergence as:

how can a designer build a device which outperforms the
designer's specification?

The BaBe agent architecture solves this problem by using Minsky’s model of an A-Brain
and a B-Brain. The belief propagation agencies can be viewed as A-Brains, connected to the
environment and continuously inferring beliefs about and learning from the latest
environmental states. The BaBe methodology initialises the structure of the Bayesian
behaviour networks that form the basis of the A-Brains.

The competence agencies can be viewed as B-Brains, inspecting the beliefs of the
Bayesian behaviour networks underlying the A-Brains and acting according to the beliefs.
Collectively the belief propagation agencies and competence agencies learn from and adapt
to their changing environmental states, therefore acting as a complex adaptive system.

We implemented Bayesian behaviour networks using a component-based approach. We
defined an adaptive agent architecture, namely the BaBe agent architecture, and its
implementation using re-usable components. In this architecture, the hyperstructures in the
internal model are Bayesian behaviour networks. These networks are assembled from
homogeneous node components, link components and belief propagation agents organised
into belief propagation agencies. Competence components are domain-specific,
heterogeneous components organised into competence agencies.

The belief propagation agencies and competence agencies are organised into a
heterarchical structure through shared nodes in the underlying Bayesian behaviour network
collectively implemented by these agencies. Each competence agency activates one or more
competence component, depending on the collective inference by the belief propagation
agencies.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

153

We described a general application of the BaBe agent architecture. This general
application is based upon the J2EE platform and can be deployed in any uncertain
environment to understand and act upon the effects of emergence. We implemented a
prototype, proving that it is possible to implement an adaptive agent architecture using a
commercially available component architecture.

Emergence cannot be engineered by static software engineering processes, as it evolves
only after implementation. We defined the BaBe methodology that extends current agent-
oriented software engineering methodologies. The BaBe methodology uses similar analysis
and design models as defined in the Gaia and coordination-oriented methodologies, but
integrates an additional emergence model into the software engineering lifecycle. This model
is a run-time software engineering model and it is also the internal model of the BaBe
adaptive agent architecture, initialised by the software engineer during analysis and design.
This model is then deployed and maintained by the Bayesian agencies. We described a
general application that will enable the software engineer to maintain the emergence model.
This application will enable the software engineer to visualize the dynamics of change and to
adapt the behaviour of the BaBe agent architecture.

The J2EE component architecture does not support dynamic configuration of components
and middleware services during runtime. For this reason, the J2EE platform will be unable to
support our future research. A full implementation of the BaBe architecture will require a
reflective component-based framework, which allows the dynamic adaptation of the
configuration between components and middleware services, enabling BaBe to respond to its
environment in a dynamic fashion.

Implementing the BaBe agent architecture using a reflective component-based framework,
will be the first step towards achieving reflective, self-aware complex adaptive (software)
systems. We plan to apply the reflective BaBe adaptive agent architecture and the BaBe
methodology in order to engineer emergence in a complex adaptive enterprise. BaBe will
assist such an enterprise to be self-aware so that it can use this self-understanding to adapt its
business processes and strategies in response to the changing marketplace in order to sustain
its competitive advantage.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

154

Bibliography

April, K. (2002). Guidelines for developing a k-strategy. Journal of Knowledge Management, 6(5),

445-456.

Baas, N. A. & Emmeche, C. (1997). On Emergence and Explanation. Intellectica, 25, 67-83.

Retrieved March 22, 2001, http://www.nbi.dk/~emmeche/coPubl/97d.NABCE/ExplEmer.html

Bachman, F. Bass, L. Buhman, C. Comella-Dorda, S. Long, F. Robert, J. Seacord, R. & Wallnau, K.

(2000, May). Volume II: Technical Concepts of Component-Based Software Engineering .

Retrieved October 8, 2001, http://www.sei.cmu.edu/staff/rcs/CBSE-papers.html

Becker, A., Bar-Yehuda, R. & Geiger, D. (2000). Randomized Algorithms for the Loop Cutset

Problem. Journal of Artificial Intelligence Research, 12, 219-234. Retrieved March 7, 2001,

http://www.cs.washington.edu/research/jair/abstracts/becker00a.html

Becker, A. & Geiger, A. (1996). A sufficiently fast algorithm for finding close to optimal junction

trees. Proceedings of the Twelfth Conference on Artificial Intelligence, 81-89. Retrieved March 8,

2001, http://www.cs.technion.ac.il/~dang/

Brooks, R. A. (1985). A Robust Layered Control System for a Mobile Robot, MIT AI Memo 864.

Retrieved 18 July 2000, http://www.ai.mit.edu/people/brooks/papers/AIM-864.pdf

Brooks, R. A. (1990). Elephants Don’t Play Chess. Retrieved 13 September 2002,

http://www.ai.mit.edu/people/brooks/papers/elephants.pdf

Brooks, R. A. (1991). Intelligence without Reason, MIT AI Memo 1293. Retrieved July 18, 2000,

http://www.ai.mit.edu/people/brooks/papers.html

Bryson, J. J. (2001). Intelligence by Design: Principles of Modularity and Coordination for

Engineering Complex Adaptive Agents, PhD Dissertation, Department of Electrical Engineering

and Computer Science, Massachusetts Institute of Technology. Retrieved September 5, 2001,

http://ftp.ai.mit.edu/pub/users/joanna/pdh.pdf

Cariani, P. (1991). A Review of Emergence and Artificial Life. Reviewed by R. Saunders, Retrieved

September 17, 2001, http://www.arch.usyd.edu.au/~rob/study/EmergenceAndArtificialLife.html

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

155

Claus, C. & Boutilier, C. (1998). The Dynamics of Reinforcement Learning in Cooperative

Multiagent Systems. AAAI/IAAI, 746-752. Retrieved May 29, 2000,

http://citeseer.nj.nec.com/claus97dynamics.html

Dechter, R. (1996). Bucket Elimination: A Unifying Framework for Probabilistic Inference.

Uncertainty in Artificial Intelligence, UAI96, 211-219. Retrieved October 8, 2000,

http://www.ics.uci.edu/~dechter/publications/

Diez, F. J. (1996). Local Conditioning in Bayesian networks. Artificial Intelligence, 87, 1-20.

Retrieved January 17, 2001, http://www.dia.uned.es/~fjdiez

Durfee, E. H. (2001). Scaling up Agent Coordination Strategies. COMPUTER, IEEE Computer

Society, 34(7), 39-46.

Financial Systems Architects, MEGA International, Mercury ComputerSystems & TogetherSoft

(2002, 3 June). OMG Unified Modeling Language Specification (revised submission). Version

2.0.11, Revised InfraStructure Submission, . Retrieved June 5, 2002,

http://www.omg.org/techprocess/meetings/schedule/UML_2.0_Infrastructure_RFP.html

Finin, T. Fritzson, R. McKay, D. & McEntire, R. (1994). KQML as an Agent Communication

Language. Proceedings of the 3rd International Conference on Information and Knowledge

Management (CIKM94) , ACP Press, 456-463. Retrieved May 16, 2002,

http://citeseer.nj.nec.com/finin94kqml.html

Foundation for Intelligent Physical Agents (2000, August). FIPA ACL Message Structure

Specification. Retrieved May 16, 2002, http://www.fipa.org/specs/fipa00061/XC00061D.html

Gell-Mann, M. (1994). The Quark and the Jaguar (2nd ed.). London: Little, Brown and Company.

Gell-Mann, M. (1995). What is Complexity?. Complexity, 1(1).

Griss, M. L. & Pour, G. (2001). Accelerating Development with Agent Components. COMPUTER,

IEEE Computer Society, 34(5), 37-43.

Heylighen, F., Joslyn, C. & Turchin, V. (2001). Principia Cybernetica Web. Retrieved March 18,

2002, http://pcp.lanl.gov/

Holland, J. H. (1995). Hidden Order: How Adaptation Builds Complexity. Massachusetts :Addison-

Wesley Publishing Company Inc.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

156

Hopkins, J. (2000). Component Primer. Communications of the ACM, 43(10), 27-30.

Hume, D. (1888). A Treatise of Human Nature (17th ed.). L.A. Selby-Bigge(Eds.). London: Oxford

University Press.

Jennings, N. R. (1993). Specification and Implementation of a Belief-Desire-Joint-Intention

Architecture for Collaborative Problem Solving. International Journal on International and

Cooperative Information Systems, 2(3), 289-318. Retrieved May 9, 2002,

http://citeseer.nj.nec.com/jennings93specification.html

Jennings, N. R. (2001). An Agent-based Approach for Building Complex Software Systems.

Communications of the ACM, 44(4), 35-41.

Jennings, N. R. & Wooldridge, M. (2000). Agent-oriented software engineering. Handbook of Agent

Technology. Retrieved January 23, 2001, http://www.elec.qmw.ac.uk/dai/pubs/ - 2000

Jennings, N. R., Sycara, S. & Wooldridge, M. (1998). A Roadmap of Agent Research and

Development. International Journal on Autonomous Agents and Multi-Agent Systems, 1(1), 7-38.

Retrieved July 11, 2000, http://www.ecs.soton.ac.uk/~nrj/pubs.html - 1998

Jensen, F., Jensen, F. V. & Dittmer, S. L. (1994). From Influence Diagrams to Junction Trees,

Proceedings of the Tenth Conference of Uncertainty in Artificial Intelligence. Retrieved February

13, 2001, http://www.cs.auc.dk/research/DSS/abstracts/jensen:jensen:dittmer:94.html

Kim, J. H. & Pearl, J. (1983). A Computational Model for Causal and Diagnostic Reasoning in

Inference Systems. In A. Bundy (Ed.), Proceedings of the Eighth International Joint Conference

on Artificial Intelligence (IJCAI-83), Karlsruhe, West Germany, (pp. 190-193).

Keeney, J. & Cahill, V. (2003). Chisell: A Policy-Driven, Context-Aware, Dynamic Adaption

Framework. Retrieved February 22, 2004, http://citeseer.nj.nec.com/keeney03chisel.html

Kon, F., Costa, F., Blair, G. & Campbell, R. H. (2002). The Case for Reflective Middleware.

Communications of the ACM, 45(6), 33-38.

Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhães, L. C. & Campbell, R. H. (2000).

Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective ORB.

IFIP/ACM International Conference on Distributed Systems Platforms and Open Distributed

Processing (Middleware'2000). New York. April 3-7, 2000. Retrieved February 22, 2004,

http://choices.cs.uiuc.edu/2k/dynamicTAO/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

157

Maes, P. (1989). How to do the Right Thing. MIT AI Memo 1180. Retrieved July 18, 2000,

http://agents.www.media.mit.edu/groups/agents/publications/

Maes, P. (1990). A bottom-up mechanism for behavior selection in an artificial creature. From

animals to animats: International Conference on Simulation of Adaptive Behavior (pp. 239-246).

Cambridge, Mass: MIT Press.

Maes, P. (1994). Modelling Adaptive Autonomous Agents. Retrieved June 21, 2000,

http://agents.www.media.mit.edu/groups/agents/publications/

Maes, P. & Brooks, R. A. (1990). Learning to Coordinate Behaviours. National Conference on

Artificial Intelligence, 796-802. Retrieved May 4, 2002,

http://citeseer.nj.nec.com/maes90learning.html

McGuren, Fl. & Conroy, D. (2002). X-Adapt: An Architecture for Dynamic Systems. Seventh

International Workshop on Component-Oriented Programming (WCOP 2002). Retrieved

February 22, 2004, http://research.microsoft.com/~cszypers/events/WCOP2002/ -

_Accepted_Position_Papers

Minsky, M. (1988). The Society of Mind (First Touchstone ed.). New York: Simon & Schuster.

Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis (1st ed.). San Francisco, USA: Morgan

Kaufmann.

Odell, J. (1998). Agents and Beyond: A Flock is not a Bird, Distributed Computing. Retrieved

September 6, 2002, http://www.jeffsutherland.org/oopsla98/boca_cas.html

Odell, J., Van Dyke Parunak, H. & Bauer, B. (2001). Extending UML for Agents, AOIS Workshop at

AAAI2000. Retrieved September 4, 2001, http://aot.ce.unipr.it/auml/working

Object Management Group (2000). Agent Technology Green Paper. OMG Document ec/2000-08-01,

Version 1.0. Retrieved April 22, 2002, http://www.jamesodell.com/ec2000-08-01.pdf

Pearl, J. (1982). Reverend Bayes on Inference Engines: A distributed Hierarchical Approach.

Procceedings of the National Conference on Artificial Intelligence, Pittsburgh, American

Association for Artificial Intelligence, 133-136.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

(2nd ed.). San Mateo, USA: Morgan Kaufmann Publishers.

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

158

Pearl, J. & Russell, S. (2000). Bayesian networks, Technical Report R-277, UCLA Cognitive Systems

Laboratory. Retrieved May 5, 2001, http://bayes.cs.ucla.edu/csl_papers.html

Popescul, A. Ungar, L. H., Pennock, D. M., & Lawrence, S. (2001). Probabilistic Models for Unified

Collaborative and Content-Based Recommendation in Sparse-Data Environments. Retrieved

January 28, 2002, http://www.cis.upenn.edu/~popescul/publications.html

Potgieter, A. & Bishop, J. (2001). Bayesian agencies on the Internet. Proceedings of the 2001

International Conference on Intelligent Agents, Web Technologies and Internet Commerce

(IAWTIC '2001).

Rao, A. S. & Georgeff, M. P. (1995). BDI Agents: From Theory to Practice. Proceedings of the First

International Conference on Multiagent Systems, Technical Note 56. Retrieved April 21, 2002,

http://citeseer.nj.nec.com/rao95bdi.html

Ronald, E. M. A. & Sipper, M. (2000). Engineering, emergent engineering, and artificial life:

Unsurprise, unsurprising surprise, and surprising surprise. In M. A. Bedau, J. S. McCaskill, N. H.

Packard, & S. Rasmussen (Eds.), Artificial Life VII: Proceedings of the Seventh International

Conference (pp. 523-528). Cambridge, Massachusetts: The MIT Press.

Ronald, E. M. A., Sipper, M. & Capcarrĕre, M. S. (1999). Design, observation, surprise! A test of

emergence. Artificial Life, 5(3), pp. 225-239.

Rosenblatt, J. K. & Payton, D. W. (1989). A Fine-Grained Alternative to the Subsumption

Architecture for Mobile Robot Control, Proceedings of the IEEE/INNS International Joint

Conference on Neural Networks, IEEE. Retrieved September 11, 2002,

(http://citeseer.nj.nec.com/cache/papers/cs/1141/http:zSzzSzwww.umiacs.umd.eduzSzuserszSzjuli

ozSzpaperszSzFine_Grained_Alternative.pdf/rosenblatt89finegrained.pdf

Rumbaugh, J. Blaha, M. Premerlani, W. Eddy, F. & Lorensen, W. (1991). Object-Oriented modelling

and design. Prentice-Hall.

Russell, S. J., Binder, J. Koller, D. & Kanazawa, K. (1995). Local learning in probabilistic networks

with hidden variables. Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence, 1146-1152. Retrieved September 19, 2000,

http://robotics/stanford/edu/~koller/papers/apnijcai.html

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

159

Russell, S. J. & Norvig, P. (2003). Artificial Intelligence A Modern Approach (2nd ed.). New Jersey,

USA: Prentice Hall.

Sight Code Inc. (2001). Sight Code Initial Submission against the UML Infrastructure RFP. UML 2.0

Infrastructure Proposal, OMG document number ad/2001-08-23. Retrieved October 3,2001,

http://www.omg.org/techprocess/meetings/schedule/UML_2.0_Infrastructure_RFP.html

Skarmeas, N. & Clark, K. (1999). Component Based Agent Construction. Retrieved June 6, 2000,

http://citeseer.nj.nec.com/skarmeas99component.html

Sommerville, I. (1995). Software Engineering (5th ed.). England: Addison-Wesley Publishing

Company.

UML Revision Task Force (2001, September). OMG Unified Modelling Language Specification.

OMG Document formal/01-09-67. Retrieved April 22, 2002, http://cgi.omg.org/cgi-

bin/doc?formal/01-09-67

Wooldridge, M. (1997). Agent-based Software Engineering. IEE Proceedings of Software

Engineering, 144(1), 26-37. Retrieved January 26, 2001, http://www.csc.liv.ac.uk/~mjw/pubs/

Wooldridge, M. & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The Knowledge

Engineering Review, 10(2), 115-152. Retrieved April 19, 2002,

http://citeseer.nj.nec.com/article/wooldridge95intelligent.html

Wooldridge, M., Jennings, N. R. & Kinny, D. (2000). The Gaia Methodology for Agent-Oriented

Analysis and Design. Autonomous Agents and Multi-Agent Systems, 3(3), 15. Retrieved December

17, 2000, http://www.ecs.soton.ac.uk/~nrj/pubs.html - 1998

Zambonelli, F., Jennings, N. R., Omicini, A. & Wooldridge, M. (2000). Agent-oriented software

engineering for Internet Applications, Coordination of Internet Agents. Retrieved January 23,

2001, http://www.csc.liv.ac.uk/~mjw/pubs/

UUnniivveerrssiittyy ooff PPrreettoorriiaa eettdd –– PPoottggiieetteerr,, AA EE GG ((22000044))

	Front
	THESIS
	Chapter 1 Introduction
	1.1 Complex Adaptive Systems
	1.2 Adaptive Agent Architectures
	1.3 Agent-oriented software engineering
	1.4 Goal of this Thesis
	1.5 Research Contribution
	1.6 Thesis Organization

	Chapter 2 Complex Adaptive Systems, Emergence and Engineering: The Basics
	2.1 Introduction
	2.2 Properties and Mechanisms of Complex Adaptive Systems
	2.3 The Engineering of Emergence
	2.4 Conclusion

	Chapter 3 Bayesian Networks as Hyperstructures
	3.1 Introduction
	3.2 Basic Concepts
	3.3 What is a Bayesian Network?
	3.4 Dynamic Bayesian Networks
	3.5 Conditional Independence in Bayesian Networks
	3.6 Bayesian Learning
	3.7 Bayesian Inference
	3.8 Bayesian Networks as Hyperstructures
	3.9 Conclusions

	Chapter 4 Agent Architectures
	4.1 Overview
	4.2 Agents: what Confusion!
	4.3 Agencies – Order out of Chaos
	4.4 Hierarchies and Heterarchies
	4.5 Multi-agent Systems
	4.6 Agent Architectures
	4.7 Conclusion

	Chapter 5 Agent-Oriented Software Engineering
	5.1 Introduction
	5.2 Managing Complexity
	5.3 Component-based Software Engineering – A Brief Overview
	5.4 A Comparison between Objects, Components and Complex Agents
	5.5 Component-Based Agent Architectures
	5.6 Agent-Oriented Software Engineering Methodologies
	5.7 Conclusion

	Chapter 6 BaBe: An Adaptive Agent Architecture
	6.1 Overview
	6.2 Bayesian Behaviour Networks
	6.3 Competence Sets
	6.4 Pearl’s Belief Propagation Algorithm
	6.5 The BaBe Components
	6.6 Bayesian Agencies
	6.7 Bayesian Agencies in Web Personalization
	6.8 Applicability, Use and Value of the BaBe Agent Architecture
	6.9 The BaBe Agent Architecture: A Complex Adaptive System
	6.10 Conclusion

	Chapter 7 The BaBe Methodology
	7.1 Overview
	7.2 The Gaia Models
	7.3 Coordination Models
	7.4 The BaBe Models
	7.5 The BaBe Methodology
	7.6 Conclusion

	Chapter 8 BaBe: The Prototype
	8.1 Overview
	8.2 Configuring the Bayesian Behaviour Network
	8.3 Querying the Bayesian Behaviour Network
	8.4 Learning the Bayesian Behaviour Network
	8.5 The Limitations of the BaBe Prototype
	8.6 Conclusion

	Chapter 9 Conclusions and Future Research
	9.1 Future Research: The BaBe Architecture
	9.2 The Complex Adaptive Enterprise: Sustaining the Competitive Advantage using Bayesian Agencies
	9.3 Conclusion

	Bibliography
	Appendix

