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CHAPTER 17

INTRODUCTION TO DELAYS*

Delays occur frequently in social and economic systems. When a business
organization orders supplies, the supplies usually arrive only after a delay.
When a pollutant is dumped into a river, it takes time to dissipate. When the
price of gasoline rises, consumers take time to adjust by driving less or by pur-
chasing more fuel-efficient cars. And, of course, when you mail a [etter, the
letter will be delivered only after a delay.

Delays are conveniently divided into two types: delays resulting from the
time involved in processing physical materials and delays resulting from the
time involved in perceiving and acting upon information. As these two types of
delays—called material delays and information delays—abound in social and
economic systems, some of their properties are investigated in this chapter.

EXAMPLE I: THE MARTAN CHEMICAL COMPANY

Recall from Example 1 in Chapter 7 that the Martan Chemical Company,
which manufactures the pesticide Nobug, dumps a quantity of Nobug into the
Sparkill River once a week. During the course of the week, the pollutant is
absorbed by the river’s natural clean-up processes. A causal-loop and flow dia-
gram of the Martan case are shown in Figure 17.1.

The equations for the model are similar to the eguations for the yeast
deaths system, discussed in Chapters 13 through 15.

L - NOBUG.K=NOBUG.J + (DTYDUMP.JK — ABSORB.JK)
N  NOBUG=NOBUGN

C NOBUGN=0 _

R ABSORB.KL=NOBUG.K/NAT

C  NAT=2

*Students wishing immediately to try modeling a more complete problem situation might do
Chapters 18 and 19 before this chapter. However, the contents of this chapter are critical for the
models contained n Chapter 20 and beyond.
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Figure 17.1 Diagram of the Martan Case

These equations indicate that the level of NOBUG in the Sparkill River is
influenced by the dumping rate DUMP and the absorption rate ABSORB; and
the absorption rate ABSORB is equal to the level of NOBUG divided by the
Nobug Absorption Time NAT (2 days). _

The only equation that remains to be specified is the dumping rate
DUMP. According to the description in Chapter 7, the Martan Company re-
leases Nobug into the river in once-a-week batches, producing a Nobug con-
centration in the river of about 420 parts per million (ppm). Assuming that the
river contains 1 million gallons of water, this amounts to a dumping rate of
420 gallons each weck. _

For modeling purposes it is easier to begin by assuming that Martan
dumps Nobug into the river continuously, at an overall rate of 420 gallons per
week. This amounts to a continuous daily dumping rate of 420/7 = 60 gallons
per day.
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Exercise 1: Preliminary Nobug Model

a. Write DYNAMO equations for the Nobug case, adding the DUMP equa-
tion and other needed specifications. Run the model, setting the initial
level of NOBUG = 0, and choosing DT = 0.25 days. What behavior does
the model generate?

b. Rerun the model, setting the Nobug Absorption Time NAT = 4. How do
the results differ? Rerun the model, setting NAT = 1. How do these re-
sults differ?

USING THE PULSE FUNCTION TO REPRESENT THE DUMPING RATE

The model developed so far is somewhat inadequate, because it assumes that
Nobug is continuously released into the Sparkill River at a rate of 60 gallons
per day. The DYNAMO PULSE function permits modifying the model to rep-
resent the dumping of Nobug in once a week batches. The following equation
indicates that 420 gallons of Nobug are dumped into the river on day 1 of the ~
simulation, and 420 gallons are dumped again at regular intervals of 7 days.

R DUMP.KL = (1/DT)+PULSE(420,1,7)

Figure 17.2 shows the dumping rate over the first 10 days of the simulation.
On day one, the dumping rate rises to 1680 gallons per day for the duration of
a time interval of one DT (i.e., during one quarter-day). It then falis to zero,
and remains there until day 8, when it again rises to 1680 for a time interval of
one DT. It will rise again on day 15, and then once again fall to zero.

Orie aspect of the equation for the dumping rate may seem puzzling at
first glance. Why is the factor (1/DT) included in the formulation? On the sur-
face this may seem odd, since it produces a dumping rate of 1680 gallons per
day rather than 420. To understand the use of (1/DT} in the dumping equa-
tion, it is necessary to take a closer fook at the level equation for NOBUG.

L . NOBUG.K=NOBUG.J+(DTYDUMP.IK -- ABSORB.JK}

Note that in the level equation for NOBUG, the dumping rate DUMP is
multiptied by DT to produce the amount of NOBUG added to the river during
one time interval DT. Thus during the first time interval of one day, the
amount dumped is equal to DT+1680 = 0.25+1680 = 420 gallons. In general,
the amount dumped during any time interval equals

(DT)+(1/DT)*PULSE(420,1,7) = PULSE(420,1,7)

The factor (1/DT) is necessary in the PULSE rate equation to cancel the
factor DT included in the level equation. If the dumping rate that takes place
during the first quarter of day one were maintained for the entire day, 1680
gallons of NOBUG would be dumped into the river, but the rate is not main-
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Yigure 17.2 Dumping rate

tained for the entire day. It continues for just one time period DT and then it
falls to zero. Thus, the tofal amount dumped is 420 gallons—exactly what the
formulation is supposed to produce.

The PULSE function can also be used to examine the response of the sys-
tem to the dumping of just one batch of NOBUG. It is possible to do this by
making the following change in the equation for DUMP.

R DUMP.KL = (I/DT}PULSE(420,1,1000) .

This equation indicates that the dumping rate rises from zero to 420/DT
or 1680 on day one and every 1000 days thereafter (rather than every 7 days).
Thus if the model is run for a period shorter than 1000 days, only one pulse in
the dumping rate will occur. .

Figure 17.3 shows a simulation of the Nobug system, with one batch of
Nobug released into the river on day one. As can be seen, the level of NOBUG
in the river rises sharply to 420 gallons on day one, and then drifts slowly
toward zero.

The general form of the PULSE function is:

PULSE(AMOUNT,FIRST,INTERVAL)
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Figure 17.3 Release of one batch of NOBUG

where AMOUNT indicates the amount to be inputted in the pulse; FIRST in-
dicates the time at which the first pulse cccurs; and INTERVAL indicates the
tirne interval between pulses.

Exercise 2: The Halving Time for NOBUG

Revise your DYNAMO equations to include a PULSE function for the dump-
ing rate. Choose 4 time between pulses of 1000 days, in order to examine the
effects of just one pulse. :
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What is the halving time for the amount of NOBUG in the Sparkill River?

. Experiment with various values of NAT. How does the choice of NAT in-

fluence the halving time?

Using your results for part (b), select a value of NAT to produce a halving
time that corresponds to the data shown in Chapter 7, Figure 7.1.

Exercise 3: Simulating Repeated Batches

a.

Select NAT equal to the value you determined in Exercise 2, part (c}. Use
the PULSE function to simulate the effect of dumping 420 gallons of
Nobug into the river at 7-day intervals. Compare your results with the
data shown in Chapter 7, Figure 7.1.

Reread Example 11 in Chapter 7, ‘“Martan Chemical—Part IT”. Accord-
ing to that example, Martan Chemical changed the chemical composition
of Nobug, resulting in an increase in the Nobug absorption time NAT.
Change the value of NAT in vour model to reflect the change in the chem-
ical composition of Nobug. How does the system respond? Compare your
results with the data shown in Figure 7.3, Chapter 7.

NOBUG AND MATERIAL DELAYS

In the Nobug case, Nobug is dumped into the river in once-a-week batchés.
The absorption of Nobug does not occur immediately, however. Instead, it
occurs over a period of time. In fact, the absorption of Nobug by the river can
be viewed as a time delay process. The absorption rate is the river’s delayed re-
sponse to the dumping rate.

_ The Nobug model structure is called a first-order material delay, because
it describes the flow of a material substance into and cut of a single level. Fig-

ure

17.4 shows a general flow diagram for a first-order material delay,
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Figure 17.4 First-order material delay
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along with the corresponding equations, The general form of a first order
material deldy is exactly analogous to the Nobug structure. An inflow rate
accumulates in a level; and an outflow rate is equal to the amount in the level,
divided by a time constant for adjustment of the level.

Because first-order material delays are widely used in system dynamics
models, they are often given a special flow diagram notation. Figure 17.5
shows the usual flow diagram symbol for a first order material delay, and Fig-
ure 17.6 shows how the symbol can be used to represent the Nobug case.

‘When a first-order material delay is used in 2 model, there are two ways to
write the equations. One approach is simply to write out individual equations,
exactly as was done in the Nobug case. But because first-order material delays
are frequently used, a special DYNAMO function is available that can be used
to replace the set of individual equations. The following equation can be used
to indicate that the OUTFLW rate is a first-order delayed response to the
INFLOW rate, with an adjustment time AT. :

R OUTFLW KL = DELAY I{INFLOW.JK,AT)

The DELAY]1 function is simply a shorthand notation. When the model is rumn,
DYNAMO will substitute the full level and rate formulation for a first-order
delay, whencver the DELAY]1 function appears in the model.
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> loutrLow ——»Q
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INFLOW DELAY
Figure 17.5 First-order delay symbol
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Figure 17.6 Delay for NOBUG
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The DELAY1 function can be used quite easily to represent the Nobug
case. The full set of equations for the Nobug cas¢ becomes:

R ABSORB.KL=DELAYI(DUMP.JK,NAT)
C NAT=2
R DUMP.KL = (1/DT)*PULSE(420,1,7)

This indicates that the absorption rate is a delayed response to the dumping
rate, with an absorption time NAT = 2.' Note that in this formulation the
NOBUG level equation is not needed, and is also not available for use else-
where, such as output printing or plotting. '

Exercise 4: Nobug and the DELAY1 Function

a. Modify your equations for the Nobug model, using the DYNAMO
DELAYI function to replace the level of NOBUG and the Nobug absorp-
tion rate, .

b. Run the model. It should behave exactly as it did in the previous Exercises
2 and 3. '

¢. Experiment with various values of NAT. How does the model respond?

Exercise 5: The Mail Delay

The Nifty Department Store sends out bills to its charge-card customers once a
month, and the credit department has learned that, on the average, it takes
about three days for the bills to arrive in the mail.

a. Draw a causal-loop diagram, flow diagram, and equations for the Nifty
Department Store case. (Hint: See Figure 7.5 in Chapter 7.) Assume that
NIFTY has 1000 charge customers.

b. Run the model and examine the results.

¢. How many bills take more than six days to arrive?

EXAMPLE II: THE GOAL-GAP FORMULATION, DELAYS, AND CYCLES IN
APARTMENTS

Seemingly simple models can often generate surprising behavior when a delay
is introduced. One interesting example is the construction of apartment build-
ings in a large city. Suppose builders construct apartments in response to the
gap between the total number of apartments desired by people in the city and
the total number of apartments available. A causal-loop diagram and flow dia-
gram for this system are shown in Figure 17.7. The system described by the
flow diagram is exactly analogous to the coffee cooling system in Chapter 15.
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Exercise 6: Apartments—Part [

a. Write DYNAMO equations for the apartment model shown in Figure
17.7. Assume that the desired number of apartments is 10,000 and the
time required to respond to the gap is one year. {Do not include an explicit
construction delay in your formulation—it will be added in the next exer- ~
cise.) :

b. Run the model and examine the behavior. Determine the equilibrium
value for the number of apartments.

c. Start the model in equilibrium, and use a STEP function to test the
response of the system to an increase in the number of apartments desired
from 10,000 to 15,000.

The apartment model developed so far has ignored an important delay: it
takes time to construct apariments. Once an apartment builder makes the deci-
sion to build a new apartment house, it may take roughly four years te pur-
chase appropriate land, obtain building permits, complete architectural draw-
ings, and build the apartments.
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Figure 17.8 Apartment model with completion delay

This suggests that a delay should be added to the model. One way to do
this is shown in Figure 17.8. The diagram indicates that the apartment comple-
tion rate is a delayed response to the apartment initiation rate. A delay exists
between the times apartments are initiated and completed.

Exercise 7: Apartments—Part II

a. Modify your model of apartment construction to include a first-order
material delay in the construction completion rate,

b. Start the model in equilibrium.

¢. Examine the response of the system to a STEP increase in desired apart-
ments from 10,000 to 15,000, What behavior does the system generate?

d. What do you think accounts for this behavior?

e. Experiment with the model, choosing various values for the timé_require_d
to construct apartments. What happens when this value is made longer
than 4 years? What happens when it is made shorter than 4 years?

f. At times, the apartment construction rate may become negative. What
does this mean? Is it realistic? Why or why not? Predict how the system
would behave for a period twice as long as your run. Run the model to
check your prediction. If your prediction does not fit the run, try to
formulate a new prediction for the long-term behavior.
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INFORMATION DELAYS

Delays are frequently involved in transmitting and acting on information, One
common information delay occurs in the labor market. It takes time for infor-
mation about the availability of jobs to reach people who are seeking them.
Similarly, information delays occur in organizational management. For exam-
ple, the information is delayed from the time sales occur in a department store
until the manager learns of the sales and uses the information to reorder
depleted stock.

Information delays also occur in individual and organizational decision-
making for another, more subtle reason. Often, individuals and organizations
make decisions on the basis of information that has been averaged, and
averaging implicitly involves delays. For example, data on U.S. unemploy-
ment are often presented on an annual basis, which is generally an average of
the percent of the work-force that has been unemployed over the last twelve
months. Thus a rise in current monthly unemployment must persist for several
months before it has a large impact on the average annual unemployment
figure. '

Decisions based on averaged information are widespread. For example,
upon filling up the tank with gasoline, the driver notices that her car has not
traveled as far on a tank-full as it usually does. She is unlikely to immediately
conclude that something is the matter with the car. Instead, she probably waits
to see what happens on the next few fill-ups before sending the car to the shop.
Thus the car-owner has informally computed an average. Similarly, the owner
of a baseball team does not fire the manager when he loses the f irst game. The
owner usually waits to see what the balance of wins and losses looks like over
the longer run. '

While it is certain that delays and information averaging are frequently in-
volved in individual and organizational decision-making, it is less clear how to
represent these processes in a model. After all, some business organizations
use complex information averaging formulas in making decisions, while indi-
viduals often simply weigh whatever information is available in an informal,
intuitive manner. One simple formulation that might be uvsed to represent the
delays involved in perceiving and acting on information is the moving average,
which is considered in the following example.

_EXAMPLE HI: MARINA’S BAXE SHOP

Marina’s Bake Shop bakes and sells sourdough French bread Monday through
Friday. Each morning Marina has to decide how many loaves to bake, and she
relies on the average sales over the past five days in making her decision. She
collects the daily salés from the previous five days, adds them together, and
divides by five.

Sales data for Marina’s Bake Shop for a twenty-five-day period are shown
in Table 17.1. Since it takes five days of data to compute an average, the first
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Table 17.1 Marina’s
sales data and moving
average sales

Moving
average
Day sales Sales
1 — 94
2 — 116
3 —_ 87
4 — 104
5 — 107
6 101.6 50
7 100.8 102
8 96
9 108
10 121
11 123
12 130
13 135
14 113
5 117
16 117
17 128
18 o7
19 109
20 123
21 116
22 17
23 121
24 128
25 122

morning on which average sales can be computed is day six. The average on
day six is just the sum of the first five days’ sales, divided by five. The average
for day seven is the sum of the sales for days two through six, divided by five;
and so on.

Another way to state the formula for the moving average is:

AVERAGE SALES(today) = AVERAGE SALES(yesterday)
+ SALES(yesterday)}*(1/5)
~SALES(six days ago)*(1/5)

This simply means that to compute the average sales, take the value of the
average sales computed yesterday, subtract the portion of the average con-
tributed by the sales six days ago, and add on the portion of the average con-
tributed by the most recent day.
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Exercise 8: Computing the Moving Average

Calculate the moving average for Marina’s sales for days 8-25, based on the
data in Table 17.1.

The moving average is fairly simple, conceptually, and easy to calculate
by hand. Unfortunately, however, to represent it precisely in a simulation
model requires that data be maintained on each past event included in an
average. The longer the period of averaging, the more data to be retained.
Furthermore, the moving average has the additional defect that all data over
the time period of the average are weighed equally. However, when individuals
and organizations make decisions, they tend often to rely more heavily on
‘recent information, and less heavily on older data.

A second type of average, called the exponential average, resolves this
latter problem by explicitly weighing recent information more heavily. Sup-
pose Marina, on the morning of day two, wants to compute average sales using
an exponential average. To compute the average, she has only one piece of
information: sales on day one. Thus Marina sets the average on day two equal
to the sales on day one:

AVERAGE SALES(day two) =SALES(day one)

If Marina wants to compute the average sales on the morning of day
three, she has one more piece of information. She now has the average sales
she computed on day two, along with the new sales figure for day two. To
combine these two pieces of information to produce a five-day exponential
average, Marina should use the following formula:

AVERAGE SALES(day three)=(4/5)*AVERAGE SALES(day two)
+(1/5)*SALES(day two)

The new sales figure should be weighted by a factor of one-fifth, and the pre-
vious average should be weighted by a factor of four-fifths.

Similarly, to calculate the average sales on the morning of day four,
Marina shoutd use the formula:

AVERAGE SALES(day four)=(4/5)*AVERAGE SALES(day three)
+(1/5)SALES(day three)

Once again, the new sales figure is weighted by a factor of one-fifth, and the
previous average is weighted by a factor of four-fifths. _

The formula for a five-day exponential average of sales in Marina’s Bake
Shop is: '

AVERAGE SALES(today) = {4/5)*AVERAGE SALES(vesterday)
B : ' +{1/5SALES(yesterday)

Hence, in computing today’s average, yestérday’s average is given a weight of
four-fifths, and yesterday’s new sales figure is given a weight of one-fifth.
Implicitly, this procedure weights recent data more heavily than old data. By
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the twenty-first day, for example, the twentieth day’s sales figure is given a
weight of one-fifth; and all nineteen previous days’ sales are given a total
weight of only four-fifths.? Table 17.2 shows the exponential averages cal-
culated for the first several days.

Exercise 9: Computing the Exponential Average

a. Calculate the exponential average for Marina’s sales for days five through
twenty-five, based on the data in Table 17.2.

b. Compare the exponential average and the moving average you obtained
for each day. In what ways are they similar? How do they differ?

Table 17.2 Marina’s
exponentially averaged

sales
Exponential
average
Day  sales Sales
1 — - 94
2 94.0 116
3 8.4 87
4 96.1 104
5 ’ 107
6 90
7 102
8 96
9 108
10 121
11 123
12 130
13 135
14 113
15 117
16 117
17 128
13 97
19 109
20 123
21 6
22 117
23 121
24 128
25 122
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AVERAGING AS A FIRST-ORDER DELAY

The formula used to calculate the exponential average of the sales in Marina’s
Bake Shop can be rewritten in a form that clarifies the structure involved. The
equation:

AVERAGE(today) = (4/5}*AVERAGE(yesterday) + (1/5)SALES(yester-
day) _ '

can be rewritien:

AVERAGE(today) = AVERAGE(yesterday) — (1/5)*AVERAGE(yester-
day) _
+(1/5)SALES(yesterday)

or:

AVERAGE(today) = AVERAGE(yesterday}+ (1/5)SALES(yesterday)
—(1/5)*AVERAGE(yesterday)

This indicates that the average computed today is simply the average computed
yesterday, plus one-fifth of vesterday’s sales figure, minus one-fifth of the
average computed yesterday.

The structure can be clarified further by noticing that the expression

(1/5)*SALES(yesterday) — (1/5)*AYVERAGE(yesterday)}

is simply one-fifth of the gap between yesterday’s sales and yesterday’s
average. Thus the formula for today’s average might be written:

AVERAGE((today) = AVERAGE(yesterday) + (1/5)*GAP(yesterday)

where GAP(vesterday) represents the pap between yesterday’s sales and yester-
day's average.

The formulation should now look quite familiar: it is simply a goal-gap
structure. This can be seen more easily by writing the equations in DYNAMO:

L AVG.K=AVG.I+{DTKADI.JK}

NOTE AVERAGE SALES (loaves)

R ADJ KL =GAP.K/5

NOTE ADJUSTMENT RATE (loaves/day)
A GAP.K=SALES. K—AVG.K

NOTE GAP (loaves)

Average sales AVG is a level, and the adjustment rate tends to move the
average toward the daily sales figure. But the average does not adjust imme-
diately to daily sales. Instead, the gap is closed over a period of time,

Figure 17.9 shows a flow diagram for the exponential averaging process,
corresponding to the DYNAMO equations, The flow diagram is identical in
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Figure 17.9 Flow diagram for exponential averaging

structure to the coffee cooling model discussed in Chapter 15. Coffee cools to
room temperature over a period of time T. Similarly, the average sales in
Marina’s Bake Shop adjusts toward the daily sales over a period of time
AT = 5. Thus the 5-day exponential average is simply a goal-gap formulation
with an adjustment time of 5 days.

Onme striking difference exists between the coffee cooling example and that
for Marina’s Bake Shop. The coffee cooling case represents the adjustment of
the coffee temperature to a constant outside temperature. Marina’s average
sales is adjusting to a fluctuating sales rate, but the structures are identical.

To demonstrate the similarity of the averaging structure and the coffee
cooling structure, it is helpful to examine how the averaging process responds
to a simple step-change in the sales rate. Table 17,3 shows sales figures for
Evelyn’s Bake Shop. As can be seen, sales in Evelyn’s shop are much more
regular than sales in Marina’s Bake Shop. In fact, the only change in sales
occurs on day ten, when sales jump from 100 to 120 loaves per day. Table 17.3
also shows computations for the five-days exponential average for days 1-25;
and Figure 17.10 shows a plot of both actual sales and average sales. As
expected, the exponential average responds to a step change exactly as a simple
goal-gap structure, '
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Table 17.3 Evelyn’s bake
shop sales and average

Exponential
averagge
Day sales Sales
1 100 100
2 100 100
3 100 100
4 100 100
5 100 100
6 100 100
7 100 100
8 100 100
9 104 100
10 160 120
1t 104 120
12 107 120
13 109.8 120
14 111.8 120
I5 113.5 120
16 114.8 120
17 1158 - 120
18 116.6 120
19 117.3 120
20 117.9 120
21 1i8.3 120
22 118.6 120
23 F18.9 120
24 119.1 120
25 119.3 120

Exercise 10: Equations for the Exponential Average

a. Write DYNAMO equations to compute the average sales in Evelyn’s Bake
Shop, using a five-day exponential average.

b. Start the model in eqguilibrium.

¢. Use a STEP function to represent the rise in sales from 100 to 120 on day
10.
d. How long does it ta’ke for average sales to rise half-way from 100 to 1207

e. Rerun the model, using as averaging time of 10 days rather than 5. How
do the results differ?



318 Iatroduction te Simulation

SALES=5,AVG=A

80,00 100.00 120.00 140.00 160.00 gy
0.0000 ————o———mmm S -— SA

10.000 ———m==m——em g -~ —— = === === mmm—mm e

L R e )
I+ v % & & & & & 4

20.000 ————

[ I
LI ]
LI T B T

SA

Figure 17.10 Evelyn’s bake shop plotted simulation results

THE SMOOTH FUNCTION

The exponential average can be used whenever ft is mecessary to represent
information averaging in a model. Figure 17.9 also shows the general structure
involved in exponential averaging, with the input being averaged substituting
for SALES in that diagram. The average to be computed is a level, which ad-
justs toward an input value over an averaging time.

Like first-order material delays, information averages are widely used
in system dynamics modeling, and it is convenient to have a special flow
diagram symbol for them. Figure 17.11 shows the symbol that is used to
represent the exponential averaging process. Because this averaging process
“smooths™ the disturbances in the input, the function is often called a
smoothing equation.

Whenever an exponential average is used in a model, it can be computed
explicitly, using the level and rate equations previously described. In addition,
DYNAMO includes a special function called SMOOTH, which can be used to
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Figure 17.11 Flow diagram symbo! for exponential averaging or smoothing

-calculate the exponennal average directly. The SMOOTH function takes the
following form: :

A  AVGK= SMOOTH(INPUT K,AT)

where AVG represents the average to be computed, INPUT is the variable
(rate, level, or auxiliary) to be averaged, and AT is the adjustment time to be
used.?

Exercise 11: The SMOOTH Function

a. Use the SMOOTH function to represent the averaging process in Evelyn’s
Bake Shop.

b. Run the model and compare your results with your model in the previous
exercise. The results should be identical.

¢. Rerun the model, setting the adjustment time AT = 10. Hm_asr do the
results differ?

NEGATIVE LOOPS, INFORMATION DELAYS, AND CYCLES

Like material delays, information delays can often cause surprising behavior
in seemingly simple structures. For example, consider the negative loop shown
in Figure 17.12, describing the relationship between jobs and urban migration.
(This loop was discussed in more detail in Exercises 16 and 22, Chapter 15.)

According to the loop, the availability of job openings influences people
to migrate into the city; and as people migrate into the city, they fill the avail-
able openings. The simplest level and rate formulation for this structure in-
volves just one level and one rate, shown in Figure 17.13. It should be evident
that this simple structure will generate goal-seeking behavior: the number of
people in the city will adjust smoothly to the number of jobs.
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Figure 17.13. Flow diagram for negative feedback loop

While this formulation provides a rough description of the relationship
between jobs and migration in a city, it ignores one important aspect of the
problem. Undoubtedly, it takes time for people to learn about new job open-
ings, and it takes even more time for them to relocate. Furthermore, people
probably respond to the average number of job openings in a city, not 10
short-run increases or decreases. Thus the structure shown in Figure 17.14 is
probably a more sensible representation of the relationship between jobs and
migration. '

The introduction of an information delay can cause the behavior of the
model to change substantially. If people respond instantaneously to informa-
tion about job openings, the adjustment process is smooth. Migration declines
until any gap between the number of jobs and the number of workers is closed.
But, if it takes time for people to respond to information about jobs, the
model can generate cycles, as the following exercise indicates.
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Exercise 12: Information Delays, Migration, and Jobs

a.

C.

€.

Review your model of migration and jobs developed in Exercise 21, Chap-
ter 15. (It should correspond to the flow diagram structure shown in
Figure 17.13.) Run the model and note the behavior it generates.

Revise the model to include a first-order information delay, as indicated-
in Figure 17.14. Choose an averaging time that you believe might repre-
sent the time required for people to respond to information about
jobs.

Run the model and examine the results. (Be sure to examine the value of
DT you have chosen. Make certain it is no more than one-third the value
of the averaging time in your delay. See the discussion of DT at the end of
Chapter 15.)

Rerun the model, choosing various values for the information averaging
time. How do the results differ?

What do you believe causes the model to behave as it does?
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EXAMPLE IV: STEVE'S ICE CREAM PARLOR-SEEMINGLY POSITIVE
LOOPS THAT CONTAIN HIDDEN INFORMATION DELAYS

On occasion, a loop appearing in a causal-loop diagram may seem not to con-
tain any level variables. Consider, for example, the loop shown in Figure
17.13, which represents the relationship between advertising, revenues, and
sales in Steve’s Ice Cream Parlor. According to the diagram, the amount Steve
spends on advertising influences the number of ice cream cones sold; the num-
ber sold influences revenues; and the amount Steve earns in revenues infly-
ences the amount he spends on advertising.

At first glance, all the variables around the loop seem to be auxiliaries.
This would produce the flow diagram shown in Figure 17.16. Equations for
the model might be written:

A AD.K=FRSA*REV.K

NOTE ADVERTISING (DOLLARS/MONTH)
C FRSA=0.1

NOTE FRACTION OF REVENUE SPENT ON ADVER-
NOTE TISING (DIMENSIONLESS)

A SALES.K =SALESN + ADEFF+AD KX

NOTE SALES (CONES/MONTH)

C SALESN=1000

NOTE SALES, NORMAL VALUE (CONES/MONTH)

C ADEFF=5 : _
NOTE ADVERTISING EFFECTIVENESS (ADDITIONAL
NOTE CONES PURCHASED PER DOLLAR

NOTE SPENT ON ADVERTISING)

A REV.K=SALES.K+PRICE :

NOTE REVENUE (DOLLARS/MONTH

C PRICE=1

NOTE PRICE (DOLLARS/CONE)

The equations indicate that the amount spent on advertising each month
is equal to one-tenth of the sales revenue earned per month. Furthermore, the

s N\
) REVENLES
&

ADVERTISING

4

Figure 17.15 Causal relationships for Steve’s Ice Cream Parlor
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Figure 17.16 Flow diagram for Steve's Ice Cream Parlor

number of ice cream cones sold is a function of the amount Steve spends on
advertising. For example, if Steve spends $100 on advertising, the number of
cones sold = 1000 + 5+100 = 1500. Finally, the revenue earned is equal to the
number of cones sold, multiplied by the price of a cone.

While this information seems sensible, it suffers from an important diffi-
cuity, each variable has an instantaneous effect on the next. According to the
equations, advertising has an instantaneous effect on sales; sales has an instan-
taneous cffect on revenue; and revenue has an mstantaneous effect on the
amount spent on advertising.

Because all of the relationships in the loop are instantaneous, it is not pos-
sible to draw any conclusions about behavior over time. Technically, the
model is written as a set of simultaneous equations. It is possible to analyze the
equations algebraically, to determine whether there are values of advertising,
sales, and revenue that are consistent with the entire set of equations. But,
since none of the equations include an explicit formulation for a level and a
rate of change, the equations cannot be used to generate behavior over time.*

Loops such as this one, which seem at first glance not to contain any level
variables, often involve hidden information delays. For example, in the
advertising loop, two information delays might be involved. First, Steve
undoubtedly does not respond immediately to increases in sales by increasing
the amount he spends on advertising. Instead, he probably uses average sales
over a month or iwo to determine how much should be spent. And, as previous
sections have indicated, averaging implicitly introduces a delay. Secend,
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Steve’s advertising probably does not have an immediate effect on the numbey
of ice cream cones purchased. It probably takes consumers some time to notice
and to react with purchases.

The following equations might be added to the model to represent the facq
that Steve uses a monthly average of the number of ice cream cones sold g
determine the amount he spends on advertising:

A AVGREV.K=SMOOTH(REV.K,RAT)

NOTE -AVERAGE REVENUE (DOLLARS/MONTH)
C RAT=1

NOTE REVENUE AVERAGING TIME {(MONTHS)
A  AD.K=FRSA*AVGREV K

NOTE ADVERTISING (DOLLARS/MONTH}

The equations indicate that average revenue AVGREY is a first-order
exponential average, with an averaging time or time constant of one month:
and the amount spent on advertising is one-tenth of the average revenue each
month.

As usual, it is necessary to provide an initial value to begin the simulation.
In this case, however, since the only level in the loop is contained in the
SMOOTH function, it is necessary to choose an imitial value for the
SMOOTH, which, in this case, is REVN = 2000.

N AVGREV =REVN
C REVIN =2000

Figure 17.17 is a modified flow diagram for the advertising and sales
model, showing the first-order information delay involved in determining the
average revenue. The flow diagram indicates that the model now contains two
lcops: one positive and one negative. As the following exercise demonstrates,
the advertising and sales model can generate either exponential decay or
exponential growth, depending on the values of the parameters chosen. Thus a
structure that initially seemed to be a simple positive loop is actually more
complex. It contains a hidden negative loop, and this has a critical influence on
the model’s behavior.

Exercise 13: Steve’s Ice Cream Parlor

a. Write DYNAMO equations for the version of the advertising and sales
model that does nof include an information delay.

b. Try to run the model on the computer. What error message does
DYNAMO generate?

¢. Add the formulation for average revenue to ybur model. (As mentioned
in the text, it is necessary to choose an initial value for the SMOOTH
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Figure 17.17 Modified flow diagram for Steve’s Ice Cream Parlor

function. Choose an initial value that will place the system in equilib-
rium.) Test the response of the model to a STEP increase in nermal sales,
from 1000 cones per month to 2000 cones per month.

Repeat part {c}, choosing a revenue averaging time RAT = 2 months.
How do the results differ? Rerun the model, setting RAT = 0.5 months.
How do the resulis differ?

Choose a value of zero for rormal sales, and choose an initial value for
the input to the SMOOTH function to start the system in equilibrium.

How does the system respond to a STEP increase in normal sales, from
zero 1o 1000 cones per month? {(Compare your results with those in part

©.) '

Repeat part (e), setting the fraction of revenue spent on advertising
FRSA = 0.05. How do the results differ? Set FRSA = 0.2. How do the
resulis differ? Rerun the model, setting FRSA = 0.3. Which loop
dominates if FRSA. is less than 0.2? Which loop dominates if FRSA is
larger than 0.2. Which loop dominates if FRSA is exactly 0.2?



326 Introduction to Simulation

EXAMPLE V: TREE HARVESTING—HIGHER-ORDER DELAYS

The material and information delays considered so far have all been first-order
delays: that is, they have involved only one level. Although first-order delays
provide a useful representation of the delays involved in many social and eco-
- nomic systems, delay processes are frequently encountered that do not seem to
resembie the behavior of a first-order delay. Recall, for example, the tree
harvesting case in Chapter 7 (Example I1T). According to the example, Lester
Splintz planted 10,000 saplings in 1930, and the particular species of trees he
chose was supposed to reach harvesting size after an average of twenty years.
Figure 17.18 (copied from Figure 7.6) indicates the harvest rate Lester Splintz
obtained. ) .

Tt seems somewhat plausible to represent the tree harvesting process as a
first-order delay, as shown in the following causal-loop diagram and flow dia-
gram (Figure 17.19), and equations (Figure 17.20). The behavior generated by
this model is shown in Figure 17.21. Unfortunately, however, the behavior ob-
tained does not resemble the behavior shown in Figure 17.18.

As the discussion in Chapter 7 indicated, the problem lies in the causal-
loop representation. The initial causal-loop diagram fails to take into account
the fact that trees come in different ages and sizes; for example, saplings (trees
that are 0 to I inch in diameter); small trees (I to 3 inches in diameter);
medium-sized trees (3 to 6 inches in diameter); and harvestable trees (6-plus
inches in diameter). Ordinarily, trees are not harvested until they reach

800 -
sco -
TREES
HARVESTED
400 |-
200}
L L L ]
1930 1940 1950 1960 1970 1980

TIME (YEARS)

Figure 17.18 Harvest rate
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Figure 17.19 Causal-loop and flow diagrams for Splintz's farm

harvestable size. This distinction is incorporated in the causal-loop diagram in
Figure 17.22 (copied from Figure 7.9).

The following flow diagram and equations, Figures 17.23 and 17.24, are
based on the causal-loop diagram in Figure 17.22. This new model contains
four fevels, each with an adjustment time of 5 years (4+5 = 20). The behavior
generated by the model is shown in Figure 17.25.

The harvest rate results (Figure 17.25) are quite similar to the data shown
in Figure 17.18. The number of trees harvested remains at zero for the first 10
years. It then begins to rise, reaching a peak shortly after 1950, It then falls to
zero by about 1975.

Exercise 14: Harvesting Model
a. Enter the DYNAMO equations for the model as shown in Figure 17.24.

b. Run the model and examine the behavior. It should be identical to the
behavior in Figure 17.25.

¢. Rerun the model, using a tree growth time of 40 years. Rerun the model,
choosing a growth time of 10 years. How do the results differ?
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* TREE HARVESTING MODEL

NOTE

NOTE

L TREES . K=TREES . J+ (DT) (PLANT.JK-HRVSTR.JK)
N TREES=TREESN

NOTE TREES (TREES)

C TREESN=0 )

NOTE TREES, INITIAL (TREES)

R PLANT. KL= {1/DT) *PULSE {(NPLANT, PTIME, TBP)}
NOTE PLANTING RATE (TREES/YEAR)

C NPLANT=10000

NOTE NUMBER PLANTED DURING EACH PULSE (TREES)
c . PTIME=1930 _ '
NOTE . PLANTING TIME (YEARS)

C TBP=1000

NOTE TIME BETWEEN PULSES (YEARS)

R HRVSTR. KL=TREES . K/MT

NOTE HARVESTING RATE (TREES/YEAR)

C MT=20 '
NOTE MATURATION TIME (YEARS)

NOTE

NOTE SIMULATION SPECIFICATIONS

NOTE

SPEC DP=0.5/PLTPER=1/LENGTH=1580

u TIME=1930 _

PLOT TREES=T(0,10000) /HRVSTR=H(0,800)

RUN

Figure 17.20 Equations for Splintz’s Farm

d. Modify your model to include only two levels: young trees and harvest-
able trees. Set the adjustment time for each level equal to half the total
growth time (20 years). Run the model. How do the results differ from
your results in part (b)?

e. Modify your model again, this time choosing three levels rather than two.
How do the results differ?

f. Modify your model, using 5 levels rather than three. What happens?

g. What do you think would happen if you chose 10 levels? 20 levels? 100
levels?

DYNAMO FUNCTIONS FOR THIRD-ORDER DELAYS

Many social and economic processes resemble the tree-growing process pre-
viously discussed, in that they can be represented by a sequence of smaller
delays. For example, while the apartment construction delay discussed earlier
in this chapter was represented as a first-order delay, it is probably more
accurate to consider it a higher-order delay, representing a sequence of smaller
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Figure 17.2) Plot for Splintz’s farm
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TREE HARVESTING MOLDEL

SAPLNG.K=SAPLNG.J+ (DT) {PLANT.JK-SAPMR.JK)
SAPLNG=SPLNGN

SAPLINGS {TREES)
SPLNGN=0

SAPLINGS, INITIAL (TREES)
SMALL. K=SMALL.J+ (DT} (SAPMR.JK-SMAMR.JK)
SMALL=SMALLN

SMALL TREES {TREES)
SMALLN=0

SMALL TREES, INITTAL (TREES}
MEDIUM.K=MEDIUM.J+ (DT) (SMAMR.JR-MEDMR. JK)
MEDIUM=MDIUMN

MEDIUM TREES {TREES)
MDIUMN=0 :
MEDIUM TREES, INITIAL (TREES) -
HRVST . K=HRVST.J+ (DT} {MEDMR.JK-HRVSTR. JK)
HRVST=HRVSTN

HBARVESTABLE TREES (TREES)
HRVSTN=0

HARVESTABLE TREES, INITIAL (TREES)
TREES . K=SAPLNG. K+SMALL . K+MEDIUM. K+HRVST. K

TOTAL TREES (TREES)
PLANT.KL={1/DT) *PULSE (NPLANT, PTIME, TEP)

PLANTING RATE (TREES/YEAR)
NPLANT=10000

NUMBER PLANTED DURING EACH PULSE (TREES)
PTIME=1930

PLANTING TIME (YEARS)
TBP=1000

TIME BETWEEN PULSES (YEARS}
SAPMR. KL=SAPLNG.K/MT

SAPLING MATURATION RATE (TREES/YEAR)
SMAMR . KL=SMALL . K/MT

SMALL TREE MATURATION RATE (TREES/YEAR)
MEDMR. KL=MEDIUM. K/MT

- MEDIUM TREE MATURATION RATE (TREES/YEAR)

HRVSTR.KL=HRVST.K/MT

HARVEST RATE (TREES/YEAR}
MT=TMT/4

MATURATION TIME (YEARS)
TMT=20

TOTAL MATURATION TIME (YEARS)

- SIMULATION SPECIFICATIONS
DT=0.5/PLTPER-1/LENGTH=1980

TIME=1930
TREES=T (0,10000) /HRVSTR=H {0,800}

Figure 17.24 Model of tres growth
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Figure 17.25 Tree growth model
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delays (the delays involved in getting permits, hiring an architect, negotiating
loans, and so forth). Similarly, the matl delay discussed in Exercise 5 might
more realistically be considered a higher-order delay, since it undoubtedly in-
volves a sequence of smaller delays (the delays involved in sorting the mail,
getting it from post-office to post-office, and delivering it).

When modeling a delay process, one immediate question arises: How
many levels should be included in the delay? The answer, of course, depends
on the exact process being modeled. However, to a rough approximation, it is
often sufficient to choose ¢ither a first-order delay or a third-order delay (that
is, a delay with only one level or a delay with three).

As the preceding exercise indicates, for example, the behavior of a third-
order delay is reasonably similar to the behavior of a fourth-order delay. Thus
either might be a reasonable choice in modeling the tree-harvesting case.

DYNAMOG includes special functions to represent third-order material
and information delays, analogous to the DELAY1 and SMOOTH first-order
delays. The DELAY3 function can be used to represent third-order material
delays, and the DLINF3 function can be used to represent third-order infor-
mation delays. The DELAY3 and DLINF3 functions are simply shorthand
notations, exactly identical to the full set of equations for third-order delays.
For example, the following equations might be used to represent the tree-
harvesting case:

R HARVST. KL =DELAY3{PLANT.JK,GT)
C GT =20

This indicates that the harvest rate HARVST is a third-order material delay of
the planting rate PLANT, with a total growth time GT = 20 (years). The
following equations might be used to indicate that perceived job openings PJO
is a third-order information delay of actual job openings JO, with an adjust-
ment time of two years. '

A PJO.K=DLINF3(JO.K,AT)
C AT=2

Exercise 15: Using the DELAY3 and DLINF3 Functions

a. Use the third-order material delay function (DELAY3) to represent the
tree-harvesting case.

b. Reread Exercise 2 in Chapter 7 (Tree Harvesting—PFPart II). Use a third-
order delay function to represent Warren’s tree harvesting process. (Hint:
Use a STEP function to represent the planting rate.)

¢. Modify your model of the Warren Splintz case, using a first-order delay
rather than a third-order delay. How do the results differ? Revise the
model, using a fourth-order delay. (One way to do this is to combine a
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third-order and first-order delay What delay times should you choose for
each?)

Medify your apartment construction model {(Exercise 7}, using a third-
order material delay, rather than a first-order delay. How do the results
differ?

Moadify your model of job-migration cycles (Exercise 12), using a third-
order information delay (DLINF3) rather than a first-order delay How

~do the results differ?

ENDNOTES

1.

When the DELAY function is used, DYNAMO automatically calculates an ini-
tial value for the level equation in the delay, using the formula: LEVELN =
INFLOW=AT. This produces an initial outflow rate exactly equal to the inflow
rate. For example, in the Nobug case, DYNAMO selects an initial value of 0, since
the initial value of the dumping rate is 0. It is possible to initialize the level at what-
ever vaiuc is desired, by using an initial value equation for the inflow rate. For
example, the following equations could be used to set the initial value of the level
of NOBUG equal to 100: .

R ABSORB.KL = DELAY I{DUMP.JK,NAT)
C NAT =2

N DUMP = 100/NAT

R DUMP.KL = (1/DT)«PULSE(420,1,7)

DYNAMO will calculate the initiaf value of the level equation

LEVELN = DUMP*NAT = (100/NATsNAT=100.

For an infinite sequence of observations, it is not hard to show that in a five-day
exponeéntial average the most recent day’s sales receives a weight of 1/5; the
second most recent, a weight of 4/25; the third, 16/125; and in general, the nth
most recent previous observation receives a we:ght of

4n -1

5!’!

As previously explained, all averages really are levels. A peculiarity of DYNAMO
processing requires that the average be treated as an auxiliary equation (A) when
the SMOOTH function is used. Using the proper L (for Level) with the SMOOTH
equation will generate a strange DYNAMO error message. In order to avoid prob-
lems, the model-buitder should also provide an initial condition (N equation) for
AVG@G, as would be done with any other level equation.

DYNAMO checks to make sure there is a level equation in zll loops. If one or
more loops occur without levels, DYNAMO generates an error message similar to
the following:

“SIMULTANEOUS EQUATIONS IN THE AUX EQUATIONS FOR AD”
which indicates that the auxiliary variable **AD" is part of a simultaneous equa-
tion loop.

Il the ¢quations of the advertising model are analyzcd as a set of simul-
taneous equations, the solution is:

SALES = 2000 cones/month; REV 2000 doHars/month; and AD =200
dollars/month.




