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1 Introduction

In a pioneering book on ”artificial society” and multi-agent simulations in social sci-
ences, Gilbert and Conte (1995) put the emphasis on ”emergence” as a key concept
of such approach: ”Emergence is one of the most interesting issues to have been ad-
dressed by computer scientists over the past few years and has also been a matter of
concern in a number of other disciplines, from biology to political science” (op.cit.
p.8). More recently, Agent based Computational Economics (ACE) put the emphasis
on the question of emergence, following for instance Tesfatsion (2002a) or Axtell,
Epstein, Young (2001). The present paper provides a formal definition of emergence,
operative in multi-agent framework designed by Agent Oriented Programming, and
which makes sense from both a cognitive and an economics point of view. Starting
with a discussion of the polysemous concept of emergence, the first part of this pa-
per is dedicated to clarifying the question by focussing on the problem of modelling
cognitive agents in artificial societies. The key questions are introduced by way of
a paradigmatic example. The second part of this paper is dedicated to introducing
and discussing operative definitions and related implications. In order to illustrate
our formal definition of emergence, we discusses the ACE population game model
of Axtell et al. (2001) and builds a multi-level-model based on the formal framework
introduced in this paper.

2 From emergentism to emergent behaviour in ACE model: some
clarifications.

In this section, we first discuss different definitions of emergence, and the related
background. In order to focus on the problem of modelling cognitive agents in ar-
tificial society, we next considering a paradigmatic example, and briefly discuss
Schelling’s model of spatial segregation (Schelling 1969, 1971, 1978), which is a
pioneering study of an emerging social phenomenon in social science.
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2.1 Emergence: one word, several meanings

The notion of emergence has several meanings. In the vernacular language, emer-
gence denotes both a gradual beginning or coming forth, or a sudden uprising or
appearance; to emerge also means to become visible, in example, emergence de-
notes the act of rising out of a fluid. This latter sense is close to its Latin roots, where
emergere is the opposite of mergere: to be submerged. In the following, we relate
the ”act of rising out” to the arising of some phenomenon in a process, and note the
fact that to become visible presupposes some observer. In other words, the common
sense of emergence is linked to the meaning of a process that produces some phe-
nomenon that might be detected by an observer. In the field of science, emergence
has been used by Newton in optics. By the 19th century the word ”emergent” is in-
troduced into the fields of biology and philosophy. In the latter, Emergentism has
a long history, from Mill’s chapter: ”Of the Composition of Causes” in System of
Logic (1843) to the contemporary debates about the philosophy of mind, known as
”the mind - body problem” (see among others: McLaughlin, 1992, 1997, Van de Vi-
jver, 1997, Emmeche, et al. 1997, for a synthesis). Philosophical emergentism deals
with questions of both reductionism and holism. Lewes (1874) for instance places
emergence at the interface between levels of organisation. For descriptive emergen-
tism, the properties of the ”whole” cannot be defined by the properties of the parts,
and results in part from some irreducible macro causal power.

In this debate around the definition of emergence, some authors have proposed
to distinguish between different kinds of emergence, as for example ”nominal”,
”weak” and ”strong” emergence for Bedau (1997,2002), or ”weak” ”ontological”,
and ”strong” emergence for Gillet (2002a-b). Both authors refer to debates about
reductionism as well as about the so-called mind-body problem, discussing in par-
ticular the notion of Supervenience, introduced by Davidson (1970, 1980) and dis-
cussed by Kim (1992, 1993, 1995, 1999) from the point of view of emergence. As
”weak” emergence deals with upward causation and reductionism, Gillet and Bedeau
relate ”strong emergence” to the question of ”downward causation” (Kim, 1992, Be-
dau, 2002) or ”macro-determinism”, widely advocated by Sperry (1969, 1986, 1991,
among others) to deal with the mind-brain interactions, and by Campbell (1974) to
deal with hierarchically organized biological systems. According to strict downward
causation, the behaviour of the parts (down) is determined by the behaviour of the
whole (up). For instance, parts of the system may be restrained by some act in con-
formity with rules given at the system level. Causation would come ”downward” in
conformity with a holist principle rather than upward, according to a reductionist
principle.

In this paper, we do not address theses questions directly, as we limit ourselves
to discussing social behaviours in artificial societies; but the opposition between
downward versus upward causation proves to be a central one in the field of so-
cial sciences. According to Granovetter (1985), the sociologist’s approach would be
”over socialized” (downward) while the economist’s approach would be ”under so-
cialized” (upward/methodological individualism). Currently, both approaches have
been sophisticated and are often mixed. The present paper is an attempt to integrate
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them in one single framework, in which the ’whole’ is a collective of agents (up-
ward causation / methodological individualism), but the agents are in are to some
extent constrained by the whole (downward causation), by way of the ”social dimen-
sion” of their belief as well as their perception of social phenomena. For the purpose
of this paper, we rely on the distinction, proposed by Muller (2002) in the field of
multi-agent systems, between ”weak” and ”strong” emergence. The latter refers to
a situation in which agents are able to witness the collective emergent phenomena
in which they are involved, which opens the road for both upward and downward
causation.

In Agent based Computational Economics, ”emergence” is strongly related to
the Santa Fe approach to complexity (SFAC). In accordance with descriptive emer-
gentism, SFAC calls ”emergence” the arising at the macro level of some patterns,
structures and properties of a complex adaptive system that are not contained in the
property of its parts. But conversely, emergence can often be explained by upward
mechanisms. Interactions between parts of a dynamic system are the source of both
complex dynamics and emergence. An interesting part of the emergence process con-
cerns the forming of some collective ”order” (coherent structures or patterns at the
macro level) as a result of agents’ interactions within the system’s dynamics, in the
presence of a specific attractor. For the observer, this collective order makes sense by
itself and opens up a radically new global interpretation, because it does not initially
make sense as an attribute of the basic entities.

Formally, in multi-agent systems, emergence is a central property of dynamic
systems based upon interacting autonomous entities (the agents). The knowledge of
entities’ attributes and rules is not sufficient to predict the behaviour of the whole
system. Such a phenomenon results from the confrontation of the entities within a
specific structure of interaction. That is, better knowledge of the generic properties
of the interaction structures would make it easier to have better knowledge of the
emergence process (ie. morphogenetic dynamics). From this point of view, to denote
a phenomenon as ”emergent” does not mean that it is impossible to explain or to
model the related phenomenon. For this reason Epstein J.M. (1999) uses the word
”generative” instead of ”emergent” in order to avoid a philosophical debate about
emergence.

Various attempts have been made to define emergence in an ”objective” way.
Some definitions refer to self-organisation (Varela et al., 1991), to entropy changes
(Kauffman, 1990), to non-linearity (Langton, 1990), to deviations from predicted be-
haviour (Rosen, 1985, Cariani 1991) or from symmetry (Palmer, 1989). Other def-
initions are closely related to the concept of complexity (Bonabeau et al., 1995a,
1995b; Cariani, 1991; Kampis, 1991). In statistical physics (Galam, 2004), as well
as for models in economics or social sciences explicitely based upon theses models
(see for instance Durlauf, 1997, 2001 and the pioneering work of Galam et al, 1982
among others), emergence may be related with an order parameter which discrim-
inates between at least two phases, each one with a different symmetry associated
respectively to a zero and non-zero value of the order parameter. Each problem has
its specific order parameter. For instance in the Ising model, where individual spins
can takes the value {−1, +1}, the order parameter is the magnetization M , given by
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the sum of all the spin values divided by their total number. When M = 0, the state is
paramagnetic, i.e. disordered in the spin orientations, while long range order appears
as soon as M �= 0. A majority of spins are then oriented along either −1 or +1, and
an order is likely to emerge. Two ordered phases are thus possible in principle, but
only one is effectively achieved. The order parameter provides a ”signature” for the
emergent phenomenon. Although these definitions make use of concepts borrowed
from physics and information science, they all involve inherently contingent aspects,
as the presence of an external observer seems unavoidable. Even a change in entropy
supposes that an observer be able to assess the probability of various states.

The unavoidable presence of an observer does not preclude, however, the pos-
sibility of extending the definition of emergence to include non-human observers or
observers that are involved in the emerging phenomenon. In our quest for ”strong
emergence”, we wish to assign the role of the observer to elements of the system
itself, as when individuals become aware of phenomena affecting the whole society.
This kind of self-observation is only possible because what is observed is a simplified
state of the system. Emergence deals precisely with simplification.

2.2 What does emerge in Schelling’s model of spatial segregation?

Schelling’s model of spatial segregation (Schelling, 1969, 1971, 1978) is a pio-
neering example of an emerging phenomenon resulting from social interaction.
Schelling’s aim was to explain how segregationist residential structures could spon-
taneously occur, even when people are not so very segregationist themselves. The
absence of a global notion of segregationist structures (like the notion of ghettos) in
the agent’s attributes (preferences) is a crucial feature of this model. Agents do not
choose between living or not living in a segregationist structure, but have only local
preferences concerning their preferred neighbourhood. Moreover, people have only
weak segregationist behaviour, but the play of interactions generates global segre-
gation. In Schelling’s original model, agents were placed on a 8-by-8 chessboard as
shown in Figure 1 (Java applet).

(1-a) fully integrated population equilibrium (1-b) discontented agents are crossed (1-c) convergence after 4 iterations
Source: http://perso.univ-rennes1.fr/denis.phan/complexe/schelling.html and Phan, 2004

Fig. 1. Original (checkerboard) Schelling Model
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Taking the “colour“ of agents as criterion for discrimination, agents choose a
location where to live, depending on their individual tolerance threshold of differ-
ent colours in their neighbourhood. Agents interact only locally with their 8 direct
neighbours (within a so-called ”Moore” Neighbourhood). No global representation
about the residential structure is available to them. Though agents may be weakly
segregationist (each agent would stay in a neighbourhood with up to 62.5% of peo-
ple with another colour), segregation occurs. Schelling used the following rule: an
agent with one or two neighbours will try to move unless one of the two neighbours
has the same colour as its own (which means a local tolerance of 50% ); an agent
with three to five neighbours requires at least two agents of same colour to stay (that
is 33%, 50% and 60% local tolerance), and one with six to eight neighbours will stay
if at least three of them are of the same colour (50%, 57,1%, 62,5% local tolerance).

Under Schelling’s behavioural assumption, a ”fully integrated structure” (Fig-
ure 1-a) is an equilibrium (an order) because no agent wishes to move. A ”fully
integrated structure” is a structural pattern in which agents’ colours alternate in all
directions. Because of border effects, no agent is located in the corners. The ”fully
integrated structure” is an unstable equilibrium. A slight perturbation is sufficient to
induce a chain reaction and the emergence of local segregationist patterns. In his
example, Schelling extracted twenty agents at random, and added five at random in
the free spaces. The discontented agents (crossed in Figure 1-b) move at random
towards a new location in agreement with their preferences. These moves generate
new discontented agents by a chain reaction until a new equilibrium is reached. In
such equilibrium, local segregationist patterns appear, like in Figure 1-c.

Local interactions are sufficient for spatial homogeneous patterns to occur; spa-
tial segregation is an emerging property of the system’s dynamics, while not being
an attribute of the individual agents. Sometimes, local integrated (non-homogeneous)
patterns may survive in some niches. But such integrated structures are easily per-
turbed by random changes, while homogeneous structures are more stable (frozen
zones). Complementary theoretical developments on Schelling’s model of segre-
gation can be found in the growing literature on this subject, for instance among
economists like Zhang (2004a-b), Pancs, Vriend (2003, 2004), or sociologists like
Broch, Mare (2004). Examples of advances in empirical investigations can be found
in Clark (1991), Sethi Somanathan (2001), Koeler, Svoretz (2002), and experimen-
tations in Ruoff, Schneider (2004). Our aim in this paper is to address emergent phe-
nomena, as instantiated in Schelling’s model, in a new way. Emergence is currently
debated for its cognitive and sociological aspects, from ontological and epistemic
perspectives, in relation with the modern philosophy of mind (for a selection of pa-
pers, see for instance Intellectica 1998, and Gilbert, 1995, for links with sociology).
There is also a debate within the artificial intelligence, artificial life and artificial so-
ciety fields (see Gilbert,Conte,1995 in this later field). Entering or even summarizing
those debates would fall outside the scope of the present paper. But some funda-
mental questions are worth asking about knowing in what way emergence occurs in
Shelling’s model. Who is the observer? What does the higher level of organisation
consist in? For whom does this level make sense? (Figure 2)
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Fig. 2. Questions of emergence

In various definitions of emergence, the presence of an external observer seems
unavoidable. Levels of organisation depend on an observer being able to discern
subparts in the system and appropriate relations between them. There is no consistent
way to say that some new phenomenon occurs at a higher level, be it some new form
of operational closure or any form of deviation from expected behaviour, unless there
was some pre-existing way to observe that higher level.

3 Emergence in ACE : from case studies to a formal definition

The first and second subsections provide two definitions coherent both with the de-
sign of multi-agent systems used in Agent Based Computational economics (Tesfat-
sion, 2002, Phan, 2004) and with important related features, like cognitive hierarchy,
detection, and complexity. The first one (from Bonabeau, Dessalles 1997) defines the
emergence as an unexpected complexity drop in the description of the system by a
certain type of observer. The second one (from Muller 2002) defines emergence as
a phenomenon observed at the interface of description levels. The latter definition
introduces a useful distinction between ”weak” and ”strong” emergence.

3.1 Emergence as a complexity drop

In (Bonabeau, Dessalles, 1997), emergence is defined as an unexpected complexity
drop in the description of the system by a certain type of observer. Such a definition
is claimed to subsume previous definitions of emergence, both structural (dealing
with levels of organisation) and epistemological (dealing with deviation from some
model’s predictions). In each case, the observer is able to detect a structure, such
as the presence of relations holding between parts of the system, or some form of
behaviour like a characteristic trajectory. Structural emergence occurs whenever the
system turns out to be more structured than anticipated. This augmentation of struc-
ture can be characterised by a decrease of complexity.

E = Cexp − Cobs

Here, E stands for the amplitude of the emergence, Cexp is the expected struc-
tural complexity and Cobs the structural complexity actually observed. Structural
complexity is defined as the algorithmic complexity relative to a given set of struc-
tural descriptors.
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Algorithmic complexity, as defined by Kolmogorov, Chaitin and Solomonov, is
defined by the shortest description that can be given of the system using a Turing
Machine (Li, Vitanyi, 1993). This definition is sometimes considered of little use for
finite systems, as the set of all systems of same size can be ordered; since each of
these system can be characterised by its rank, nothing prevents the actual system to
appear as the simplest one if it happens to be number one. In order to use algorithmic
complexity to describe finite system, we abandon the generality of Turing machines,
considering that the description tools are imposed by the observer. We define the
relative algorithmic complexity (RAC) of a system as the complexity of the shortest
description that a given observer can give of the system, relative to the description
tools available to that observer. Emergence occurs when RAC abruptly drops down
by a significant amount.

For our purpose here, we must restrict the definition. We consider a specific class
of observers, in order to get closer to what human observers would consider as emer-
gence. Following (Leyton 2001), we impose the observer’s description tools to be
structured as mathematical groups. In other words, any level of organisation that can
be observed has operational closure and is structured as a group, and the only struc-
tures that can be observed are the invariant of a group of operations. Moreover, the
observer is supposed to have hierarchical detection capabilities. This means that all
elements of the system that the observer can consider have themselves a group struc-
ture. The observer may be considered as being a ’Leyton machine’, for which any
structure is obtained through a group-transfer of other structures (Leyton 2001).

Let us illustrate how emergence results from a complexity drop in Schelling’s
model. In a first stage, the external observer reconstructs the system by transfer-
ring (in the Leyton sense) one abstract inhabitant to form the entire population. The
transfer group, in this case, is the group of 2-D translations. The operation is costly
in terms of complexity, as each individual translation has to be instantiated. Then
each abstract inhabitant is assigned a colour. This latter operation can be achieved
through a transfer by the binary group Z/2Z. In a second stage, the external observer
is now able to detect homogeneous clusters. She reconstructs the system in a differ-
ent way. One first abstract cluster is obtained by translating one abstract inhabitant,
as previously. Then this first cluster is itself translated to give the whole set of clus-
ters. Finally, clusters are assigned colours through the binary group. Emergence, in
this example, comes from the fact that the second construct is significantly simpler
than the first one. The reason is that there are less colour assignments: only one per
cluster instead as one per inhabitant. A crucial requirement for the emergence to be
noticeable is that the shape of clusters be simple. For the system to be fully instan-
tiated, the second construct must reshape the limits of each cluster through various
groups of geometrical transformations. If there were no colours, or if the clusters had
random shapes, there would be no gain in complexity. Conversely, emergence would
be maximum in the extreme case in which all clusters had identical shapes, e.g. if
they were square blocks.

Each transfer group can be seen as an organisation level. In Schelling’s model,
there could be more levels of organisation, for instance if clusters were arranged in
a chessboard-like pattern. The Leytonian construct would be different and less com-
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plex in this case: the first cluster would be assigned a colour, then it would be du-
plicated through a binary symmetry group operating in colour space, then the couple
would be transferred through the group of integer translations of the plan.

For structural emergence to occur, it is important that there be an unexpected
complexity decrease. This may happen either because the higher structure detection
was delayed, as when you take time to recognise a Dalmatian dog in a pattern of
black and white spots. It may also happen when adding a new observable, instead
of increasing the overall complexity of the system for the observer, paradoxically
deceases it (Bonabeau, Dessalles, 1997). This latter case is well illustrated by our
extension of Axtell et al.’s experiment (see Phan, Galam, Dessalles, 2005).

3.2 Emergence occurring in a system with several levels

Following Forrest’s definition of emergent calculation (Forrest 1990), Müller (2002)
defines emergence in SMA as occurring between two organisation levels, distin-
guishing the process and the observation of that process. The process concerns the
evolution of a system formed by entities in interactions. These interactions may
generate observable epiphenomena. At the observation level, epiphenomena are in-
terpreted as emerging through specific calculation (i.e. like order parameter). For
Müller, ”weak emergence” arises when the observer is external to the system, while
”strong emergence” arises when the agents involved in the emerging phenomenon
are able to perceive it. In this later configuration the identification of epiphenomena
by the agents in interaction in the system will involve a feedback from the observa-
tion to the process. There is a coupling between the process level and the observation
level by the way of the agents. Emergence is thus immanent in such a system.

More specifically, for Müller, a phenomenon is emergent if:

• (A) There is a system composed of agents in interaction with each other and with
their environment. The description of this system as a process is formalized in a
language D

• (B) The dynamics of this system produces a structural phenomenon observable
in the ”traces of execution”

• (C) The global phenomenon is observed by an external observer (weak emer-
gence) or by the agents themselves (strong emergence) and is described in a
language distinct from D.

When compared with Forrest’s definition (Forrest 1990), Müller’s definition pre-
supposes the existence of two languages of description, which are distinct according
to the level considered. This distinction only materializes the presence of levels al-
ready hypothesised by Forrest. On the other hand, it is interesting to note that Müller
distinguishes the system formed by the interacting agents from the process that gov-
erns their behaviour. This enables him to choose the position of the level of observa-
tion with respect to the agents. Müller’s contribution lies then mainly in the distinc-
tion between two categories of emergence according to the position of the level of
observation w.r.t. process. In strong emergence, agents are observers themselves, this
de facto entails a feedback loop between the micro (agent based) level of observation
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and the macro level of the process. In weak emergence, the observer is external with
the process and there is no necessarily coupling.

Müller illustrates weak emergence by means of the example of foraging ants
which move between their nest and a food source. Each ant deposits on its passage
some traces of pheromone which attract the other ants, and create an interaction be-
tween them (1). These interactions build a stable and observable phenomenon (2). An
external observer may interpret this phenomenon as a ”path”. Moreover, the accumu-
lation phenomenon based on interaction drives the ant colony to find the shortest path
between their nest and a source of food. Emergence is weak because the dynamics
depends only on the traces of pheromone (1-2) and not on the qualification of these
traces as an ”shortest or optimal path”, which does not exist in the ants’ head.

The category of strong emergence is important for to model artificial societies
(Gilbert, 1995). Indeed, the reflexivity meditated by the agents’ ”consciousness” ap-
pears to be a determinant characteristic that distinguishes systems involving human
agents from systems made of non conscious or material entities.

In Schelling’s model, there would be strong emergence if agents, rather than
merely sampling neighbouring densities, were able to perceive forming homoge-
neous clusters in the town and if their perception could affect their decisions. Strong
emergence is particularly important in economic modelling, because the behaviour
of agents may be recursively influenced by their perception of emerging properties.
Emerging phenomena in a population of agents are expected to be richer and more
complex when agents have enough cognitive abilities to perceive the emergent pat-
terns. Such feedback loops between emerging collective patterns and their cognitive
components clearly occur among agents in human societies. They may obey laws
that are still to be understood. Our aim here is to design a minimal setting in which
this kind of strong emergence unambiguously takes place.

To summarize, if there is strong emergence in the sense of Müller, the system be-
comes reflexive, through the mediation of the agents. (A) Agents are equipped with
the capacity to observe and to identify an epiphenomenon in the process which repre-
sents the evolution of the system in which they interact. This capacity of observation
and the field of such observation must then be sufficiently broad to encompass the
phenomenon as a global one. (B) The agents can describe this epiphenomenon in a
”language” other than that which is used to describe the process (C) The identifica-
tion of an ”emergent” epiphenomenon by the agents involves a change of behaviour,
therefore a feedback of the level of observation on the process

Fig. 3. Parallelism between hierarchies : description, observations and conceptual level
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Emergent phenomena are naturally described in a two-level architecture (Figure
3). In such a framework, objects at the two levels only exist because some observer is
able to detect them. The detected object at the upper level is composed by objects of
the first level. Correspondingly, the upper level detector is triggered by the activity of
lower level detectors. The system’s complexity, defined as the minimal description
that can be given of its state, drops down by a significant amount when an upper-level
detector becomes active, as its activity subsumes the activity of several lower-level
detectors.

According to this point of view, one can reinterpret the Müller’s definition using a
distinction due to Searle (1995) between entities that are independent of the observer
(the process and the phenomena which results from it) and entities that occur within
the observer (identification and interpretation of an epiphenomenon). According to
this interpretation, emergence becomes a category relative to an observer, and in the
case of a human observer (or an agent supposed to be represented an human), a sub-
jective category. Note that Müller’s definitions and the above definition of structural
emergence as complexity drop are compatible. Müller’s distinction between two de-
scription languages presupposes that the upper language, available to the observer,
provides it with a simpler description of the epiphenomena than what was available
at the process level.

3.3 Learning and ”intrinsic emergence”

Crutchfield (1994) Bersini (2004), Philemotte, Bersini (2005) propose to consider
an alternative definition of emergence, called ’intrinsic emergence’. They suggest
to characterise emergence as an autonomous increase in the system’s computational
capabilities. Such a definition is supposed to be more ’objective’ as a natural way to
avoid the presence of an external observer in charge of detecting emergence. Phile-
motte, Bersini (2005) implemented a situation of intrinsic emergence. In their sys-
tem, a cellular automaton is evolved through a genetic algorithm (GA) until it is
able to perform some arithmetic operations on a limited set of operands. As usual
for cellular automatons, the rules which, for each cell, decide of its next state, take
as input the previous state of neighbouring cells. In Philemotte, Bersini’s system, a
second genetic algorithm is in charge of filtering inputs for the cellular automaton,
so as to make the learning task easier for the first GA. Intrinsic emergence is claimed
to occur whenever the second GA is able to isolate a relevant portion of the neigh-
bouring input and thus to significantly improve the learning efficiency of the overall
system. Philemotte, Bersini were able to observe such sudden improvements when
both genetic algorithms cooperate.

This definition is original, and somewhat differs from the previous ones, which
were limited to the description of structural patterns. We may call it behavioural
emergence, as the criterion for emergence is a discontinuity in performance rather
than a discontinuity in structural complexity. We may, however, ask what is emerg-
ing. If the general definition of intrinsic emergence is restricted to describe some dis-
continuity in efficiency, then the answer is that nothing does emerge. In Philemotte,
Bersini’s experiment, however, a relevant input filter can be said to emerge. For some
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definition of complexity, indeed, intrinsic emergence is well described by definition
(1). The measure of complexity to be considered here is the size of the relevant
search space. When systematically ignoring a portion of the input, the second GA
dramatically reduces the space where the first GA will find an efficient rule for the
cellular automaton. This presupposes, however, that the input filter does not exclude
convenient solutions. If complexity is set to a maximal value when no adequate rule
is learned, then intrinsic emergence can be said to correspond to a complexity drop.
Note, however, that intrinsic emergence, contrary to structural emergence, does not
rely on the complexity of structure, e.g. the complexity of hierarchical group struc-
ture, but relies on learning efficiency which directly correlates with the size of the
filtered search space.

4 - The emergence of classes in a population game: overview of
the original model and discussion

In order to illustrate definitions introduced in previous section, our aim is to design
a model that gives rise to ”strong emergence”. In this paper, we provide an overview
of the original model and discuss the conditions of implementation. Results of the
implementation in a multi-agent framework of multi-level strong emergence with
a detection process are presented in a companion paper (Phan, Galam, Dessalles,
2005). We start from a model of class emergence (Axtell, et al. 2001) in which
agents play a population game and tend to correlate other players’ behaviour with
fortuitous visible but meaningless characteristics (tags). This model is a nice exam-
ple of emergence in an ACE population game. The authors show how intrinsically
meaningless ”tags” associated with agents can acquire social salience over time such
that tag-based classes emerge at the social level from the decentralised interactions
of many individuals who accumulate over time information about the behaviour of
others by the way of history - based expectations. On some occasions, these fortu-
itous tags turn out to be reliable indicators of dominant and submissive behaviour in
an iterative Nash bargaining tournament.

4.1 Axtell, Epstein and Young’s model of class emergence

This model is a ”random pair wise” type of population game (Young 1998, Blume,
1997) with linear trembling hand. That is, Nash equilibrium can be reached without
any assumption about common knowledge. Early analytical results can be found in
Young (1993). During the game, agents are randomly paired and at each time step
play a ”one-shot ” game with their opponent. Agents choose the strategy which is
their best response given their beliefs (a ” mixed strategy ”) about the behaviour of
the others, drawn by induction from a distribution of observed strategies kept in a
finite memory of size m. At each time steps, agents change partners and actualise
their beliefs depending on the result of the last meeting. Agents have a linear posi-
tive probability of deviation (trembling hand). The formal context is thus stochastic
and the concept of stability used by the authors is due to Foster, Young (1990) for
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stochastic evolutionary games. The one-shot negotiation between pairs of agents is
drawn from the one step Nash bargaining model. That is, each player tries to share
a ”cake” of size 100 with its opponent by opting for one of three possible strategies:
”High ” (H), ”Medium (egalitarian) ” (M), and ” Low” (L). The corresponding per-
centages of the ”cake” claimed by players can be fixed, without loss of generality, to
70

Table 1. best reply equivalent matrix for a bilateral game of agent i

S1 : H S2 : M S3 : L

S1 : H (0, 0) (0, 0) (70, 30)

S2 : M (0, 0) (50, 50) (70, 30)

S3 : L (30, 70) (30, 50) (30, 30)
Player i in rows / Player k in columns

The authors distinguish three situations. First, there are tree situations where the
agents’ payoff is null and consequently highly inefficient (because they proposed
more than 100

The strategies played within the population are triplets σ im = (p, q, 1 − p − q),
and each agent infers its expected payoff from a historical sample of size m, say:
σim = (pi, qi, 1− pi − qi). At each time step, randomly paired agents play their best
response against their own expected mixed strategy im with probability (1 − ε) and
play at random with probability ε (linear trembling hand ” la Young”). When playing,
an agent observe the strategy of its opponent and updates its belief by removing from
its memory the oldest value and by updating its list by inserting the last strategy
observed. The state of belief of an agent can be represented by a point on a simplex
of size 2 used to represent the expected mixed strategies of this game (Figure 3).

The initial beliefs can be initialized in a random way, or in a targeted zone. But
an initial form of heterogeneity of the beliefs is necessary to usefully explore the
dynamic properties of this model. Indeed let us suppose that all the agents initially
form the belief that their opponents play M . Their best reply, conditionally to this
initial belief will precisely consist in playing M , which will reinforce the overall
initial belief of these agents. The initial beliefs of an agent can be interpreted as
their ”cultural” heritage and their updated beliefs as the product of ”the history” of
their last meetings (an ”historical” form of interactional heterogeneity, since agents’
history differ). Let us note that in the AEY’s model, the agents do not have common
belief nor beliefs upon the beliefs of other agents, but only about the distribution
of strategies. When the beliefs of the agents im are located in the same zone of the
simplex (say by example, ”M”), they are in a weak sense ”shared beliefs”, because
their best response is the same ”M”, but this situation is not recursive and agents have
not common beliefs. Finally, using the results of Young (1993), the authors show that
the only stochastically stable solution corresponds to a situation where almost all the
agents play ”M”.

In a second time, the authors introduce two types of agents, differentiated by an
observable external sign (a tag) which enables them to be identified (grey and black
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in our simulation). The authors assume that this sign does not have any intrinsic
significance (”completely meaningless”).

Fig. 4. Simplexes Within (tag) - Between (tag) and emergence of classes

Axtell et al. (2001) model, simulated on Moduleco-MadKit

However, the agents memorize the sign of the opponents whom they met and cal-
culate the average behaviour corresponding to each type. There are thus two groups,
determined beforehand by the tags, but this is not sufficient to cause a differentiated
behaviour sensitive to tags, which could result in a shared belief on the behaviour
of the members of these groups. However, in this model with two tag types, beliefs
about the opponent’s strategy may diverge depending on the opponent’s tag, leading
to between-types (grey against black, Figure 3, right) and within-type (grey against
grey or black against black, Figure 3, left) responses. By definition, the formation
of ”classes” corresponds to the relative stabilization of distinct beliefs based on the
group, leading to an equitable intra-group behaviour (within), and an unfair share be-
tween classes (the opposite case exists, but can be regarded as ”pathological”). In the
situation displayed on Figure 3 left, grey dots show equitable behaviour (they play
M ) when encountering agents of their kind (within = intra-group), whereas blacks
dots don’t (but they have moved close to the zone of equity). The situation displayed
on the right shows that blacks dots have the belief that grey dots adopt in majority a
”dominated” behaviour (L) and their best response thus consists in claiming a large
share (H). Conversely, grey agents have the belief that black agents preferentially
show a ”dominating” behaviour (H) and their best response then consists in adopting
a dominated attitude by accepting a small share (L). Therefore, both beliefs reinforce
each other.

In the model with tags, (as in the case without tags), the stochastic process is
ergodic and the only stable regime is the ”equitable” one: MM. More specifically,
if the length m of the agents’ memory and the ratio of the number of agents N to
this length (N/m) are ”sufficiently large” while the trembling hand effect remains
”sufficiently weak”, the ergodic (invariant) probability to be in the ”equitable” area
is high. However, if m is large and N small, the inertia of the system, (i.e. the time
before reaching or leaving an area) can be very important (”broken ergodicity”).
This is true in particular for the transition from the mode ”with class” towards the
equitable standard.
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4.2 Discussing the emergence in Axtell et al. (2001)

One limit of Axtell et al. model is that dominant and submissive classes remain im-
plicit within the system. Agents are designed to take biased decisions depending on
tags, but any actual bias resulting in a divergent attitude toward different tag bearers
remains contingent and is never represented as such in the system. As a consequence,
behaviour classes only emerge in the eye of external observers.

Can we say that structural emergence takes place in Axtell et al.’s model?
From an external observer perspective, the expected situation is the initial one,

when every agent adopts its own strategy. Its complexity is maximal, as a descrip-
tion of the situation requires each agent to be assigned a location on the simplex.
In this context, taking displayed tags into account is expected to bring supplemen-
tary complexity, as it requires additional instantiation. Paradoxically, a less complex
description of the system may be achieved by the detour through the tag. Once the
population self-organises in two tag-consistent clusters, there are few deviations left
to instantiate whenever the tag happens to be a good predictor of behaviour. In Ley-
ton’s terms, when the initial abstract cluster is transferred to give the two classes,
behaviour is assigned to clusters simultaneously with tag value, instead of requiring
independent instantiations for each individual.

Emergence, here, results from an unexpected decrease of complexity, in confor-
mity with definition (1). However, it cannot be considered a case of strong emer-
gence, as individual agents have no way to observe it. For strong emergence to oc-
cur, the capabilities of agents have to be extended. From the agents’ perspective, the
problem is to predict the strategy of their next partner. As there are three possible
strategies, the agent’s inference process is to partition a sample of the population,
constituted through random encounters, into three clusters to build a mathematical
expectation estimator. When the agent does not pay attention to tags, its sample of
the population would appear complex to it. If the three different observed strategies
are equally represented in the agent’s sample, then the structure is maximally com-
plex. When one behaviour predominates, then the situation may appear slightly less
complex, as it can be described by first assuming that all individual belong by default
to the majority class, and then by accounting for deviations.

In Axtell et al.’s model, agents are not equipped with the ability to assess struc-
tural complexity. Moreover, in the model with tags, they have a built-in bias that
forces them to split their sample of the population into two separate classes accord-
ing to the displayed tags. Things would be different if agents had the possibility to
decide whether to pay attention to tags or not. To extend the model, we make the
additional hypothesis that the agents are more cognitive than in the basic model,
i.e. they seek the best way to sort out their sample of the population according to
observed behaviours. To do this, they may rely on various cognitive (classification)
rules:

• C1- Maintain three separate lists and distribute the m individuals of the sample
among these lists according to their behaviour.

• C2- Maintain only two lists, considering the majority behaviour to be the default
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• C3- Constitute a tag-behaviour association matrix, and apply cognitive rule C1
for deviant individuals only.

When behaviours are not evenly distributed, C2 is clearly less complex than C1.
When tags are irrelevant, C3 is more complex than the two others. When tags become
relevant, however, C3 may become the least complex rule. As agents themselves may
notice a complexity drop, this would be a case of strong emergence.

The main point of Axtell et al.’s model is that the predictive value of tags is not
due to sole random drift. There may be positive reinforcement between the classifi-
cation rule of agents and their actual behaviour. However, this positive feedback is an
automatic consequence of the built-in bias that prompts agents to make two classes
according to the binary label. The reason is that all agents make the same simplify-
ing assumption that there are two classes, plus the assumption that there may be a
connection between class and behaviour.

A natural extension of Axtell et al.’s model is to replace the built-in simplifying
assumption about the pre-existence of two classes by a mere bias favouring sim-
plicity. To do so, let us reason about a more general setting in which T different
binary tags may be displayed. Without any bias, cognitive rule C3 is intractable.
There are 2T different tag combinations, and thus 32T different tag-behaviour asso-
ciation matrices, which is a huge search space as soon as T has a significant value.
A first simplifying bias consists in considering that classes must be characterised
by a conjunction of some of the tags. The size of the search space for learning the
classes is now (3T)3, as for each behaviour class each tag may be specified either
to 0 or to 1 or remain unspecified. For T=5 for instance, the search space is reduced
from 1015 down to 107. Searching through spaces of such significant size may prove
highly inefficient without any additional bias, especially if the decisions made by the
agents are supposed to have some impact on their fate. A further and natural bias
consists in having agents examine simpler hypotheses first. Tag combinations may
be ranked according to their complexity, e.g. according to the number of specified
values. Following a bias toward simplicity, agents will consider elementary tags first,
then combinations of two tags, and so on.

The crucial aspect of this extension of Axtell et al.’s model is that agents rely
on the same set of tags and on the same simplifying bias (the ordering of tags may
be, of course, agent-specific). This hypothesis may be the key to keep the positive
reinforcement between classification and actual behaviour valid. Moreover, it avoids
considering built-in classes, as in the initial model. Agents must figure out for them-
selves what characterises the behaviour classes, before applying cognitive rule C3.
Note that the possibility of tag combinations allows naturally for minority classes (in
an evenly distributed population, 25

If we abandon the oversimplifying assumption that there are two predefined
classes, then a learning rule to extract the relevant tags is necessary. If we make
the additional hypothesis that agents prefer simple (costless) classifications, then not
only do we have a natural extension of the initial model. Such a system is also rich
enough to produce strong emergence. Because classes must be learned, agents have
to decide when to shift from cognitive rule C2 to cognitive rule C3, and the criterion
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to do so is a complexity drop. The more agents apply C3 to a given tag combination,
the lower the complexity through positive reinforcement of classes, and the greater
the emergence. And this emergence serves as input for more agents to adopt C3.

4.3 Implementation and results

Forthcoming ../..

Fig. 5. Parallelism between hierarchies : description, observations and conceptual level
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