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Abstract

We consider the intriguing question of whether, by adjusting the hetero-

geneity of species in a complex adaptive system, one can manage and

even control the future evolution in order to avoid specific undesired sce-

narios. We consider a simple yet highly non-trivial abstraction of such

natural or man-made ecosystems related to the El Farol bar problem[2]

and show that in principle such ‘broad-brush’ control is indeed possible.

The intervention itself requires only minimal knowledge of the system’s

composition, and only involves a small number of microscopic changes, yet

it serves to steer the subsequent global evolution away from undesirable

regimes. This potential to provide global control by applying relatively

minor perturbations at the level of the population’s composition, seems

quite remarkable given the large number of degrees of freedom in the

system, and the inherent stochasticity both at the micro and macro level.
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Chapter 1

Introduction

Complex Systems lie at the heart of many aspects of biology, engineering, computation

and sociology. By their nature, such systems are very complicated to understand:

they have many degrees of freedom corresponding to the large number of interacting

objects or species within the system’s population, the feedback and interactions lead

to delicate temporal correlations, and there are stochastic influences both at the

microscopic and macroscopic levels. Understanding emergent global behaviour is of

great importance to the designers of such systems and is the focus of significant

interest within the field of ‘Collectives’[1]. For example, in a population consisting

of many discreet control units 1, each of the units may itself malfunction whilst the

population as a whole has to withstand global uncertainty due to interaction with

the environment. Complete understanding and hence total control of such systems is

impossible - instead one is aiming for some form of soft control whereby the probability

that certain highly undesirable scenarios arise is minimised or even avoided. Even

if in principle one knows what such scenarios are, and hence how to re-engineer the

components such that they may be avoided, the necessary accessibility may not exist

- for example, the individual units in a constellation of deployables may be too far

away (for example, planetary rovers), or the system may have pre-built components

which cannot be individually altered. In a more biological context, the approach

to health-care whereby each cell of the body is re-designed is clearly impossible.

Instead, more broad-brush approaches are required in which neither complete access

to, nor information about, the individual components is assumed. We refer to [1] for

a detailed discussion and perspective on the entire Collectives field.

1An example of such a population is that of trailing edge actuation devices used to suppress
flutter in an aircraft wing[17]. Synchronising the actions of all of these edge effectors might be
unfeasible for a human pilot.
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In this report we address the question of whether, by adjusting the heterogene-

ity of species in a complex adaptive system, one can manage and even control the

future evolution in order to avoid specific undesired scenarios. We consider a simple

yet highly non-trivial binary abstraction of such natural or man-made ecosystems,

called a B-A-R (Binary-Agent-Resource) system, and show that in principle such

‘broad-brush’ control is indeed possible. The intervention itself requires only min-

imal knowledge of the system’s composition, and only involves a small number of

microscopic changes, yet it serves to steer the subsequent global evolution away from

undesirable regimes.

This potential to provide global control by applying relatively minor perturba-

tions at the level of the population’s composition, is far from obvious given the large

number of degrees of freedom in the system, and the inherent stochasticity both at

the macro and micro level (e.g. via the coin-tosses used to resolve tie-breaks in strat-

egy scores). After all, the Central Limit Theorem tells us that the sum of a large

number of stochastic processes of finite-variance will tend fairly rapidly to a Gaussian

distribution. Hence, one might have thought that even with reasonably complete

knowledge of the present and past states of the system, the evolution would be es-

sentially diffusive and hence difficult to control without imposing substantial global

constraints.

The report has several parts. We start by establishing a common framework

for describing the spectrum of future paths of the complex adaptive system (Chap-

ter 2). This framework is general to any complex system which can be mapped

onto a general B-A-R (Binary Agent Resource) model in which the system’s future

evolution is governed by past history over an arbitrary but finite time window T

(the Time − Horizon). This formalism then provides the tools whereby we can

monitor the future evolution both with and without the perturbations to the pop-

ulation’s composition. In Chapter 3, we discuss the B-A-R model in more detail,

further information is provided in [16]. We emphasize that such B-A-R systems

are not limited to the well-known El Farol Bar Problem [2] and Minority Games

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] - instead these two examples are specific

limiting cases. Initial investigations of a finite time-horizon version of the Minority

Game were first presented in [15]. In Chapter 4, we consider the system’s evolution in

the absence of any such perturbations, hence representing the system’s natural evo-

lution. In Chapter 5, we revisit this evolution in the presence of control, where this

control is limited to relatively minor perturbations at the level of the heterogeneity of

the population. In Chapter 6 we discuss concluding remarks and possible extensions.
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Chapter 2

Formal Description of the System’s
Evolution

Here we provide a general formalism applicable to any Complex System which can be

mapped onto a population of N species or ‘agents’ who are repeatedly taking actions

in some form of global ‘game’. At each timestep each agent makes a (binary) decision

aµ(t) in response to the global information µ(t) which may reflect the history of past

global outcomes. This global information is of the form of a bitstring of length m. For

a general game, there exists some winning outcome w(t) based on the aggregate action

of the agents. Each agent holds a subset of all possible strategies - by assigning this

subset randomly to each agent, we can mimic the effect of large-scale heterogeneity

in the population. In other words, we have a simple way of generating a potentially

diverse ecology of species, some of which may be similar but others quite different.

One can hence investigate a typically-diverse ecology whereby all possible species are

represented, as opposed to special cases of ecologies which may themselves generate

pathological behavior due to their lack of diversity.

The aggregate action of the population at each timestep t is represented by D(t),

which corresponds to the accumulated decisions of all the agents and hence the (ana-

log) output variable of the system at that timestep. The goal of the game, and hence

the winning decision, could be to favour the minority group (MG), the majority group

or indeed any function of the macroscopic or microscopic variables of the system. The

individual agents do not themselves need to be conscious of the precise nature of the

game, or even the algorithm for deciding how the winning decision is determined.

Instead, they just know the global outcome, and hence whether their own strategies

predicted the winning action1. The agents then reward the strategies in their posses-

1The algorithm used by the ‘Game-master’ to generate the winning decision, could also have a
stochastic factor.
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sion if the strategy’s predicted action would have been correct if that strategy was

implemented. The global history is then updated according to the winning decision.

It can be expressed in decimal form as follows:

µ(t) =
m
∑

i=1

2i−1[w(t − i) + 1] . (2.1)

The system’s dynamics are defined by the rules of the game. We will consider here the

class of games whereby each agent uses his highest-scoring strategy at each timestep,

and agents only participate if they possess a strategy with a sufficiently high success

rate. [N.B. Both of these assumptions can be relaxed, thereby modifying the actual

game being played]. The following two scenarios might then arise during the system’s

evolution:

• An agent has two (or more) strategies which are tied in score and are above the

confidence level, and the decisions from them differ.

• The number of agents choosing each of the two actions is equal, hence the

winning decision is undecided.

We will consider these cases to be resolved with a fair ‘coin toss’, thereby injecting

stochasticity or ‘noise’ into the system’s dynamical evolution. In the first case, each

agent will toss his own coin to break the tie, while in the second the Game-master

tosses a single coin. To reflect the fact that evolving systems will typically be non-

stationary, and hence the more distant past will presumably be perceived as less

relevant to the agents, the strategies are rewarded as to whether they would have

made correct predictions over the last T timesteps of the game’s running. There is no

limit on the size of T other than it is finite and constant. The time-horizon represents

a trajectory of length T on the de Bruijn graph in µ(t) (history) space[15] as shown

in Figure 2.1. The stochasticity in the game means that for a given time-horizon T

and a given strategy allocation in the population, the output of the system is not

always unique. We will denote the set of all possible outputs from the game at some

number of timesteps beyond the time-horizon T , as the Future-Cast (FC). It is useful

to work in a time-horizon space Γt of dimension 2m+T . An element Γt corresponds

to the last m + T elements of the bitstring of global outcomes (or equivalently, the

winning actions) produced by the game. This dimension is constant in time whereas

for a non-time-horizon game it would grow linearly. For any given time-horizon state,

Γt, there exists a unique score vector S(t) which is the set of scores SR(t) for all

the strategies which an agent could possess. As such, for each particular time-horizon

4



Figure 2.1: A path of time-horizon length T = 5 (dashed line) superimposed on the
de Bruin graph for m = 3. The 8 global outcome states represent the 8 possible
bit-strings for the global information, and correspond to the global outcomes for the
past m = 3 timesteps.

state, there exists a unique probability distribution of the aggregate action, D(t). This

distribution of possible actions when a specified state is reached will necessarily be the

same each time that state is revisited. Thus, it is possible to construct a transition

matrix (c.f. Markov Chain) [15] T of probabilities for the movements between these

time-horizon states such that P (Γt) can be expressed as

P (Γt) = T P (Γt−1) (2.2)

where P (Γt) is a vector of dimension 2m+T containing the probabilities of being in a

given state Γ at time t

The transition matrix of probabilities is constant in time and necessarily sparse.

For each state, there are only two possible winning decisions. The number of non-zero

elements in the matrix is thus ≤ 2(m+T+1). We can use the transition matrix in an

eigenvector-eigenvalue problem to obtain the stationary state solution of P (Γ) =

T P (Γ). This also allows calculation of some time-averaged macroscopic quantities

of the game [6]2.

2The steady state eigenvector solution is an exact expression equivalent to pre-multiplying the
probability state vector P (Γt) by T∞. This effectively results in a probability state vector which is

time-averaged over an infinite time-interval.
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To generate the future-cast, we want to calculate the quantities in output space. To

do this, we require;

• The probability distribution of D(t) for a given time-horizon;

• The corresponding winning decisions, w(t), for given D(t);

• An algorithm generating output in terms of D(t).

To implement the future-cast, we need to map from the transitions in the state

space internal to the system to the macroscopic observables in the output space (often

cumulative excess demand). We know that in the transition matrix, the probabilities

represent the summation over a distribution of possible aggregate actions which is

binomial in the case where the agents are limited to two possible decisions. Using the

output generating algorithm, we can construct an ‘adjacency’ matrix Υ analogous

to the transition matrix T , with the same dimensions. The elements of Υ, contain

probability distribution functions of change in output corresponding to the non-zero

elements of the transition matrix together with the discrete convolution operator ⊗

whose form depends on that of the output generating algorithm. An explicit example

of Υ is given in appendix A.

The adjacency matrix of functions and operators can then be applied to a vec-

tor, ς t=0(S), containing information about the current state of the game and of the

same dimension as Γt . ς t=0(S) not only describes the time-horizon state positionally

through its elements but also the current value in the output quantity S within that

element. At t = 0, the state of the system is unique so there is only one non-zero ele-

ment within ς t=0(S). This element corresponds to a probability distribution function

of the current output value, its position within the vector corresponding to the cur-

rent time-horizon state. The probability distribution function is necessarily of value

unity at the current value or, for a future-cast expressed in terms of change in output

from the current value, unity at the origin. The future-cast process for U timesteps

beyond the present state can then be described by

ςU(S) = ΥU ς0(S). (2.3)

The actual future-cast, Π(S, U), is then computed by superimposing the elements

of the output/time-horizon state vector:

ΠU (S) =
2(m+T )
∑

i=1

ςU
i (S). (2.4)
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Thus the future-cast, ΠU (S), is a probability distribution of the outputs possible at

U timesteps in the future.

As a result of the state dependence of the Markov Chain, Π is non-Gaussian. As

with the steady-state solution of the state space transition matrix, we would like to

find a ‘steady-state’ equivalent for the output space3 of the form

Π1
char(S) =

〈

Π1(S)
〉

∞
(2.5)

where the one-timestep future-cast is time-averaged over an infinitely long period.

Fortunately, we have the steady state solutions of P (Γ) = T P (Γ) which are the

(static) probabilities of being in a given time-horizon state at any time. By repre-

senting these probabilities as the appropriate functions, we can construct an ‘initial’

vector, κ, similar in form to ς(S, 0) in (2.3) but equivalent to the eigenvector solution

of the Markov Chain. We can then generate the solution of (2.5) for the characteristic

future-cast, Π1
char, for a given initial set of strategies. An element κi is again a proba-

bility distribution which is simply the point (0 , Pi(Γ)), the static probability of being

in the time-horizon state denoted by the elements position, i. We can then get back

to the future-cast

Π1
char(S) =

2(m+T )
∑

i=1

ς1
i where ς1 = Υ κ. (2.6)

We can also generate characteristic future-casts for any number of timesteps, U , by

pre-multiplying κ by ΥU

ΠU
char(S) =

2(m+T )
∑

i=1

ςU
i where ςU = ΥU κ . (2.7)

We note that ΠU
char is not equivalent to the convolution of Π1

char with itself U times and

as such is not necessarily Gaussian. The characteristic future-cast over U timesteps

is simply the future-cast of length U from all the 2m+T possible initial states where

each contribution is given the appropriate weighting factor. This factor corresponds

to the probability of being in that initial state. The characteristic future-cast can

also be expressed as

ΠU
char(S) =

2(m+T )
∑

Γ=1

P (Γ) ΠU (S) | Γ (2.8)

where ΠU (S) | Γ is a normal future-cast from an initial time-horizon state Γ and

P (Γ) is the static probability of being in that state at a given time.

3Note that we can use this framework to generate time-averaged quantities of any of the macro-
scopic quantities of the system (e.g total number of agents playing) or volatility (Appendix B).
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Chapter 3

Binary Agent Resource (B-A-R)
system

The general binary framework of the B-A-R (Binary Agent Resource) system was

discussed in Chapter 2. The global outcome of the ‘game’ is represented as a binary

digit which favours either those choosing option +1 or option −1 (or equivalently 1

or 0, A or B etc.). The agents are randomly assigned S strategies at the beginning

of the game. Each strategy comprises an action as
µ(t) in response to each of the 2m

possible histories µ, thereby generating a total of 22m

strategies in the Full Strategy

Space 1. At each turn of the game, the agents employ their most successful strategy,

being the one with the most virtual points. The agents are thus adaptive if S > 1. We

have already extended the B-A-R system by introducing the time-horizon T , which

determines the number of past timesteps over which virtual points are collected for

each strategy. We further extend the system by the introduction of a confidence

level. The agents decide whether to participate or not depending on the success of

their strategies. As such, the number of active agents N(t) is less than or equal to

Ntot at any given timestep. This results in a variable number of participants per

timestep V (t), and constitutes a ‘Grand Canonical’ game. The threshold, τ , denotes

the confidence level: each agent will only participate if he has a strategy with at least

r points where

r = T (2τ − 1). (3.1)

Agents without an active strategy become temporarily inactive.

1We note that many features of the game can be reproduced using a Reduced Strategy Space
of 2m+1 strategies, containing strategies which are either anti-correlated or uncorrelated with each
other[3]. The framework established in the present paper is general to both the full and reduced
strategy spaces, hence the full strategy space will be adopted here.
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Figure 3.1: Schematic diagram of the Binary Agent Resource (B-A-R) system.

In keeping with typical biological, ecological, social or computational systems,

the Game-master takes into account a finite global resource level when deciding the

winning decision at each timestep. For simplicity, we will here consider the specific

case whereby the resource level L(t) = φV (t) with 0 ≤φ≤12. We denote the number

of agents choosing action +1 (or equivalently A) as N+1(t), and those that choose

action -1 (or equivalently B) as N−1(t). If L(t) − N+1(t) > 0 the winning action is

+1 and vice-versa. We define the winning decision 1 or 0 as follows:

w(t) = step[L(t) − N+1(t)] (3.2)

where we define step[x] to be

step[x] =







1 if x > 0,
0 if x < 0,
fair coin toss if x = 0.

(3.3)

When x = 0, there is no definite winning option since N+1(t) = N−1(t), hence the

Game-master uses a random coin-toss to decide between the two possible outcomes.

2We note that φ itself could be actually be a stochastic function of the known system parameters.
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We use a binary payoff rule for rewarding strategy scores, although more complicated

versions can, of course, be used. However, we note that non-binary payoffs (e.g. a

proportional payoff scheme) will decrease the probability of tied strategy scores, hence

making the system more deterministic. Since we are interested in seeing the extent

to which stochasticity can prevent control, we are instead interested in preserving the

presence of such stochasticity. The reward function χ can be written

χ[N+1(t), L(t)] =

{

1 for w(t) = 1,
−1 for w(t) = 0,

(3.4)

namely +1 for predicting the correct action and -1 for predicting the incorrect one.

For a given strategy, R, the virtual points score is given by

SR(t) =
t−1
∑

i=t−T

a
µ(i)
R χ[N+1(i), L(i)], (3.5)

where a
µ(t)
R is the response of strategy, R, to the global information µ(t) summed over

the rolling window of width T . The global output signal D(t) = N+1(t) − N−1(t) is

calculated at each iteration to generate an output time series.

10



Chapter 4

Natural Evolution: no system
management

To realize all possible paths within a given game is necessarily computationally ex-

pensive. For a future-cast U timesteps beyond the current game state, there are

necessarily 2U winning decisions to be considered. Fortunately, not all winning deci-

sions are realized by a specific game and the numerical generation of the future cast

can be made reasonably efficient (see later).

Fortunately we can approach the future cast analytically without having to keep

track of the agents’ individual microscopic properties. Instead we group the agents

together via the population tensor of rank S given by Ω, which we will refer to as the

Quenched Disorder Matrix (QDM) [8]. This matrix is assumed to be constant over

the time-scales of interest, and more typically is fixed at the beginning of the game.

The entry ΩR2,R2,... represents the number of agents holding the strategies R1, R2, . . .

such that
∑

R,R′,...

Ω
R,R′,...

= N (4.1)

For numerical analysis, it is useful to construct a symmetric version of this population

tensor, Ψ . For the case S = 2, we will let Ψ = 1
2
(Ω+ ΩT ) [5].

The output variable D(t) can be written in terms of the decided agents DD(t)

who act in a pre-determined way since they have a unique predicted action from their

strategies, and the undecided agents DU (t) who require an additional coin-toss in

order to decide which action to take. Hence

D(t) = DD(t) + DU (t). (4.2)

We focus on S = 2 strategies per agent although the approach can be generalized.

The element ΨR,R′ represents the number of agents holding both strategy R and R′.
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We can now write DD(t) as

DD(t) =

Q
∑

R=1

a
µ(t)
R H[SR(t) − r]

Q
∑

R′=1

(1 + sgn[SR(t) − SR′(t)])ΨR,R′ (4.3)

where Q is the size of the strategy space, H is the Heaviside function and sgn[x] is

defined as

sgn[x] =







1 if x > 0,
−1 if x < 0,
0 if x = 0.

(4.4)

The volume V (t) of active agents can be expressed as

V (t) =
∑

R,R′

H[SR(t) − r]
{

sgn[SR(t) − SR′(t)] +
1

2
δ[SR(t) − SR′(t)]

}

ΨR,R′ (4.5)

where δ is the Dirac delta. The number of undecided agents NU (t) is given by

NU (t) =
∑

R,R′

H[SR(t) − r]δ(SR(t) − SR′(t))[1 − δ(a
µ(t)
R − a

µ(t)
R′ )]ΨR,R′ . (4.6)

We note that for S = 2, each undecided agent’s contribution to D(t) is an integer,

hence the demand of all the undecided agents DU (t) can be written simply as

DU(t) ε 2Bin

(

NU (t),
1

2

)

− NU (t) (4.7)

where Bin(n, p) is a sample from a binomial distribution of n trials with probability

of success p.

For any given time-horizon space-state Γt, the score vector S(t) (i.e., the set of

scores SR(t) for all the strategies in the QDM) is unique. Whenever this state is

reached, the quantity DD(t) will necessarily always be the same, as will the distribu-

tion of DU (t). We can now construct the transition matrix T giving the probabilities

for the movements between these time-horizon states. The element T
Γt|Γt−1

which

corresponds to the transition from state Γt−1 to Γt, is given for the (generalizable)

S = 2 case by

T
Γt|Γt−1

=

NU
∑

x=0

{

NU Cx(
1

2
)NU δ

[

Sgn(DD + 2x − NU + V (1 − 2φ)) +

(2µt%2 − 1)

]

+

NU Cx(
1

2
)(NU+1)δ

[

Sgn(DD + 2x − NU + V (1 − 2φ)) + 0

]

}

(4.8)

12



where NU , DD implies Nu(Γt−1) and DD(Γt−1), V implies V (t−1), φ sets the resource

level as described earlier and µt%2 is the required winning decision to get from state

Γt−1 to state Γt. We use the transition matrix in the eigenvector-eigenvalue problem

to obtain the stationary state solution of P (Γ) = T P (Γ). The probabilities in the

transition matrix represent the summation over a distribution which is binomial in the

S = 2 case. These distributions are all calculated from the QDM which is fixed from

the outset. To transfer to output-space, we require an output generating algorithm.

Here we use the equation

S(t + 1) = S(t) + D(t) (4.9)

hence the output value S(t) represents the cumulative value of D(t), while the incre-

ment ∆S is simply D(t). We define the operator ⊗ is as

(f ⊗ g) |i =
∞
∑

j=−∞

f(i − j) × g(j). (4.10)

The formalism could be extended for general output algorithms using differently de-

fined convolution operators.

An element in the adjacency for the S = 2 case can then be expressed as

Υ
Γt|Γt−1

=

{

NU
∑

x=0

(

(DD + 2x − NU ),

NU Cx(
1

2
)NU δ

[

Sgn(DD + 2x − NU + V (1 − 2φ)) + (2µt%2 − 1)

]

+

NU Cx(
1

2
)(NU+1)δ

[

Sgn(DD + 2x − NU + V (1 − 2φ)) + 0

]

)}

⊗ (4.11)

where NU , DD again implies Nu(Γt−1) and DD(Γt−1), V implies V (t−1), and µt%2 is

the winning decision necessary to move between the required states. The future-cast

and characteristic future-casts (Π(S, U), ΠU ) can then be computed for a given initial

quenched disorder matrix (QDM).
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We now consider an example to illustrate the implementation. In particular, we
provide the explicit solution of a future-cast in the regime of small m and T , given
the randomly chosen quenched disorder matrix

Ω =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
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0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 2 0 0 1 0 1 0 0
0 1 1 0 1 0 1 0 0 0 0 2 1 0 0 1
0 1 0 0 2 0 1 0 0 0 0 0 0 0 0 2
1 0 0 0 0 1 0 0 0 1 1 1 1 1 0 1
1 0 0 0 1 1 0 0 1 0 0 0 0 1 2 0
0 1 1 0 0 0 0 0 0 1 0 2 1 0 0 1
0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1
2 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 3 1 1 0 1 0 1
0 2 0 0 1 0 0 1 1 3 2 0 0 0 1 1
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
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0 2 0 1 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 1
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We consider the full strategy space and the the following game parameters:

Number of agents Ntot 101
Memory size m 2

Strategies per agent s 2
Resource level φ 0.5
Time horizon T 2

Threshold τ 0.51

The dimension of the transition matrix is thus 2T+m = 16.

T =

0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0 0.0625 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0 0.9375 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.1875 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0.8125 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.1875 0 0 0 0 0 0 0 0.1094 0 0 0
0 0 0 0 0.8125 0 0 0 0 0 0 0 0.8906 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0312 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0.9688 0 0
0 0 0 0 0 0 0.75 0 0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0.5 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Each non-zero element in the transition matrix corresponds to a probability function

in the output space in the future-cast operator matrix. These are given explicitly

in the Appendix A. Consider that the initial state is Γ = 10 i.e. the last 4 bits

are {1001} (obtained from running the game prior to the future-casting process).

The initial probability state vector is the point (0,1) in the element of the vector

ς corresponding to time-horizon state 10. We can then generate the future-cast for

given U (4.1).

Clearly the probability function in output space becomes smoother as U becomes

larger and the number of successive convolutions increases, as highlighted by the

probability distribution functions at U = 15 and U = 25 (4.2).

We note the non-Gaussian form of the probability distribution for the future-casts,

emphasising the fact that such a future-cast approach is essential for understanding
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Figure 4.1: The (non-normalised) evolution of a future-cast for the given Ω, game
parameters and initial state Γ. The figure shows the last 10 timesteps prior to the
future-cast, the means of the distributions within the future-cast itself, and also an
actual realization of the game run forward in time.
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Figure 4.2: The probability distribution function at U = 15, 25 timesteps beyond
the present state.

the system’s evolution. An assumption of rapid diffusion toward a Gaussian distri-

bution, and hence the future spread in paths increasing as the square-root of time,

would clearly be unreliable.
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Chapter 5

Evolution Management via
Perturbations to Population’s
Composition

For less simple parameters, the matrix dimension required for the future-cast pro-

cess become very large very quickly. To generate a future-cast appropriate to larger

parameters e.g. m = 3, T = 10, it is still however possible to carry out the calcu-

lations numerically quite easily. As an example, we generate a random Ω (the form

of which is given below) and initial time-horizon appropriate to these parameters.

For visual representation reasons, the Reduced Strategy Space[8] is employed, the

sampling method described in the appendix.This time-horizon is obtained by allow-

ing the system to run prior to the future-cast. The other game parameters are as

previously stated. The game is then instructed to run down every possible winning

decision path exhaustively. The spread of output at each step along each path is then

convolved with the next spread such that a future-cast is built up along each path.

Fortunately, not all paths are realized at every timestep since the stochasticity in the

winning-decision/state-space results from the condition NU ≥ DD. The future-cast

as a function of U and S − SU=0, can thus be built up for a randomly chosen initial

quenched disorder matrix (QDM) (5.1).
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Figure 5.1: Evolution of ΠU (S) for a typical quenched disorder matrix Ω.

We now wish to consider the situation where it is required that the system should

not behave in a certain manner. For example, it may be desirable that it avoid

entering a certain regime characterised by a given value of S(t). Specifically, we

consider the case where there is a barrier in the output space that the game should

avoid, as shown in Figure 5.2.
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Figure 5.2: The evolution of the future-casts, and the barrier to be avoided. For
simplicity the barrier is chosen to correspond to a fixed S(t) value of 110, although
there is no reason that it couldn’t be made time-dependent. Superimposed on the
(un-normalised) distributions, are the means of the future-casts, while their variances
are shown below.
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The evolution of the spread (i.e. standard deviation) of the distributions in time,

confirms the non-Gaussian nature of the system’s evolution – we note that this spread

can even decrease with time1. In the knowledge that this barrier will be breached by

this system, we therefore perturb the quenched disorder at U = 0. This perturbation

corresponds in physical terms to an adjustment of the composition of the agent pop-

ulation. This could be achieved by ‘re-wiring’ or ‘reprogramming’ individual agents

in a situation in which the agents were accessible objects, or introducing some form

of communication channel, or even a more ‘evolutionary’ approach whereby a small

subset of species are removed from the population and a new subset added in to re-

place them. Interestingly we note that this ‘evolutionary’ mechanism need neither be

completely deterministic (i.e. knowing exactly how the form of the QDM changes)

nor completely random (i.e. a random perturbation to the QDM). In this sense, it

seems tantalizingly close to some modern ideas of biological evolution, whereby there

is some purpose mixed with some randomness. We leave a fuller discussion of this

point to the future.
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Figure 5.3: The initial and resulting quenched disorder matrices (QDM), shown in
schematic form. The x-y axes are the strategy labels for the two strategies. The
absence of a symbol denotes an empty bin (i.e. no agent holding that particular pair
of strategies).

1This feature can be understood by appreciating the multi-peaked nature of the distributions in
question. The peaks correspond to differing paths travelled in the future-cast, the final distribution
being a superposition of these. If these individual path distributions mean-revert, the spread of the
actual future-cast can decrease over short time-scales.
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Figure 5.4 shows the impact of this relatively minor microscopic perturbation on

the future-cast and global output of the system. In particular, the system has been

steered away from the potentially harmful barrier into ‘safer’ territory.

0 1 2 3 4 5 6 7 8 9 10 11

−50

0

50

100

150

U

S
(U

) 
−

 S
(0

)

initial QDM future−cast
initial QDM means
perturbed QDM future−cast
perturbed QDM means

Figure 5.4: The evolution as a result of the microscopic perturbation to the popula-
tion’s composition (i.e. the QDM).

This set of outputs is specific to the initial state of the system. More typically, we

may not know this initial state. Fortunately, we can make use of the characteristic

future-casts to make some kind of quantitative assessment of the robustness of the

quenched disorder perturbation in avoiding the barrier, since this procedure provides

a picture of the range of possible future-case scenarios.

19



0 1 2 3 4 5 6 7 8 9 10 11
−150

−100

−50

0

50

100

U

S
(U

) 
−

 S
(0

)

initial QDM future−cast
initial QDM means
perturbed QDM future−cast
perturbed QDM means

Figure 5.5: The characteristic evolution of the initial and perturbed QDMs.

This evolution of the characteristic future-casts, for both the initial and perturbed

quenched disorder matrices, is shown in Figure 5.5 A quantitative evaluation of the

robustness of this barrier avoidance could then be calculated using traditional tech-

niques of risk analysis, based on knowledge of the distribution functions and/or their

low-order moments.
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Chapter 6

Concluding Remarks and
Extensions

We have presented an analytical formalism for the calculation of the probabilities

of outputs from the B-A-R system at a number of timesteps beyond the present

state. The construction of the (homogeneous) future-cast operator matrix allows the

evolution of the systems output, and other macroscopic quantities of the system, to

be studied without the need to follow the microscopic details of each agent or species.

We have concentrated on single realizations of the quenched disorder matrix, since

this is appropriate to the behavior and design of a particular realization of a system

in practice. An example could be a financial market model based on the B-A-R

system whose derivatives could be analysed quantitatively using expectation values

generated with the future-casts. We have also shown that through the normalised

eigenvector solution of the Markov Chain transition matrix, we can use the future-cast

operator matrix to generate a characteristic probability function for a given game over

a given time period. The formalism is general to any time-horizon game and could, for

example, be used to analyse systems (games) where a level of communication between

the agents is permitted, or even linked systems (i.e. linked games or ‘markets’). In

the context of linked systems, it will then be interesting to pursue the question as

to when adding one ‘safe’ complex system to another ‘safe’ complex system, results

in an ‘unsafe’ complex system. Or thinking more optimistically, when can we put

together two or more ‘unsafe’ systems and get a ‘safe’ one?

Future work will focus on the ‘reverse problem’ of generating a specific system to

behave in a desired fashion. As such, the effects of any perturbation to the system’s

heterogeneity could be pre-engineered. A future application might include the global

control problem with discrete actuating controllers[17].
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Appendix A

An Explicit Form of the Adjacency
Matrix.

The elements of the adjacency matrix Υ are

T =























0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a1⊗ 0 0 0 0 0 0 0 i1⊗ 0 0 0 0 0 0 0

0 b0⊗ 0 0 0 0 0 0 0 j0⊗ 0 0 0 0 0 0
0 b1⊗ 0 0 0 0 0 0 0 j1⊗ 0 0 0 0 0 0
0 0 c0⊗ 0 0 0 0 0 0 0 k0⊗ 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 d0⊗ 0 0 0 0 0 0 0 l0⊗ 0 0 0 0
0 0 0 d1⊗ 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 e0⊗ 0 0 0 0 0 0 0 m0⊗ 0 0 0
0 0 0 0 e1⊗ 0 0 0 0 0 0 0 m1⊗ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 n0⊗ 0 0
0 0 0 0 0 f1⊗ 0 0 0 0 0 0 0 n1⊗ 0 0
0 0 0 0 0 0 g0⊗ 0 0 0 0 0 0 0 p0⊗ 0
0 0 0 0 0 0 g1⊗ 0 0 0 0 0 0 0 p1⊗ 0
0 0 0 0 0 0 0 h0⊗ 0 0 0 0 0 0 0 q0⊗

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0























.

(A.1)

and the functions are:

∆ S P (∆S) ∆ S P (∆S)
a1 -79 1 i1 -46 1
b0 0 0.5 j0 1 0.0625
b1 0 0.5 j1 -7 0.0625
c0 3 1 -5 0.25
d0 0 0.125 -3 0.375

2 0.0625 -1 0.25
d1 -6 0.0625 k0 44 1

-4 0.25 l0 4 0.125
-2 0.375 6 0.375
0 0.125 8 0.375

e0 0 0.125 10 0.125
2 0.0625 m0 1 0.09375

e1 -6 0.0625 3 0.015625
-4 0.25 m1 -9 0.015625
-2 0.375 -7 0.09375
0 0.125 -5 0.234375

f1 -44 1 -3 0.3125
g0 0 0.125 -1 0.234375

2 0.5 n0 0 0.03125
g1 0 0.125 n1 -8 0.0625
h0 48 1 -6 0.25

-4 0.375
-2 0.25
-0 0.03125

p0 0 0.5
p1 0 0.5
q0 78 1
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Appendix B

Macroscopic Properties of the
System.

We consider games of various memorysize whose other parameters are

Number of agents Ntot (2m+1)
2

Strategies per agent s 2
Resource level φ 0.5
Time horizon T 10

Threshold τ 0.0

and such that the QDM in the reduced strategy space is of uniform occupancy.

Figure B.1: The flat QDM in the reduced strategy space for a game of given m.

Using the future-casting framework, we generate the characteristic distributions of

these games for a number of timesteps into the future, U . From these distributions,

the macroscopic properties can be attained. Overleaf, the volatitities of these distri-

butions is shown.
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Figure B.2: Volatilities of the characteristic future-casts U timesteps into the future
for the uniformly occupied strategy-space with varying memorysize.
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Figure B.3: The future-cast values (points) of volatility for U = 1 compared to the
Crowd-Anticrowd model (line).

The results of B.2 compare well with those of the Crowd-Anticrowd theory of the

minority game[9].
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