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Dynamic Learning, Herding and Guru Effects in Networks+ 
 
 
 

 

Abstract 

It has been widely accepted that herding is the consequence of mimetic responses by agents interacting 

locally on a communication network.  In extant models, this communication network linking agents, by 

and large, has been assumed to be fixed.  In this paper we allow it to evolve endogenously by enabling 

agents to adaptively modify the weights of their links to their neighbours by reinforcing ‘good’ 

advisors and breaking away from ‘bad’ advisors with the latter being replaced randomly from the 

remaining agents.  The resulting network not only allows for herding of agents, but crucially exhibits 

realistic properties of socio-economic networks that are otherwise difficult to replicate: high clustering, 

short average path length and a small number of highly connected agents, called “gurus”.  These 

properties are now well understood to characterize ‘small world networks’ of Watts and Strogatz 

(1998). 
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1. Introduction 
 

In general, in the course of decision making agents can respond to global signals and/or simply observe 

their neighbours’ behaviour in a more local setting.  While it is not surprising that agents responding to 

a common signal can coordinate and herd, what is increasingly being studied is the category of 

phenomena that arises when agents form networks for communication and interaction which result in 

coherent patterns of behaviour at an aggregate level. It is now widely held that mimetic responses to 

neighbours result in herd behaviour, see, Sharfstein and Stein (1990), Kirman (1983), Bikhchandani et. 

al. (1992, 1998 etc) and that the properties of herding can crucially arise from the structures of local 

interaction and more generally from the social and communication networks that agents’ belong to 

(Kirman, 1983, 1997; Cont and Bochaud, 2000).  In the economics literature, Föllmer (1974) followed 

by  Kirman (1983) were amongst the first to suggest the use of random graphs to provide a general 

framework for economic interactions.   

In graph theory, nodes can represent agents and edges are connective links with a function 

(fixed or time varying) measuring the intensity or frequency of interaction between agents. To date, 

herding models primarily rely on mimetic functions that determine the decision rule of agents’ with 

fixed links to their nearest neighbours.  In contrast to this, there are networks where every player can 

interact with every other player randomly with a given probability.  As network formation in a socio-

economic setting does not conform to these two extreme assumptions of a regular graph and a random 

graph structure, Kirman (1997), Kirman and Vignes (1991) and Vriend (1995) have proposed that 

some form of reinforcement learning which causes agents to make and break links determines how the 

networks themselves evolve. This paper develops such a model of dynamic learning in networks where 

agents make a binary decision, to buy or sell a unit of an asset, and adaptively modify the weights of 

their links to their neighbours by reinforcing ‘good’ advisors and breaking away from ‘bad’ advisors 

with the latter being replaced randomly from the remaining agents. Experiments are devised to 

distinguish between herding that arises solely from the mimetic quality of the given decision rule and 

when there is also adaptive identification of those agents by others in the system who have some 

inherent superiority to give good advice on how to play the game for a given global reward scheme.  

Such players who can give ‘good’ advice but not necessarily play the game well are called ‘gurus’ in 

the paper.  With no prior knowledge of who such gurus are and what their distribution in the population 

is, it is a remarkable feature of the simple threshold based reinforcement learning rule of link formation 
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to ‘good’ advisors that it enables a large of number agents to find and be linked to the gurus in what 

emerges as star or hub formations.   

These network properties correspond to those of “small-world networks”, Watts and Strogatz 

(1998) and Watts (2002), which are known to characterize real world socio-economic and 

communications networks.1 These include the above mentioned star or hub formations when some 

agents in the system have a disproportionately large number of links to them and between themselves 

which lead to significant interconnectedness in the network.  This is measured by the clustering 

coefficient which, in a random graph, is no greater than the initial probability of any two agents being 

connected.  The small world phenomenon is known to arise from the process of random reconnections 

that make short cuts between a given agent and a far flung one, resulting in the average shortest path 

between randomly chosen agents to be “small” and bounded by the logarithm of the total number of 

nodes in the system.2  In regular networks while everybody is highly interconnected locally, the 

distance in terms of average links needed between a given agent and another agent randomly selected 

from the system is high.   

Many network construction procedures have been proposed to ‘evolve’ networks with 

properties of small world networks.   The initial point has been either the regular network ( as in the 

original  Watts and Strogatz (1998) proposal ) or the random network (see, Davidsen et. al. 2002) with 

different  rationale given for the dynamics by which random reconnections are made.  Many of these 

have been critiqued (see, Jackson and Rogers, 2004) as being some what contrived in the manner in 

which the small world properties arise.   In the economics literature, to date, there have been very few 

studies on properties and implications of endogenously evolving communication networks.  In 

particular, few consider if the end results of the dynamics being postulated in the learning from 

neighbours framework have realistic features of small world networks.  By and large, herding models 

that have learning from neighbours and postulate local feedback effects on the decision rule of agents’  

are hampered by fixed links to neighbours. 3  

                                                           
1 Examples of socio-economic networks include the world wide web, co-author relationships among academics, 
trade networks, criminal associations, airline routing etc.  See also Newman (2002). 
2 It is this property that gives rise to the notion of a ‘small world’.  The most popular manifestation of this is 
known as “six degrees of separation” coined by the Stanley Milgram (1967) stating that most pairs of people in the 
United States can be connected through a path of only about six acquaintances. 
3 The very large literature on local interaction economic models (see, Durlauf and Young, 2000) that comes under 
the rubric of social dynamics for the study of the diffusion of innovation, information or norms is based on the 
Liggett/Ising framework originally adapted for economic analysis by Blume (1993).  This framework treats local 
feedback effects as a stochastic process in which the probability that a given person adopts one of two possible 
actions, say A or B in a given period of time, is assumed to be an increasing function of the number of his 
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The rest of the paper is organized as follows.  Section 2 sets out the model of herding in a 

simple asset market.  This motivates the framework behind the experiments that evolve realistic 

communication network structures that influence trader behaviour.  Section 3 gives some results from 

network theory that help to distinguish between the different network topologies.  In particular, we give 

an easy ‘look up’ table on how the small world networks have connectivity properties which straddle 

the polar extremes of random networks, regular purely deterministic networks and a third category of 

networks called scale free networks, Barabesi and Albert (1999).   Section 4 reports the results of the 

experiments. The conditions under which guru effects and star/hub formations emerge are carefully 

documented here.  We also discuss here the conditions in our model that enable gurus to maximize and 

propagate their impact on the rest of the system.  It is also found that once stable star/hub formations 

arise, this reduces the shortest average path length between any two random agents.  The hub formation  

enhances the cohesiveness of the system  by reducing the shortest average path length between agents 

relative to random graphs as network size increases and the network connections become sparse.  

All experiments can be run by the reader using the ‘Herding Simulator’ on the Centre for 

Computational Finance and Economic Agent (CCFEA) website.4  

2. The Model and Experimental Framework 
 
2.1 Characteristics of agents and their spatial location  

The model consists of a network of N agents who at each time period have to either buy or sell a unit of 

an asset.  The N agents are initially placed on a random graph with the initial probability p that any two 

agents (i, j ) are connected is independent of i and j.  Agent i’s immediate or first order neighbours, ki in 

number, are defined by those links starting from i to other agents. The set of i’s neighbours is denoted 

by Ξi.  The links between agents have weights wi,j associated with it, which represents the strength of 

the advice that agent i  will take from agent j.  The initial weights, wi,j, for each agent’s ki links is 

randomly assigned according to a uniform distribution with a finite support  (Wmin , Wmax), 0 < Wmin< 

wi,j  < Wmax < 1.  

                                                                                                                                                                      
neighbours who have adopted it. There is also an idiosyncratic factor that reflects agents’ preference for A or B 
irrespective of other agents.  Many of these models assume a fixed network structure though endogenously 
changing networks have been considered in Mailath et. al. (1997) and Jackson and Rogers (2004).  The impact of 
the spatial interconnectedness or the network structure on the diffusion dynamics has been analysed on a case by 
case basis by Goyal and Janssen (1996) and Chwe (2000), rather than under conditions when the network  
structure is altered by the actions taken by the agents.   
4 The CCFEA website is http://www.essex.ac.uk/ccfea/ 
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Each agent decides to buy or sell based on a weighted average of the advice given by its 

neighbours, and also its own recommendation that reinforces the discounted sum of correct decisions 

from the past.  As will be seen, this forces an inherently majoritarian outcome for actions taken.  Note 

also agents evaluate the investment advice given by their neighbours. The idea behind experientially 

driven learning is simple in that those neighbours who give correct advice are reinforced while the 

influence of others is reduced incrementally. When a certain threshold is reached, links are cut from 

‘bad’ advisors and a new ones are sought.  The importance of this is that if there are agents in the 

system who have some inherent quality that make them capable of giving good advice (as judged by 

the common reward scheme) more often than others, then the question is whether and when the 

dynamic process of reinforced learning can lead to the discovery of such ‘gurus’ solely by a process of 

local interactive learning.  Thus, what is significant to learning to play the game is that agents cannot 

explicitly strategize to win; they can improve their game only by a process of link formation that 

enables them to find ‘good’ advisors/neighbours.  We adhere to assumption that agents are always 

bound to use their own recommendation and have no means of breaking away from that.  Hence, there 

is a pseudo link wi,,i =1 and it is useful to define a pseudo neighbourhood set that includes the agent 

himself,  Ξi
*  =  Ξi  + 1. 

All agents are identical except for memory Mi ∈ [0, Mmax ] and agents are uniformly 

distributed over this range of integers.   Zero memory agents give advice on a random basis while 

others do so on the basis of up to Mi periods of their own past decisions to be specified below.    

Experiments under two reward schemes are conducted with the agents not being aware of the 

global reward scheme except whether decisions made and advice taken were correct or not.  In one set 

of experiments agents are rewarded or penalized by a purely random scheme which is exogenous to 

their actions, Krause ( 2003).  The second set of experiments have an endogenous ‘price’ process 

arising from buy/sell orders and agents are rewarded only for being part in the minority, viz. to go 

against the herd.  In the random reward scheme in terms of memory, no agent has any inherent reason 

to do better than others.  On the other hand, in the minority game set up, the zero memory agents have 

the best chance of giving correct advice and hence have the potential to be gurus.   

2.2 The Decision Rule 
 

The decision rule of agents to buy or sell is done in two steps if p>0, viz. agents are linked to others. At 

time t, agents first generate a number,  fit(t+1),  which evaluates their past performance from which 
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follow their recommendations to buy or sell  at t+1. Agents only have access to the recommendations 

of their neighbours and do not observe their actions.  In Step 2, the actual decision to buy or sell at t+1 

is then based on the weighted sum of the contemporaneous  recommendations  agents receive from 

their neighbours.   

  As will be seen, memory only affects how agents form recommendations.  Zero memory 

agents simply recommend a buy or a sell at random with each zero memory agent making a different 

random draw from an independent and identically distributed process.   Those with memory on the 

other hand will make recommendations that follow time trends based on what in fact are the correct 

decisions from the past.    

The decision of an agent i  at time t is denoted by γi (t), and can take a value of +1 if the agent 

buys, or a value of –1 if the agent sells.  The outcome or utility of this decision at each t is denoted by  

u(γi (t)), and can take a value of +1 if the agent wins , or a value of –1 otherwise. To make a 

recommendation to buy or sell at t+1, the agents generate a number fit (t+1)  which evaluates their own 

past Mi decisions and outcomes as follows: 
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Here, Mi is the length of memory of agent i.  When agents have memory, Mi > 0 , a discount factor 

)1,0(∈λ  applies to past decisions, so that recent outcomes have a greater influence than older ones.   

In (1) , in the absence of memory Mi = 0,  agents simply set  fit(t+1) =0.   The  rule in (1) above results 

in the following advice or recommendations:  

fi(t+1) >0  implies a recommendation given at t to buy at t+1 ; 

 fit(t+1) <0  implies a recommendation given at t to sell t+1; 

 fit(t+1) =0 will result in a random buy or sell decision. 

 Note,  as all agents can evaluate if their decisions were correct or not, all agents with memory 

produce the same sequence of +1s and –1s, for each t, from the product  u(γi (t) )γi(t) in (1) up to the 

length of  their memory.   Agents with memory, therefore, produce time trends in their 

                                                           
5 Note, that at each t  u(γi (t) ).γi(t) in (1) yields  products of 2- tuples  {(+1,+1), (-1, +1), (+1, -1), (-1, -
1)} where the second term of each 2-tuple signifies  the agent’s decision to a buy or sell and the first 
term signifies if this was decision was correct or  not.      
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recommendations based on the same global data.  Zero memory agents produce random viz. serially 

uncorrelated recommendations  

In keeping with the literature on herding on account of learning from neighbours, the decision 

rule to buy or sell is mimetic in that an agent’s action γi (t+1) is based on a weighted sum of 

forecasts/recommendations fit (t+1) in (1) that its neighbours give it at t.    
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Note the decision rule (2) also includes an agent’s own recommendation with the pseudo fixed weight 

of wij = 1.  For zero memory agents it is certainly a case of ‘do as I say, not as I do’ as though the 

advice they give to buy or sell is random, they are no different from all other agents in following the 

mimetic (weighted) majority structure of the decision rule in (2).   Note, if there are no links to 

neighbours as in (2), agents simply do what they forecast in (1).   The important aspect of the above 

decision making process in a dynamic context is how agents endogenously chose the members of the 

set Ξi of neighbours.  

 

2.3 Endogenous link formation: Dynamic weights  

We distinguish between static and dynamic weights.  We could obviously determine a network 

exogenously and then investigate the dynamics of the decisions arising on this network.  The simplest 

form would be to generate a random network and having assigned the weights randomly, they remain 

fixed over time.  We refer to such a model as having static weights.  

Under dynamic weights, agents are allowed to modify the weights of the links after each 

round. If the recommendation that agent i receives from agent j at time t is correct, agent i will increase 

the weight of the link wij by a rate of increment R+.  In contrast, an incorrect recommendation from j 

means that agent i will reduce the weight of that link by a rate of reduction R-.  All agents have the 

same rates for the adjustment of weights. 

There is a maximum threshold Wmax   after which a weight cannot be further increased. 

Similarly, there is a minimum threshold  Wmin, after which the agent breaks the link with agent j, and 

randomly selects another agent m in the network, which is not already one of its neighbour, and assigns 

a random value to this new link wim from [Wmin, Wmax]. 
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2.4 Global Reward Schemes 

A global reward scheme which is the same for all agents deems whether to buy (γi(s) = +1) or to sell 

(γi(s) = -1) is the correct decision at each time step s. We investigate two reward schemes, random 

rewards and minority rewards. In neither case do agents know what the reward scheme is.  They are 

simply told if the action they took at each period is ‘correct’ or not.    

Random Reward Scheme : In this  reward scheme the winning outcomes are determined independent 

of the behaviour of individual agents and hence bears no correlation with the numbers of agents who 

buy and sell.  The scheme is implemented as follows : when heads are realized in a random flip of a 

coin, viz. with probability .5, all buyers, γi(t) = +1, receive 1 point (viz. u(+1) = +1 ) and all sellers are 

penalized by –1.  The opposite is the case when tails are realized.  Note the random draws of the 

reward scheme are independent of the draws for any of the zero memory agents. 

Minority Game Rewards:  There is an endogenous reward  scheme that arises from observing the 

aggregate number of buys or sells at each t and then rewarding those in the minority by 1 point and 

others are penalized by  -1.  It should be clear that the minority game reward scheme penalizes herd 

behaviour that follows from (2).   

In an asset market, being in the minority is rewarding for the seller in that he can get a higher 

price when the majority of traders are buying and vice versa when an agent buys and the majority are 

selling. The El-Farol or minority game with its contrarian structure was made famous by Arthur (1994) 

as the prototype of a game for which there is no homogenous and systematic way for determining the 

winning strategy. 6  However, in Arthur (1994) and in the formulations of the minority game made 

popular by Challet and Zhang (1997)  network interconnections do not feature. 7  

In the random reward scheme in terms of memory, no agent has any inherent capacity to give 

better recommendations in (1) than others.  This is because irrespective of how agents give advice each 

agent can be right with probability half as the rewards are determined exogenously to what agents do. 

                                                           
6 Markose (2003,2004) shows why the contrarian structure of the game makes it an undecidable 
problem with a non-computable fixed point.   
7 The minority game with network interconnections studied in Paczuski et. al. (2003) specifies each agent’s 
binary/Boolean action at t+1 to be a function of the actions taken by its K neighbours at t.   From a total of 

K22 Boolean functions of K variables, each agent’s strategy is drawn randomly and is held fixed except for the 
worst performer  who has ‘failed’ in the long run.   Paczuska et. al. (2003) find herding of upto 0 .67 for large N. 
However, the K neighbours that each of the N players have is fixed and do not evolve unlike what we propose in 
this paper.    
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On the other hand, in the minority game set up, those with memory and with the same discount factor 

applied to what is correct in the past will be perpetuate the same again in (1).  This will produce 

majoritarian trends via (2) and hence those with memory will almost always give the wrong 

recommendation for being in the minority.  As zero memory agents give advice on a random basis in 

(1), they have a greater chance of giving the correct advice in the minority game and hence have the 

potential to be gurus.    

 

2.5 The Herding Coefficient 

The herding phenomenon in all experiments with the two reward schemes can be captured at each t  by  

a simple time varying  herding function  
N

Nbt  ∈  [0, 1].  Here, Nbt  is the number of agents who have 

bought at time t and N is the total number of agents.   When this function is close to a half, the market 

shows no herding.  When 
N

Nbt is close to zero, the market is herding in the direction of selling and 

vice versa when 
N

Nbt = 1. 

 

It is useful to have a single average measure of herding in the system over the length of time T 

which is irrespective of the direction of herding.  This is given by the herding coefficient : 
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This measure is given in terms of deviations of aggregate market behaviour at each t from the 

benchmark of half of the population.   Clearly, σ = 0, implies that on average there is no herding in the 

market while σ close to 1 implies that the market behaviour is perfectly synchronized whether in the 

direction of buying or selling.   

3.   Network Connectivity    

To understand the consequences on herding of dynamic network formation and endogenous 

determination of neighbours, we will now briefly present some graph theoretic concepts.  An important 

aspect of the connectivity of the links in our framework and in communication networks in general 

relates to the directedness of links.  In directed networks communication flows only in one direction, 

the reciprocal communication flow is not guaranteed and if it is present it does not have to be of equal 
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importance.  In contrast to this, in undirected networks communication flows in both directions at an 

equal rate.  In a directed network the total number of possible connections is N(N-1) while in a 

undirected network there are only half as many.  In this paper we are only concerned with directed 

networks as each agent can initiate and break off links to another agent.  To understand how this 

process can result in small world networks observed in socio-economic systems as opposed  to the  

polar theoretical cases of random and regular networks or the constructed scale free network, three 

main connectivity properties of networks are involved.  These are discussed below.   

The starting point of our analysis is the random graph studied extensively by Erdös and Renyi 

(1960).  In a random graph denoted by GN,p where N is the number of nodes and p is the identical and 

independent  probability that any pair of agents (i,j) are linked from i to j or from j to i.  All agents on 

average have the same number of links to them and from them.  In a regular graph, agents are located 

on the edges of a Latin square and are connected to their four (eight) neighbours on the edge of each 

square (including the diagonal links). Other regular structures with larger neighbourhoods are easily 

imaginable. A key property of regular networks is that all agents have the same number of links.  

Properties of scale-free networks are observed after a process of ‘construction’ that involves 

preferential attachment, see e.g. Barabasi and Albert (1999).  Barabasi and Albert add new nodes to the 

network sequentially, and postulate that the probability that a new node is linked to an existing node is 

higher, the more links an existing node already has.  

3.1  Degree Distribution and the Influence of any Particular Node  

The degree of a node is the number of edges connected to it.  In directed graphs, there is the in-degree, 

number of edges pointed to it , and out- degree, number of  edges pointing away from it.  Note, the out-

degree of an agent in a network defined by those edges starting from i  gives the number of its first 

order neighbours, ki.   In our context, the in-degree of an agent would be the number of other agents 

connected to it. That is, the number of agents that are taking advice from it and the measure of 

influence of an agent.   

The average in-degree denoted by z, of a node for the random graph G N,p  is the average 

number of  edges connected to any randomly selected node.  This is given by  

z  =   
N

pNN )1( −
=  (N-1) p   ≅  Np .   (4) 
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The last approximation is for large N.  To understand how influential agents in a given network are, we 

study the in-degree distribution.  The probability πq that a node in an Erdös-Rényi random graph has an 

in-degree exactly q is given by the Binomial distribution 

                                   πq  =   qNk pp
q
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Both distributions are strongly peaked about the mean z and have a tail that decays rapidly as 1/q!.  The 

degree distributions of real world networks are very different from Binomial or Poisson distributions.   

In particular, some agents are found to have a disproportionately large number of incoming links while 

the others have very few.  This is more in keeping with the degree distribution of scale-free networks 

whereby the distribution has a ‘fat tail’ and tails decay hyperbolically.  For any given number for the 

degree q, scale free network degree distribution follows a power law, for positive constants A and α : 

απ −− = Aqfreescale
q

.                         

Note, in contrast to the above, the degrees of regular graphs are fixed and identical for all nodes, hence 

the distribution collapses to this degree. 

3.2 Clustering and Interconnectedness 
Clustering in networks measures how interconnected each agent’s neighbours are.  Specifically, there 

should be an increased probability that two of an agent’s neighbours are also neighbours of one 

another.  For each agent with ki  neighbours the total number of all possible directed links between 

them is given by ki (ki-1).   Let  Ei denote the actual number of  links between agent i’s ki neighbours  

viz. those of i’s  ki neighbours who are also neighbours.  The clustering coefficient Ci for agent i is 

given by 
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)1( −ii
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kk
E

  .                               (7) 8             

The clustering coefficient of the network as a whole is the average of all Ci’s and is given by       

              C=  
N

C
N

i
i∑

=1 .                                   (8) 

Note that the clustering coefficient for a random graph is  

         Crandom  = p. 

This is because in a random graph the probability of node pairs being connected by edges are by 

definition independent, so there is no increase in the probability for two agents to being connected if 

they were neighbours of another agent than if they were not.   

3.3 Average Path Length 

A useful measure of the distance between two agents is given by the number of directed edges that 

separate them and this is referred to as their path length.  In a random graph, the average shortest path 

length between all  (i,j) pairs denoted by randoml ,  is given by 

   
Np
Nrandom

log
log

=l .                                 (9)  

If we keep the average number of degrees constant, i.e. Np = z, we see that the average path length 

increases logarithmically with the size N of the network.  Random networks have quite a short path 

length which is due to the fact that many “shortcuts” between nodes arise from the random nature of 

the connections. As already discussed, in small world networks, the possibility of random 

reconnections enable two randomly chosen nodes in a network to have short path lengths. Regular 

networks miss these shortcuts and hence the average path length between an agent and a far flung one 

will be significantly longer. The exact path length depends crucially on the form of the network 

generated. Scale-free networks show an average path length which in most cases is also proportional to 

the logarithm of the network size, but the details depend on the way the preferential attachment is 

modelled. 

                                                           
8 Numerically , Ei  is calculated as follows.  Denote the NxN adjacency matrix A = (aij)N with aij=1 if 
there is a link between i and j and aij=0, if not.   Agent i’s ki neighbours  Ξi   =  { ∀ j , j ≠ i, s.t aij = 1}.  
Denoting aij= 1 by aij

1 ,  Ei  in  (9 ) for a directed graph is calculated as Ei =  ∑ ∑
Ξ∈ Ξ∈i ij m

jma 1 , j ≠ m.      
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To conclude this section : the characteristics that the small world networks have in common 

with those observed in socio-economic systems and how they interpolate between the three above 

mentioned classes of random, regular and scale-free networks can be found along the diagonal 

elements of the Table 1.   In principle, the adaptive learning process driving an endogenous link 

formation such as the one described in the learning from neighbours model of Section 2 must result in 

network connectivity properties of small world networks given along the diagonal of Table 1.       

Table 1: Properties of Networks: Diagonal Elements Characterize Small World Networks  

  
               
Properties              
    of             
Networks  

Clustering 
Coefficient 

Average Path  
Length 

Degree 
Distribution 

 
Regular 
 

 
High  

 
High  

 
Equal and fixed 
In-degrees to each 
node 

 
 
Random 
 

 
 
Low 

 
 
Low 

 
Exponential/ 
Poisson 

 
Scale Free/Power 
Law 
 
 

 
 
Low 

 
     
 Variable 

 
 
Fat Tail 
Distribution 

 
4. Results Of Agent Based Network Simulations 

The computational experiments are geared toward understanding herding as a response to - (i) common 

global signals when agents are in isolation with no links, (ii) mimetic response to neighbours using the 

rule in equation (2) with static links, and (iii) endogenous dynamic network formation specifically 

leading to high clustering and ‘guru’ effects.   

We initially set up a random network with N=100 agents with a probability of p that any two 

nodes are connected. In most cases we chose p = 0.2 implying that on average all agents have 20 in-

degrees and out-degrees. The initial weights wij for the out degrees or links that start from agent i to 

agent j  are assigned independently from a uniform distribution on [0.1, 0.9].  In the case (iii) above 

when dynamic link formation is allowed, a correct recommendation from agent i to agent j  leads j to 
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increase the given weight by R+ = 0.2, the so called rate of increments.  We also assume that an 

incorrect recommendation reduces the wij  by R- = 0.4, unless otherwise stated.  The benchmark is the 

case of zero memory, Mi = 0 , for all agents, which in terms of the decision rule in (1) implies that all 

agents take the decision to buy or sell on a random basis. When memory is given, memory is assigned 

to agents from a uniform distribution on [0, 10].  In this case, the discount factor for the forecast rule in 

(1) is λ = 0.9.  The network structure has been investigated after 1000 time steps and it has been found 

that in most cases no significant changes are observed after that. 

Experiments for  each of the cases (i) – (iii) above were done for the random reward scheme and the 

with the minority game.    Table 2 summarizes the results of the simulations for the herding coefficient, 

σ, defined in (3), the clustering coefficient, C, given in (9), the number of gurus, and the average 

shortest path length, l .    

Table 2: Summary of Results: For different reward functions  
( With and without memory; Static and dynamic links ;R-=-0.4 , R+=0.2) ; λ = 0.9; N=100; T=1000) 

Parameters Results 

Reward 
function Memory 

Probability of 
interaction (p) Weights 

Herding 
coefficient: 

σ 

Clustering 
Coefficient: 

C 

Number of  
Gurus  

Average 
path 

length: l  
0   - 0.09 - 0 - Mi = 0 

0.2  Static 0.34 0.2 0  ≈1.5  
0  - 0.74 - 0 - 

0.2  Static 0.93 0.2 0 ≈1.5 
 0.2   R- < R+ 0.93 0.2 0 ≈1.5 

Random 
Rewards 

Mi ∈[0,10] 

 0.2   R- > R+ 0.93 0.2 0 ≈1.5 
0  - 0.09 - 0 - Mi = 0 

0.2   Static 0.34 0.2 0 ≈1.5 
0  - 0.70 - 0 - 

0.2   Static 0.97 0.2 0 ≈1.5 
0.2   R- < R+ 0.96 0.21 0 ≈1.5 
0.2   R- > R+ 0.91 0.57 10  ≈1.25       

Minority 
Rewards 

Mi ∈[0,10] 

0.1 R- > R+ 0.66 0.84 10  ≈1 

Note: 54.1=randoml  for p=0.2 and 00.2=randoml  for p= 0.1. 
 

4.1 Impact of memory and links for herding: No  clustering and gurus 

It is amply clear from Table 2 that chief prerequisite for herding is memory followed by the presence of 

links between agents.  In the absence of any links agents will base their decisions only on their own 

recommendations, which in the absence of memory will be random.  Consequently, on average over 
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time the herding coefficient is small with σ = .09. For this case of  zero memory and no links Figure 

1(a) shows the typical time series of the fraction of agents choosing γi(t) =1 , viz. 
N

Nbt .   

 Figure 1: Herding : Fraction of agents who are buying  

(a)  Zero memory and no links between agents 

(b) Zero memory but links (Static or Dynamic) between agents 

(c) Agents with memory but no links between them 

Even without memory the presence of links increases herding of agents.  The origin of this behaviour is 

the mimicking by an agent of its neighbours’, Γi  , recommendations . With an average of 20 neighbours 

with p=0.2, many agents will be influenced by the same recommendations, resulting in similar 

decisions being taken across agents, thus increasing the herding coefficient, σ,  to 0.34.  Figure 1(b) 

shows a typical time series for this scenario.  
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The introduction of memory to agents with the 100 agents uniformly distributed over memory 

lengths from [0,10] implies that there is on average 10 agents of each memory length.  In the case when 

agents with these memory classes are introduced with a common discount factor of λ =0.9, their 

behaviour in isolation with zero links gives the impact of the pure common global signal component 

from the forecasting rule (1) on herding.  The role of memory in the forecasting rule in (1) introduces 

trends or persistence into the decision of individuals as well as increased herding as illustrated in the 

flat portions of the time series for 
N

Nbt  in Figure 1 (c).  In both reward schemes, agents with memory 

and operating in isolation on the same global data leads to about 70% - 74% of herding over time, see 

Table 2.   

On combining memory with the local interaction links in their static form with p=0.2, the 

herding coefficient, σ   increases to over 90% in both reward schemes.  Krause (2004) has analysed at 

length the feature of the mimetic function (2) that imposes a majoritarian outcome from ‘learning from 

neighbours’ and hence produces herding even with an exogenous random reward scheme.   

What is important to note is that in all the above cases the network remains unchanged from 

the initial random network with p = 0.2 and we could thus not observe any clustering or the emergence 

of gurus.  Hence, the clustering coefficient σ  remains identical to p = 0.2 of the random network and 

so does the average path length l  at about 1.5.  Interestingly, in the case of random rewards even on 

allowing reinforcement learning and dynamic link formation, the network properties remain unchanged 

from the initial random network. Despite agents being allowed to break away from bad advisors, no 

superior agents are identified. The explanation for this finding is that there does not exist a superior 

agent. The random reward structure means that regardless of the strategy followed, success will always 

be random, hence no agent can maintain a superior performance over time. Although agents break 

links, they will do so on a purely random basis which does not cause systematic deviations of the  

network structure from that of a random network. 

To conclude, it is clear from Table 2 as well as from more extensive simulations undertaken, 

that while herding can be caused either when agents respond to memory based information of a 

common global signal or from mimicking other agents, network structural changes from the initial 



 18

random network take place only once we introduce dynamic learning of link formation within an 

endogenously driven reward scheme such as the one for the minority game. 

4.2  Rates of Adjustment  and Clustering Coefficient in the Minority Reward Scheme 
 

We now turn to how properties of small world networks with high clustering coefficients and guru/star 

effects emerge starting from a random network.  In most exercises devised to date to produce small 

world properties for the network topology, the experimenter sets in an  ad hoc fashion the proportion of  

an agent’s ki neighbours from which it breaks away to form random reconnections.  What is remarkable 

in our framework, is that the agents are endogenously set up to break away from those who provide 

‘bad’ advice.  In the random reward scheme discussed above, no subset of agents appeared to be able to 

give better advice than others.  In contrast, when the minority reward scheme is in operation, though 

agents do not know who has memory  between 0 and 10, by the adaptive process of breaking away 

from bad advisers and making new random reconnections, it is remarkable that zero memory agents 

emerge as gurus with the network becoming highly clustered and the in-degree distribution displaying 

a ‘fat tail’.  We will now investigate the conditions under which the random network shows the small 

world properties of clustering when agents play under the minority reward scheme.    

Just as in previous exercises (see, Davidsen et. al. 2002) for the generation of clustering in 

networks which found that the process was sensitive to the proportion of neighbours from whom agents 

break off links to find new randomly selected neighbours, in our model the conditions under which the 

network shows significant clustering is likewise governed by the relative rates of increment and 

decrement driving dynamic link formation.        

  A large number of  simulations were run, varying the parameters of the model such as p, the 

probability of links, the discount factor λ and the rates R+ and R– .    It was found that the critical 

condition for the network to become highly clustered under the minority reward scheme is that the rate 

of reduction R-
 on the weights wij linking any two (i,j) agents has to be greater than the rate of 

increment R+.  In other words, the system inertia had to be sufficiently overcome for the random 

network to be altered significantly. 

Figure 3 illustrates the results of 1000 simulations, of 1000 time periods each, where the R+ 

and R- were randomly chosen for each simulation. As before, the probability p was set to 0.2 and the 

discount factor to 0.9. Similar results were found when varying those parameters. The difference 
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between the rate of reduction and rate of increment is plotted along the X- axis, and the clustering 

coefficient of the resulting network after the 1000 time periods is plotted along the Y-axis.  

Figure 3 : Impact of Rates of Adjustment (R+, R-)   On Clustering Coefficient 
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The vertical zero axis in Figure 3 indicates the points where R- = R+. It can be seen that to ensure agents will 

find the gurus, and that the system achieves a high clustering coefficient, the rate of reduction, R-  has to be 

greater in absolute terms than the rate of increment, R+.  Otherwise, the clustering coefficient stays close to the 

original value, that is, the Erdös-Rényi probability of the random network.  It is worth noting that there are a 

few points to the right of vertical axis where a high clustering coefficient is obtained, even though the |R-|< 

|R+|. This arises from the random nature of these experiments.   

Experiments were conducted to find if there was a rate of reduction R -  relative to a given 

rate of increment R+ which maximizes the clustering coefficient and how many time periods were needed 

for its stationarity. As can be seen from Figure 4 with the R+ set at 0.2, the clustering coefficient C is 

maximized when  R- = -0 .4.  In other words the rate at which agents break away from ‘bad’ advisers and 

make random connections to others should be twice as fast as the rate at which they strengthened their links 

to ‘good’ advisers.  However, if random sampling was speeded beyond this with R- < - 0.4, the clustering 

coefficient falls marginally.  To achieve the maximum clustering coefficient  C= 0.60, approximately 1000 

time periods are needed.   
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Figure 4 Maximum and Stationary Clustering Coefficient ( For fixed Rate Increment = 
+0.2, Varying Rate of Reduction ) 
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4.4 Guru Effects and Star Formation  

The clustering phenomenon in the network topology is closely related to the capacity for adaptive 

learning process to take place with |R-| > |R+|   and hence for agents to find the zero memory agents 

who give best advice in a minority game.  The first manifestation that most agents identify the zero 

memory agents as ‘gurus’ can be seen from the histogram for the in-degrees obtained after T=1000.  

The histogram in Figure 5a represents the degree distribution of a non-clustered network. This is the 

typical degree distribution of the initial Erdös-Rényi random graph, and also the degree distribution of 

a network after 1000 time steps using dynamic weights in the case |R-| < |R+| . Under such conditions, 

as shown in previous section, the network does not get any more clustered than the random graph. 

 

 

(a) 

 

(b) 

Figure 5 : Typical histograms (a) R+ = 1, R - = -0.1, C = 0.21;  (b) R + = 0.2, R - = -0.4 and C = 0.57 
 

In contrast, if |R-| > |R+|,  the network becomes highly clustered, and the degree distribution displays a 

“fat tail”, as shown in Figure 5b. That is, a small number of nodes/agents have a high number of in-  
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Figure 6: Structure of networks 

6(a) Random non-clustered network 

 

6(b) Clustered network with gurus 

degrees.  Indeed, almost 98% of all agents have found the gurus and have out degrees to them. The 

histogram shows a two tiered hierarchy in terms of influence or in-degrees.  The same information with 
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more evidence on the identity of the gurus can be given in terms of the star/hub formations in the 

network topology.   The pictures 6a  and 6b  above show a representation of the network topology 

where the nodes are placed according to their in-degrees, with the highest degree nodes in the centre. 

The legend indicates the colour coding of  the memory class – darker the colour, the greater the 

memory.  The initial random network is shown in Figure 6a, and the resulting network after 98% of 

agents are connected to the gurus, nodes with the lightest blue viz. zero memory agents, is shown in 

Figure 6b.  Magnification of the hub of Figure 6b highlights that gurus almost exclusively seek 

connections among themselves. The significance of this will be dealt with the following sections. 

 

4.6  Effect of Initial Interaction probability p on clustering coefficient 

Recall, starting from the initial random network with the clustering coefficient, C=p, a network 

becomes clustered beyond that of a random graph only if C > p.     Recall  also that p(N-1) gives the 

average number of  out-degrees or neighbours ki from whom an agent takes advice.  Remarkably, it is 

found that this number relative to the potential gurus or zero memory agents in the system is what  

determines whether clustering coefficient C≥ p.   Note that with 100 agents uniformly distributed in 

terms of memory lengths ranging from zero to ten, there are on average ten zero memory agents who 

are the potential gurus in the minority game structure.   

The  results of 200 simulations for the clustering coefficient of the model varying only p are 

shown in Figure 7.  The diagonal line represents the initial clustering coefficient, which is equal to the 

probability p, by definition, and therefore has a slope of 1.  The dots on the graph represent the final 

clustering coefficient after dynamic learning has taken place. It can be seen that for values of p > 0.3, 

the resulting clustering coefficient does not differ from that of a random network. For values p<0.3, the 

simulated clustering coefficient peaks at 84%  for  p=0.1. In other words, Cmax ≈ .84 for N=100 and 

uniformly distributed over Mi∈ [0,10] occurs for p=0.1. The  reason for this is that for this value of p 

all agents on average have about 10 neighbours they take advice from and this also coincides with the 

number of zero memory agents in the system. Therefore, all agents are only connected to the gurus, 

since the number of available out degrees on average is equal to the number of gurus in the system.  

Since the clustering coefficient measures the number of neighbours of agents that are also neighbours 

between themselves, we see how it is maximal when all agents on average only have gurus as 

neighbours and with the gurus exclusively connected to themselves.  For any value  p < 0.1, the agents 

can only be connected to a sub-set of the gurus, since they do not have enough out degrees to link to all 
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of them, and that in turn, causes the clustering coefficient to reduce. Similarly, when p >0.1, agents 

have on average more out-degrees  than available gurus in the system, and with those additional 

connections they randomly link to other agents. This again results in a lower clustering coefficient.  

The theoretical clustering coefficient for a given N, p and memory classes uniformly distributed over  

Mi ∈ [0, Μmax]  has been derived in the Appendix.  Figure 7 also plots the values of the clustering 

coefficients for different values of p for the empirical/simulated network and the theoretical result.   

  Figure 7 : Maximum Clustering Coefficient 
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4.7 Influence of Gurus On Herding and Path Length  
Having identified the initial condition p= 0.1 which maximizes the clustering coefficient for N=100,  

Mi ∈ [0,10], we will see why this is also the case when the zero memory agents or the gurus in the 

system with the minority reward scheme have the maximum impact.   From Table 2, for p= 0.2,  the 

clustering coefficient is only 57% as opposed to C= 84% when gurus with their random 

recommendations  have maximal impact on the decisions of agents.  Figure 8a shows how herding 

continues unabated with σ > 0.90 when p=.2 and C=0.57 while Figure 8b shows that with C= 0.87, 

maximal connections to gurus produces greater randomness in the binary choice and ameliorates 

herding substantially to σ = 0.66.    

Further our experiments show that in isolation without links, the zero memory class of agents 

spend more time in the minority than any other memory class. Indeed, when the network remains 

unclustered, there is much variability across the memory classes as to time spent in the minority.   

However, once the network becomes maximally clustered, the fraction of time in the minority is similar 



 24

for all memory classes.  It is not that zero memory gurus lose their superiority in playing the game, it is 

that other agents linked to the gurus become as good as the gurus at playing the minority game.   

 Figure 8a 
Dynamic Learning  in Minority Game : Herding With Clustering C= 0.57  
( p= 0.2;  R- =-0.4, R+ =0.2 ;T= 1000) 
 
  

 
Figure 8b  
Dynamic Learning in Minority Game : Herding With Clustering C= 0.84          
(p= 0.1; R- =-0.4, R+ =0.2 ;T= 1000) 
 

 

 
Finally, high clustering with gurus providing the hub in the system, reduces the average 

shortest path length to even less than  randoml  for the random network with the same N and p, see Table 

2.    

Figure 9 shows how the average path length of the network behaves as we increase the 

number of nodes N of the network, keeping the mean degree constant at  z=15.  Since the mean degree 

of a random graph is pNz ⋅= , as N increases p must decrease to keep z constant. We can see how 

for p smaller than 10% , the average path length of the network with star formation and guru effects 

becomes shorter than the average path length of a random network.  This is because as population size 

N increases though the falling p implies that the density of network connections are now sparser, all 

agents with memory find the gurus with zero memory and the hubs work as shortcuts.  Thus, networks 
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in which the gurus have been found with hub formations succeed in providing greater cohesiveness in 

connectivity than the random network where p falls relative to a growing N.    

 
                               Figure 9: Path Length in Random and Clustered Network 
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5. Conclusion 
To date, herding models with mimetic behaviour from following neighbours almost always assume that 

an agent’s neighbours are fixed.  In other words, little analysis has gone into the study of whether the 

network topologies arising from the process of ‘learning from neighbours’  resemble the small world 

network  type features of real world socio- economic networks.   This paper takes a random network as 

the initial point and is concerned with dynamic network formation by an experientially driven process 

to see if the small world network properties of clustering and star/hub formations will emerge.  The 

paper contrasts clustering which represents the network topology of the underlying  communication 

network with herding which represents aggregate behaviour with regard to a binary decision problem.     

Some interesting and intriguing results follow.  Simple adaptive threshold based behaviour 

that results in new random links to be formed to replace ‘bad’ connections,  can lead individuals with 

no prior knowledge of the distribution of some critical characteristic in the population of agents to find 

the ‘gurus’ who possess this characteristic.  Significantly, agents have no capacity to form explicit 

strategies to win the game.  They can do so only by forming links to good advisors.  Given the global 

reward scheme, gurus have an inherent quality of playing the game better than other classes of agents.   

Within a minority game reward scheme, zero memory agents become gurus while those with memory 
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are disadvantaged in that they will almost always produce the wrong majoritarian advice as trend 

followers.  Remarkably as we saw in Figures 6a –6b,  the dynamic process of link formation produces 

the star/hub formations in the network topology often found in real world networks.9   Highly skewed 

in-degree distributions are produced reflecting the influence of the gurus who then propagate their 

characteristics best  when the clustering  coefficient for the system is maximal.  We are able to give 

numerical approximations for a formula for the clustering coefficient  for any given initial N, p and 

distribution of memory classes given that  clustering C> CRandom
  takes place in the first instance.   The 

latter critically depends on the rate of attrition of links to be greater than the rate of reinforcement.  

Further, when the clustering coefficient C> CRandom
  we find that the shortest average path length 

becomes less than that for random networks.   

To conclude, in the literature a number of constructions have been given to generate the 

properties of small world networks.  All constructions rely on finding a critical rate at which new 

random reconnections are being made in the system: either too much or too little, the network fails to 

cluster.   This paper shows how an endogenous and heterogeneous process of  random reconnections by 

agents in the system result in agents discovering ‘useful’ neighbours.   In so doing, the model and 

experiments of the paper go some way in integrating the herding and clustering  phenomena.        
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Appendix : Theoretical Clustering Coefficient at Stationary Point With 
Star Formations 
We derive here the theoretical clustering coefficient plotted in Figure 7 for any network of  N agents, p, 

initial link probability  and uniform distribution of memory classes with finite support [0, M], under the 

following assumptions.    

(i) The sufficient condition identified in Section 4.2 exists for agents in the system to identify 

zero memory agents as ‘gurus’ in the minority reward scheme. 

(ii) The system is at the stationary point of the dynamic learning process. 

    

Recall, the clustering coefficient of a network is the average of the individual clustering coefficients 
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The individual Ci each for each agent requires evaluation on average how many of each of i’s 

neighbours are also neighbours.  For this we first determine the probability pG of any node being 

connected to a guru : 
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Here, NG  denotes the number of gurus in the system, and the mean out degree of a node is 

p)1N(zout −= .  Note, given assumption 1, the number of zero memory agents coincides with the 

total number of gurus there can be in the system . 

The probability of any node being connected to a non-guru or two non-guru nodes being connected is pNG  

is given by 
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  Note that the number of excess links, after having linked to the gurus is ( ) +
− Gout Nz , and the 

number of non-gurus is given by )NN( G− .  The premise here is that at stationary point, agents are linked to non-

gurus only if they have more out links than there are gurus in the system. 

Using   pG and pNG  in (A.1) and (A.2), we evaluate the theoretical clustering coefficient  as follows.  

( )[ ] ( )[ ]
( )1

11#

−
⋅⋅+−+⋅⋅+−

=
outout

NG
NGGNGNG

G
NGGGG

zz
pzzzzpzzzzC        (A3) 
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Here, ),min( Gout
G Nzz =  denotes average  number of  neighbours of any agent i who are gurus ; 

)0,max( Gout
NG Nzz −=  is the average number of neighbours of any agent i who is not a guru.  

Note, NGG
out zzz += .    In  (A.3),  the term zG(zG -1)pG   gives the average number of connected 

edges between neighbours of gurus who are also gurus  while (zGzNG) pG gives the same for neighbours 

of  non-gurus who are gurus.  In (A.3), the term  zNG(zNG -1)pG   gives the average number of connected 

edges between neighbours of non-gurus who are also non- gurus  while (zGzNG) pG gives the same for 

neighbours of  gurus who are non-gurus.   The sum of this divided by the average total number of all 

possible edges in the network zout (zout – 1)  gives the theoretical clustering coefficient for the network 

in stationary state when all gurus have been discovered.    

The above formula is verified for the two limiting cases.  

If there are no gurus in the system, NG=0, the clustering coefficient C must be equal to the Erdös-Rényi 

probability pC = .If number of gurus is equal to the average degree of the nodes, then the clustering 

coefficient must be: 1≈C . 


