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1.   Abstract

CNNs have been traditionally used for pattern recognition. This paper shows that Cellular Neural Networks (CNNs) constitute a powerful new paradigm for modeling complex systems. We argue that diffusion of innovation can be modeled by using CNNs and that the results obtained are consistent with previous Cellular Automata-based simulations. The CNN approach can be generalized to model more complex problems. 

2.   Introduction

Complex systems are often defined as multi-level hierarchically nested systems [Simon, 1962] in which the interactions of simple individuals following local rules at one level generate the emergence of a more complex global behavior at a higher level [Shelling 1978, Nicolis 1989]. The theory of complex systems, intended as systems that intrinsically retain the possibility to respond to the environment in different (and surprising) ways, has also been applied to innovation and the generation of new technologies [Allen 2001, Eisenhardt 2000, Eisenhardt 2001, Kauffman 2000]. The key point is that industrial networks have to be adaptive to respond to the complex unpredictable behavior of the market and that innovation plays a fundamental role to achieve adaptability. Survival and success are possible if the different levels of the system  are able to learn and modify their behavior in response or anticipation of environmental changes.

In this work Cellular Neural Networks (CNNs) [Chua 1993, Chua 1988, Chua & Roska 1988] are used to model a highly abstract process of diffusion of innovation. CNNs, introduced in 1988 by Leon O. Chua and Lin Yang, are array of simple, non-linearly coupled dynamic circuits that process large amounts of information in real time. The concept was inspired from the architecture of the Cellular Automata and Neural Networks. Like Neural Networks, CNNs are large-scale non linear analog circuits, which process signals in real-time; like Cellular Automata CNNs are made of a massive aggregate of regularly spaced circuit clones, called cells. These communicate directly with their nearest neighbors. The local communication not limit the computational abilities of the CNN and the emergence of global effects.

CNNs have been already used to model complex nonlinear phenomena in spatially distributed systems [Manganaro 1999]. 

The main idea of the approach presented here is to use each layer of a multi-layer CNN to model a particular variable of the diffusion of innovation. The model can be made more sophisticated by adding further layers, i.e. by increasing the dimension of the basic cell.

In particular this paper focuses on a very simple model of diffusion of innovation in a system of interconnected individuals. The model we present can be  generalized to model more complex situations  by adding other CNN layers.

The model  we present draws its inspiration from a recent paper by Watts [Watts 2002]. Under conditions of bounded rationality and local interaction (see for instance [Axelrod 1984], the diffusion of information (and consequent adoption of new products) follow a strong non linear pattern, that can be usually represented by a power law distribution  [Bak 1991, Barabasi 2002, Sheinkmann 1994, Watts 2003, Moore 1999]. The empirical evidence that diffusion of innovation follows a power law behavior creates some relevant problems to modelers of innovation. In fact, power law are characterized by the absence of a scale, infinite variance and unpredictable behavior. The use of traditional statistics based on mean and variance doesn’t help with power law unpredictability, as the traditional assumptions of normal distribution, which impose a rapidly decaying range around the mean and consequently a limited exploration of the possible range, do not hold. Power laws in its various forms [Krugman 1996, Barabasi 2002, Bak 1991, Watts 2003, Kauffman 2000] are generated in interconnected systems when local interdependencies act in large dissipative systems are subjected to a force that takes the system out of equilibrium, usually via a growth mechanisms. The presence of long fat tails, typical of power law, can then be explained as a propagation of a perturbation phenomenon, which affects a large part of the network, the interesting fact being that such extreme events are much more likely than in a normal distribution dominated world. Our model allows the modeling of such dynamic and accounts for the presence (or absence  under certain conditions) of global cascades in networks of individuals. Global cascades represent the spread of information (that could take the form of an innovation or a virus, etc.) along the whole network and are common in many social and economic phenomena. 

Diffusion of innovation, the object of our simulation, consists usually in the spread of some kind of knowledge/experience regarding a certain new product [Roger 1995] across networks of referrals. For example, it accounts for the fact that some books, movies or songs become very popular despite their initial small marketing budgets [Gladwell 2000]. This happens when knowledge of a problem and the ability to process the available information is limited and the decision makers base their decisions (at least partially) on their immediate network of referrals [Bikhchandani 1992]. In the example of a popular hit or a ‘killer application’ recommendations of friends and neighbors can play a fundamental role in the choice of a movie, a book or a song. This phenomenon in economics is known as information cascade: individuals make decision on the basis of the action of other individuals within the same populations (usually neighbors), thus allowing the possibility that the whole system exhibits the emergence of spontaneous order based on the propagation of a decision-making wave, otherwise described as herd-like behavior. It is like an expanding ripple of self-reinforcing conversations. The diffusion model proposed by Watts [Watts 2002] and here implemented according to the CNN paradigm provides a possible explanation for this phenomenon in terms of a binary-state decision random network.

The Cellular Automata model is detailed in Section 2. Section 3 deals with the CNN model, while Section 4 presents the results of the simulation carried out by CNN model. Section 5 draws the conclusions of the paper.

3.   Cellular Automata Model
In this Section the model of diffusion of innovation proposed by Watts [Watts 2002] is briefly reviewed. Watts’ model describes a population of individuals faced with two options: adopt or not adopt a new technology. Watts uses the cellular automaton (CA) approach to model this system. Each agent is modeled as a binary variables, which can assume two states, corresponding to adoption or rejection. If the agent adopts, the cell state of the cellular automata is assumed to take the value 0, if it doesn’t , then the state of the cellular automata state is 1. Connections among individuals are assumed to be random.

Two types of individuals are introduced: the innovators are the first to adopt and are assumed to be independent decision-makers. Early adopters instead are followers and adopt only when a significant fraction of their referral networks has already adopted the innovation. Individuals’ adoption is non linear and threshold determined.  In practice, this means that individuals’ adoption takes place only when the percentage of agent’s neighbors (connected individuals) that have already adopted the innovation is greater than its threshold. Each agent has a different personal threshold, which represents the agent’s attitude to innovation adoption.

This simple model is able to account for the basic dynamic of diffusion and it reveals a distribution of behaviors that includes the emergence of global cascades, in which innovations have the potential to spread across the whole network. However global cascades are possible only under particular conditions. 
The main result is that the presence of cascades depends on the average number of connections between individuals. When the number of connections is too small, there is no room for cascades. With the increase in the number of connections,  global cascades become more likely. However, if the network is too highly  connected, global cascades turn out again to be rare events. The reason  is to be searched into the non linear interdependence between individuals and their neighbors. The increase in connectivity generates two bifurcations: before the first, no cascades occur as the network is too sparsely connected; after the second instead the network is too connected and individuals just have too high a threshold to initiate the cascade process. More in detail we discuss Watt’s basic simulation results. The number of initial innovators is constant (as in Figure 1) and the behavior with respect to different average number of connections is investigated.
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Figure. 1.  The initial condition of the CA model represents the initial innovators (black pixels indicate that the cell status is 1, thus the individual is an innovator).

Figure 2 shows the dynamic behavior of CA. In the first case (a) the evolution of the configuration freezes after few generations. There are no cascades as the number of connections is too small. I innovation diffusion is limited by the fact that nodes are mostly isolated or at maximum connected into isolated clusters. 

If connectivity is increased, cascade propagation becomes possible and the innovation increases its potential to spread across the whole network (fig. 2b). Interestingly, the simulation shows a distribution of cascades which evolves with time. 

Instead, when the number of connections is too high, the attitude to innovation of the network decreases. Since each agent is connected with too many  individuals, so it needs to be surrounded by many innovators to switch behavior. Figure 2(c) shows the final configuration which is achieved after a few generations.
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(a)                                       (b)                                      (c)

Figure. 2.  Innovation propagation in a random network with respect to different connectivity levels. Number of connections is: (a) 5, (b) 30, (c) 50. The simulation is stopped at the 50th generation. 

The results highlight the presence of two phase transitions corresponding to the two threshold connectivity level.

4.   Innovation models based on CNNs

The simple model of cascade propagation is an example of how the CNN approach can be used for modeling diffusion of innovations. In this section we show how CNNs can be used to reproduce the main features of the CA model introduced by Watts. Moreover, CNNs allow a) the generalization of the random network case to a generic grid of connected units and b) the extension of the discrete time model to a continuous one. Different grids can therefore be studied and connections can be assumed local or mostly local leading to the possibility of studying innovation propagation in different topologies. 

A CNN is an array of cells. Each cell is a circuit containing linear and nonlinear elements, and it has one input uij , one output yij and one state variable xij.

The output yij is a memory less nonlinear function of the state xij:
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The core of the cell is constituted by a capacitor C connected in parallel to a  resistor R, an independent current source I, called bias, and a group of voltage controlled current source (VCCS). Each cell is coupled to its neighboring cells. Adjacent cells can interact directly with each other. Cells not directly connected together may affect each other indirectly because of the propagation effect of the continuous-time dynamics of CNNs.

It is possible to define CNNs of any dimension, but we consider two-dimensional arrays. The scheme of a CNN is shown in Figure 3.
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Figure. 3.  Scheme of a CNN.

The generic cell placed on the ith row and jth column will be denoted by C(i,j), and its state equation is the following [Chua 1988, Chua Roska 1988]:
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is the neighborhood of C(i,j), r is the radius and i=1..N, j=1..M. The coupling coefficients that appear in (2) are the so called feedback template (A) and the control template (B). The templates are matrices that completely define the network’s behavior once o given input and initial condition are provided. It is assumed that all cells in the CNN have the same parameters.

In the following a regular grid (shown in Fig. 3)  and standard 1-layer templates are used.  

Each innovator can be modeled by the state of a cell of a 1-layer CNN. Now the adoption decision is modeled as a continuous process, varying between +1 and 1. The saturation points (+1 and –1) represent the solutions of the decision process.

To completely specify the model, templates have to be designed in order to reproduce the features of the decision-making unit. This step implies a sort of translation between CA rules and CNN templates. Recently great advances have been done in the direction of an analytical universal method to accomplish this step [Chua 2002], but until now this step still requires trial and error.

However in this case this step can be accomplished by adapting templates already known. The behavior of each cell depends on the neighbor states in such a way that if the percentage of neighbor innovators is greater than a threshold the cell itself should become an adopter.

This resembles the rules of the game of life, and therefore similar templates have been adopted [Crounse 1997]. In particular the bias value has to be changed to account for the threshold condition. In fact it is the bias that mimics the threshold of the individual.

Finally the neighborhood radius r has to be chosen. Since we want to study the effects of different connectivity levels, three different neighborhood radius have been chosen: r=1, r=2 and r=3. The A and B templates remain qualitatively the same in the three cases, but the bias has to be properly scaled in order to represent a percentage threshold. In particular the bias has been chosen to represent a percentage threshold equals to 44% in all the three cases discussed in the following.

The final output of the CNN model is the logic OR between the result of the processing of these templates and the input representing the initial state of the innovators 

We start our simulation from the same initial distribution of innovators used by Watts in his  CA model (see figure 1). 

The main simulation result, shown in Figure 4, confirm that, even in the case of regular grids, cascade propagation depend on the mean number of the connection. 

In particular Figure 4 shows simulation results for a CNN with r=1, r=2 and r=3. The same scenario depicted by Watts appears: two phase transitions: when the connectivity is low (r=1) there are no global cascades; for r=2 global cascades are possible, and for r=3 global cascades occurs rarely. 
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   (a)                                    (b)                                    (c)

Figure. 4.  Simulation result of a CNN with: (a) r=1, (b) r=2 and (c) r=3. There are two phase transitions: when the connectivity is low there are no global cascades (a), if the connectivity is sufficient cascades are possible (b), if the connectivity is high global cascade occurs rarely (c). Cascade propagation depend on individual threshold and connectivity level.

Similar results can be obtained with different initial conditions where the initial number of innovator is different. This allows us to conclude that cascade propagation depends on individual thresholds and connectivity levels, but it’s not very sensitive to the number of innovator.

In general, the model above leads to the following considerations:

1. The simulation shows that a critical parameter value (in our case the connectivity radius) determines the emergence of different attractors, which divide the dynamic behavior of the system in roughly three zones and two bifurcations. 

2. The central regions shows the most interesting dynamic behavior, insofar the pattern of cascades reveals the capability of global information transmission. In terms of diffusion of innovation, it is the only region where emergent cascades make possible the propagation of an innovation across the entire region.

3. The emergence of an interconnected global system in the central zone is revealed by the occurrence of cascades, whose sizes explore the entire dynamic range and are limited only by the grid dimension.

4. The distribution of avalanches seems to follow a power law, characteristic of a self-critically organized behavior.

1.3.   Conclusions

In this paper we show how CNNs can be used to model complex system models and in particular we analyze a simple and highly abstract case of diffusion of innovation [Watts 2002]. The use of CNNs allows to consider continuous time instead of discrete time models and provides a generalization of the paradigm of connectivity. In fact by using CNNs different kinds of connections (either regular or almost locally connected systems) can be studied. Moreover, CNN models can be easily simulated on parallel hardware, thus allowing real-time simulation of complex systems.

Another methodological aspect of the CNN approach is the possibility of adding complexity to the basic cell model by adding new CNN layers modeling other interest variables of the elementary agent. 

The CNN model for innovation presented as a case study shows the effectiveness of the approach confirming the presence of two phase transitions in the model of innovation. If the network is poorly connected no global cascade may occur, if the network is too largely connected global cascades become rare events.
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