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CHAPTER 13

LEVELS AND RATES

DIAGRAMING LEVELS AND RATES

The first step in moving from a causal-loop representation to a computer simu-
lation model is the identification of system levels and rates. Recall from Part
III that a level is a quantity that accumulates over time, and a rate is an ac-
tivity, or movement, or flow that contributes to the change per unit of time in
a level, For example, the number of cars in the Midtown Parking Lot is a level,
and the number of cars arriving per hour is a rate. Similarly, the number of
children at Hometown Elementary School sick with the flu is a level, while the
number of children recovering per day is a rate. Population is a level, and the
number of babies born per year is a rate.

In identifving a system’s levels and rates, it is generally helpful to repre-
sent the systemn in flow diagram form. Figure 13.1 depicts the symbols that are
used to represent levels and rates in flow diagrams. A level is depicted by a rec-
tangle (which is supposed to resemble a box or a bathtub), and a rate is de-
picted by a symbol that looks somewhat like a valve. (A rate might be thought
of as a faucet, controlling the flow of water into the bathtub.) A complete set
of flow diagram symbols is included at the end of Chapter 15. '

Figure 13.2 shows that the number of cars in the Midtown Parking Lot is
influenced by the number of cars arriving per hour (the arrival rate). The flow
of cars arriving at the parking lot increases the leve! of cars in the lot, much as
the flow of water into a bathtub increases the level of water in the tub,

Figure 13.3 is a somewhat more complicated diagram, indicating that the
number of children at the Hometown Elementary School sick with the flu is in-
fluenced by both the number of children caiching the flu each day and the
number recovering. The flow of children catching the flu—the infection
rate—adds to the number of children sick with the flu; and the flow of children
recovering—the recovery rate—subtracts from the number who are sick. (The
situation is somewhat similar to a bathtub with both a faucet and a drain. The
flow of water into a bathtub adds to the amount of water in the tub, and the
flow of water out of the drain subtracts from the water in the tub.)
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Exercise 1: Flow Diagrams

a. Draw flow diagrams for the following situations:

1. The population of rabbits is influenced by the number of rabbit births
per year.

2. The number of yeast ceils in a sugar solution is influenced by the
number of buds formed per minute.

3. A child’s knowledge is influenced by his or her learning rate.

b. What rates influence the population of Boston? (Draw a flow diagram in-
cluding whatever rates you think might be appropriate.)

¢. What rates might influence the number of students enrolled in an urban
high school? {Draw a flow diagram.)

d. Add the number of students susceptible to the flu and the number of chil-
dren who have recovered from the flu to the Hometown Elementary
School flow diagram, shown in Figure 13.3.

FROM CAUSAL LOOPS TO FLOW DIAGRAMS

Moving from a causal loop diagram to a flow diagram requires a few addi-
tional symbols. Figure 13.4 depicts a causal-loop diagram and a corresponding
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Fipure 13.4 Causal-loop and flow diagrams of population and births
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flow diagram of the interaction of population and births. The level in this in-
stance is population, as indicated by the rectangle, and births is a rate, as indi-
cated by the valve symbol. The positive link from births te population in the
causal-loop diagram is depicted in the flow diagram as the flow of births into
populaticn. The direction of the solid arrow in the flow diagram indicates that
births add te the population. The positive link from population te births, in
the causal-loop diagram, is shown as a dotted line in the flow diagram, indicat-
ing that the size of the population influences the birth rate.

The ““cloud” at the tail of the solid arrow represents the “‘source’” of
people. (Sources represent systems of levels and rates outside the boundary of
the model, In this case, the source allows bypassing the issue of where babies
come from!) Although not shown on this diagram, ‘‘clouds’ can also be used
to show ‘‘sinks,”” where flows terminate outside the system.

The flow diagram is a more detailed representation of the positive feed-
back loop than is the causal-loop diagram. It identifies population as a quan-
tity that accurnulates, and it identifies births as a quantity that influences how
rapidly the population accumulates. The solid arrow shows the flow of people
into population. The dotted arrow shows that the size of the population affects
births, or that there is a cause-and-effect link from population to births. The
causal-loop diagram ignores the distinction between a rate of flow and a cause-
and-effect link not involving a rate of fiow, but the flow diagram calls explicit
aftention to this distinction.'

Exercise 2; Population and Deaths

Figure 13.5 shows a causal-loop diagram of the interaction of population and
deaths. '

Identify the level and rate in the system, and draw a flow diagram.

+

POPULATION G DEATHS

Figure 13.5 Causal interaction of population and deaths

Exercise 3: Natural Resources

Figure 13.6 depicts a causal-loop diagram of an interaction of natural re-
sources and usage. The diagram depicts how a decreasing supply of a particu-
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Figure 13.6 Causal-loop diagram of natural resources and usage

lar natural resource can result in less use of the resource, because it is harder to
find. '

Draw a flow diagram of this interaction. Begin by identifying which quan-
tity is a level and which is a rate. Assume that no new quantities of the resource
are created, so that there will be no source and no inflow. Treat the place
‘where the used resource goes as a sink.

EXAMPLE I: CHILDREN AND ADULTS

Figure 13.7 depicts another causal-locop diagram of the growth of population
through births, However, in this diagram population is separated into adults
(individuals mature enough to bear children) and children (irdividuals too
young to bear children).

To draw a flow diagram based on this causal-loop diagram, it is easiest to
begin by identifying the levels and rates. Children and adults are levels, since
they are quantities that accumulate over time; while births and childrenr matur-
ing are rates. {(Note that the rates have units ‘*People per Year,” whereas the
levels have units ““People.””) A partial flow diagram is shown in Figure 13.8.
Births flow into the population of children, as indicated by the positive link
from births 10 children in the causai-loop diagram. Furthermore, the flow of
children maturing decreases the level of children and increases the level of
adults. (Thus the flow of children maturing incorporates two links from the

+ + +
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Figure 13.7 Causal-loop diagram of children, adults, and births
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Figure 13.8 Levels and rates for children and adults

causal loop diagram: the negative link from children maturing.to children, and
the positive link from children maturing to adults.)

The next task in completing the diagram is to add the cause-and-effect
links. For example, a positive link connects adults to births, since the more
adults there are, the more births there will be {other factors remaining equal).
This link is shown in the flow diagram as a dotted line running from the level
of adults to the rate of births. One link in the causal-loop diagram remains to
be inserted in the flow diagram—the positive link connecting children to chil-
dren maturing. As this link indicates, the more children there are, the more
children will matare, This link is represented in the flow diagram by a dotted
line connecting the level of children to the rate of childrer maturing. Finally,
the flow diagram is completed by adding a source symbol to the left of the
births, as shown in Figure 13.9.
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Figare 13.9 Completed flow diagram for children and adults

Exercise 4: Resource Processing

Figure 13.10 depicts a causai-loop diagram of the life cycle of aluminum used
in cans. As aluminum is refined, it passes from the stage of being ore to being
aluminum in process. The metal is then made into cans. The cans have an aver-
age life, after which they become solid waste. At each stage, the flow into the
next stage depends on how many cans are at the current stage.
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Figure 13.10 Causal-loop diagram of lifecycle of aluminum

Draw a flow diagram based on the causal-leop diagram. What would you
add to vour flow diagram to represent a recycling program?

SIMULATION, STRUCTURE, ANDD BEHAVIOR

The main reason for moving from a causal-loop representation of system
structure to a flow diagram is to provide additional insight into the behavior a
proposed model generates over time. For example, does the hypothesized
model generate continued growth? If so, how rapid is the growth? Or, does the
model generate decline? If so, how precipitous? Does the model exhibit goal-
seeking behavior? If so, do model vartables approach equilibrium smoothly,
or do they oscillate? If the model produces oscillations, what is the period
from peak to peak? How dramatic are the cycles? And so on.

In order to provide full answers to these questions, it is necessary to move
one final step and express each model reIatibnship in equation form. Of
course, the translation from a verbal description of each model relationship to
a statement as an equation often requires a good deal of ingenuity. However,
in drawing out the implications of a model, equations are essential.

The strategy generally followed in formulating a model is to begin with a
causal-loop diagram, then formulate a flow diagram, then write equations,
and finally, use the equations to simulate the model on the computer. Once a
“‘running’’ model has been developed, it can then be used to explore the conse-
guences of alternative model assumptions and proposed policy interventions.
Indeed, one of the main advantages of simulation is the opportunity it pro-
vides to move quickly and easily from one set of assumptions to another.

In the discussion of equation writing and simulation in the next few chap-
ters, a good deal of attention is given to ways of using simulation to draw out
the implications of hypothesized system relationships. Much less attention is
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given to methods of using empirical evidence to choose numerical values for
model parameters. Nor is much attention given to methods of assessing the
“match’” between the behavior generated by a simulation model and the his-
torical behavior of the actual system under study. This is not because these
questions are unimportant or easy—they are not. Often, however, a good deal
can be learned about a system by exploring the implications of alternative
hypothetical models. In addition, in estimating model parameters and assess-
ing the match between model behavior and historical evidence, it is worth pay-
ing a fair amount of attention to the relationship between the structure of a
proposed model and the behavior it generates.

EQUATIONS FOR LEVELS AND RATES

Ounce a flow diagram has been developed, the next step in building a model is |
to write equations. The following examples introduce the general ideas in-
volved. Chapter Fourteen then provides more detaited information on equa-
tion-writing using the DYNAMO computer simulation language.

EXAMPLE I: THE KINGDOM OF XANADU
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In the mythical kingdom of Xanadu, exactly 100 babies are born every year,
and no one ever dies. In last year’s census (the year 2020, according to the
Xanaduian calendar), the population was found to be 5510 people. Everyone
in Xanadu believes that births will continue in the future as they bave in the
past.

The king of Xanadu wishes to have a model that will estimate the popula-
tion of the kingdom for the next twenty years (the years 2020 through 2040).
What will such a model contain? First, the model will contain variables, things
whose rumerical values change over time. As a notational convention, we will
always refer to model variables using names written in ALL CAPITAL LET-
TERS. In the model for the king of Xanadu, population and births are vari-
ables, and for convenience they can be called POP and BIRTHS. POP, of
course, is a level, and BIRTHS is a rate, as indicated in Figure 13.11.

The second thing a model must contain is a set of rules for computing the
values of variables. For example, from the preceding description it is clear that
the rule for births in Xanadu would be: -

Set births equal to 100 people per year

‘An equation is a concise way of specifying a rule for computing a variable, For
example, the rule for births in Xanadu could also be written in equation form:

BIRTHS =100 people per year

This is called a ““rate equation,” naturally enough, since it is the equation for
BIRTHS, which is a rate,

Now, how can an equation be written for the level of population over the
twenty-year period from 2020 to 20407 The simplest approach is to break up
the twenty-year period into one-year intervals, and then calculate the popula-
tion year by year. In the year 2020, according to the Xanaduian calendar, the
population was 5510. So, the first vear that needs to be calculated is the year
2021. Recall that, in Xanadu, no one evet dies, nor does anyone enter or leave
the Kingdom. Hence, the only change in the population from one year to the
next is the number of new babies born—which 1s exactly 100. Thus the popula-
tion in 2021 is just the population in 2020 plus 100.

POP(2021) = POP(2020) + 100 = 5510 + 100 = 5610

O S »{  POPULATION

BIRTHS

Figure 13.11 Flow diagram for Xanadu
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Using this same procedure, it is easy to calculate what the population will
be in the year 2022. The population in the year 2022 is simply the population in
2021 plus 100.

POP(2022) =POP(2021} + 100 = 5610+ 100 =5710

The same idea can be used to simulate the level of population over time,
breaking up time into one-half year intervals. In this case, the first time at
which population must be calculated is half-way through the year 2020. The
population half-way through the year 2020 is just the population at the begin-
ning of 2020, plus the number of babies born during the half-year interval,
And, since 100 babies are born each year, one-half a hundred, or fifty are born
in a half-year. :

POP(2020.5} = POP(2020} + 0.5%100=5510 + 30 = 3560

By the same token, the population at the beginning of year 2021 can be calcu-
lated on the basis of the population in the middle of year 2020; the population
in the middle of year 2021 can be calculated on the basis of the population at
the beginning of year 2021; and so forth.

This procedure suggests a way to write a general equation that can be used
to calculate the population at any moment in time, based on the population
one time interval earlier. To clarify the development of the equation, it is help-
ful to refer to the moment in time at which the population is currently being
calculated as the ““present time,”” and it is helpful to refer to the interval be-
tween calculations as “*one time interval.”

The equation to be developed combines two fundamental ideas. First, the
population at the present time (i.e., the time currently being calculated) equals
the population one time interval earlier, plus the births that occurred over the
interval. Second, the number of births occurring over one time interval equals
the length of the interval, multiplied by the number of births per year. Com-
bining these two ideas produces the following equation:

POP(present time)=POP(one time interval earlier)
+ (length of time interval)*BIRTHS(per year)

As equations go, this ene appears somewhat cumbersome. One way to im-
prove matters is to use symbols for the terms *‘present time,’” “‘one time inter-
val earlier,’” and ““length of time interval.” Although many symbols are possi-
ble, the following are used throughout the text because they are consistent with
the notation used by the DYNAMO simulation language to be introduced in
Chapter Fourteen.

LEVEL.K a level calculated at the present time
LEVEL.I z level calculated one time interval earlier
DT the Iength of the time interval between J and K
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Figure 13.12 displays these symbols in graphic form. {The symbol L ap-
pearing in the figure will be discussed later in the chapter.)

Using this notation, POP(present time) is written POP.K, and POP{cne
time interval earlier) is written POP.J. Thus the level equation for population
can be written:

POP.K=POP.J+DT+BIRTHS

For clarity, it is conventional to express the product of DT and BIRTHS
as (DTHBIRTHS). Hence the equation for population would generally be writ-
ten:

POP.K=FPOP.J+ (DTHBIRTHS)

This equation can be read, ‘“The population at time K equals the population at
time J plus DT multiplied by BIRTHS.”’ .

Altogether, our model of the Xanadu population includes two equations.
The first is a simple rate equation, indicating that the number of births per
year is 100, The second equation is a level equation, indicating that the change
in population over one time interval equals the number of births per year times
the length of the time interval.

BIRTHS = 100
POP.KX =POP.J + (DT)(BIRTHS)

PAST PRESENT FUTURE

J LS L

| 1 1
B i I I P

TIME INTERVAL . TIME INTERVAL
DT DT

TIME ——=

Figure £3.12 Definition of timescripts
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In general, to simulate a model, it is necessary to write an equation for
each level and each rate in the model, much as in the Xanadu case. The
Xanadu model is 2 bit unusual in one respect, in that the rate (the number of
births per year) is a constant. Often, rate equations are more difficalt to for-
mulate. But level equations are generally formulated exactly as the level of
population in Xanadu. The value of a level at the present time smust equal its
value one time interval earlier, plus whatever flowed into the level over the
time interval (minus whatever flowed out).

Consider, for example, the parking lot illustration discussed at the begin-
ning of the chapter. (See Figure 13.1.) According to the example, the number
of cars in the parking lot is a level, and the number of cars arriving per hour is
a rate. If the name CARS is used to represent the number of cars in the Iot, and
ARRIYV is used to represent the arrival rate {in cars per hour), then the level
equation for CARS can be written: ‘

CARS.K=CARS.J+(DT){ARRIV)

The flu example shown in Figure 13.2 provides a somewhat more complex
illustration. The number of children sick is a level, and the number of children
who become infected per day, as well as the number who recover per day, are
rates. If the name INFEC is used to represent the infection rate (in children per
day), RECOV is used to represent the recovery rate (in children per day), and
NSICK is used to represent the number of children sick, then the level equation
can be written:

NSICK.K = NSICK.J + (DT}INFEC-RECOV)

Exercise 5: Writing Level Equations

Review Exercise 1, and then write leve! equations for each of the levels in parts
(a) through {(d). (Choose whatever variable names you wish, and write them in
ALL CAPS. Try to pick names that will aid you in remembering the subject of
the equation?)

EXAMPLE IIIl. CALCULATING THE POPULATION OF XANADU

The equations for POP and BIRTHS developed in Example II can be used to
hand-simulate the population of Xanadu over time. As the year-by-year calcu-
lations are carried out, it is convenient to record the results in a form similar to
Table 13.1.



Levels and Rates

Table 13.1 Table for computing population of Xanadu
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Change in

Time population Population Births
w4 5510 100
2021 100 5610 100
2022 100 5710 100
2023 100 3810 100
2024 100 5910 100
2025 100 5010 100
2026 100 6110 100
2027 100 6210 100
2028 100 6310 100
2029 100 6410 100
2030 100 6510 i0o
2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

Fopulation in 2020 = 5510 people

Births = 1040 people/year
Time Interval = 1 year
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Year 2020. At the beginning of the simulation, the present time or time K is
the year 2020. To get the simulation going, an “‘initial value’” for the popula-
tion in 2020 must be selected. For Xanadu, the population is known to be 5510
people in the year 2020. Thus, 5510 is entered in the Popuiation column of
Table 13.1, for the year 2020, The table then looks as follows:

_ Change in
Time population Population Births

2020 1 5510

The next thing that must be calculated is the birth rate for the year 2020.
In this case, births are calculated according to the equation

BIRTHS =100
Thus 100 is entered under Births for the year 2020, yielding an entry like this:

Change in
Time population Population Births

2020 | 3510 100

Year 2021. At this point, the calculations for the year 2020 are complete. To
carry out the calculations for the year 2021, it is necessary to “‘advance the
calendar’” one year. Thus the year 2021 becomes the “present time”” {time K)
and the year 2020 becomes time J. The population in the year 2021 can then be
calculated using the formula:

POP K = POP.J + (DT)BIRTHS)

The caiculation is easiest if (DTYBIRTHS} is computed first and written
down. The column Change in population in Table 13,1 is reserved for this
purpose. '

Change in
Time population Population Births
2020 S 5510 100
2021 100

The population in the year 2021 (time K} can then be computed by adding
the population in year 2020 {time I} to the Change in population column.
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Change in
Time population Population Births
2020 1 - - 3510 100
2021 100 3610

The birth rate for the year 2021 can then be calculated as before, using the
rate equation BIRTHS = 100.

Change in
Time population Population Births
2020 - 5510 106G
2021 100 5610 100

Year 2022, The calculations for the year 2021 are now complete, and, once
again, it is necessary to advance the calendar another year. Thus the year 2022
becomes the ““present time’” {time K), and the vear 2021 becomes time J. Then,
computations can be carried out exactly as in the year 2021, producing the fol-
lowing results.

Change in
Time population _ Populiation Births
000 e 5510 100
2021 100 5610 100
2022 100 5710 100

The simulation can be continued for as long as needed, with each advance
of the calendar producing ancther iteration.

Exercise 6: Computing Additional Values for Population

Following the procedure in Example III, compute the population of Xanadu
through the year 2040. Graph the results.

Exercise 7: Population at Other Times

If the population of Xanadu is 5510 at the beginning of year 2020, what is the
population after the first month of 20207 What is the population in the year
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25207 Is there a way to compute the answer without iteratively calculating the
numbers as in Example 11?

EXAMPLE 1V: WORLD POPULATION GROWTH

Much the same approach used in writing the equations for the Xanadu model
can be used in writing equations for a model of the growth of world popula-
tion. Consider the causal loop and flow diagram in Figure 13.13. According to
the diagram, the number of net births each year is influenced by the size of the
population, and the size of the population is influenced by the nurmber of net
births. (The number of nct births each year is the difference between the num-
ber of births and the number of deaths.)

The main problem involved in formulating a model of world population
growth is formulating the rate equation for net births. In Xanadu, the rate
equation was simple, since the number of births each year was constant, but
for the world population, the number of net ‘births each year is not constant. It
increases as the size of the population increases.

What sort of equation should be written to express the relationship be-
tween the size of the world population and the number of net births each year?
Many alternative formulations are possible, but the simplest assumption is
that the number of net births each year is a constant perceniage of the world
population. In fact, over the recent past, the worid population has grown at
about 2 percent per year. This means that 0.02 net births are generated each
year for every member of the population. Or, pérhaps more sensibly, two net

m

POPULATION BIRTHS

O S »  POPULATION
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Figure 13.13 Causal-loop and flow diagrams for world population
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births are generated each vear for every 100 members of the population.
(These 2 net births might correspond to a combination of 3 deaths and 5 new
babies born.)

In analyzing population growth, it is essential to distinguish between the
net birth rate, measured in people per year, and the annual percentage growth
in the population, measured in percent per vear. To call atteation to this dis-
tinction, call the percentage growth in the population the growth fraction, or
GF.

Using the growth fraction GF, the rate equation for net births NBIRTH
(in people per year) can be written:

NBIRTH = POP.K+GF

Precisely speaking, the growth fraction GF equals 0.02, and it is measured in
units (persons/year)/person. That is, 0.02 persons per year are added to the
population, - for each person in the population. The expression (per-
sons/year)/person can be reduced algebraically to the expression (1/year),
which in words is simply ‘‘per year.”” The expression {1/year) may seem odd at
first glance, but after some reflection, it should be clear that a percentage
growth of 2 percent per year amounts to a growth fraction GF = 0.02 **per
year.”

Once the rate equation for net births has been formulated, the level equa-
tion for population can be written rather easily. It has the usual form:

POP.K = POP.J + (DTHNBIRTH)

Thus the complete model for world population growth consists of two
equations:

NBIRTH = POP.K*GF
POP K =POP.J + (DT)(NBIRTH)

One small technical matter needs to be taken care of. The equation for
net births indicates that the number of births per year depends on the size
of the population—and, of course, the size of the population varies over
time. In the equation for net births, the variable POP has a subscript K to
indicate the time, but net births NBIRTH so far does not. What subscript
should be used?

The easiest way to determine the answer is to carry out a hand-simulation.
For simplicity, carry out the simulation using a time interval DT equal tc one
year, and begin the simulation in 1975, when the world population. was
roughly 4 billion. According fo the rate equation for net births, the number of
net births per year over the period 1975 to 1976 is:

NBIRTH = POP.K+GF
=4#(0.02}
= (.08 billion persons per year
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Furthermore, the size of the population in 1976 is simply the size in 1973, plus
the number of net births that occurred over the year interval from 1975 to
1976.

POP.K=POP.T+{DTYNBIRTH)
=4+ (1)}=(0.08)
=4.08 billion persons

Since the net birth rate used in the calculation of the population in 1976 is,
by definition, the birth rate that persists over the interval 1975 to 1976, it is
plausible to give the net birth rate two subscripts: one for 1975 and one for
1976. In assigning these subscripts, however, it Is necessary to pay strict atten-
tion to the ““calendar time’* at which the calculations occur. The net birth rate
for the period 1975 to 1976 was calculated on the basis of the population in
1975, when the ““present time’’ (time K) was 1975. Thus the rate equation
should be written:

NBIRTH.KL =POP K+GF

This indicates that the net births per vear during the period from time K (1975)
through time L (1976) is equal to the population in 1975, times the growth
fraction GF. (Recall from Figure 13.12 that time L is one time interval DT fol-
iowing time K.} '

The population in 1976 is calculated when the *‘present time”’ is 1976:
Thus the level equation for popufation should be written

POP.K=POP.J +(DT)NBIRTH.JK}

This indicates that the population in 1976 (time K} equals the population in
1975 (time J) plus the number of net births between 1975 and 1976.

Taken together, then, the full model of the world population should be
written:

POP.K = POP.J + (DT)(NBIRTH.JK)
NBIRTH.KL = POP.K*GF

The detailed steps involved in simulating world population can be carried
cut most easily by constructing a table similar to the table used in the Xanadu
example. Table 13.2 depicts a table for computing world population.

Year 1975. When the simulation begins, the present time {(time K) is 1975,
The initial value of the world population {4 billion) is entered as the value of
population in 1975, and then the net birth rate for the interval 1975 to 1976 can
be calculated according to the equation:

NBIRTH.KL = POP K+GF



Table 13.2 Table for computing world population

Charige in
Time population Population Net births
(years) fpeople) {peapie) fpeople/year)
1975 - 4.00 0.08
1976 0.08 4.08 0.08
1977 0.08 4.16 0.08
1978 0.08 4.24 0.G8
1979 0.08 4.32 0.0%
1980 0.09 4,41 0.69
1981 0.09 4.50 0.09
1982 0.09 4.59 0.09
1983 0.09 4.68 0.09
1984 0.09 4.77 0.10
1985 D.10 4.87 - 0.1¢
1986
1987
1988
1989
1990
1991
1992
1963
1554
1995
1996
1997
1998
1999

2000
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The resulting net birth rate (0.08 billion persons per year)} is then entered in the

table, producing the following results.

Change in Net
Time population Population Births
1975 - 4,00 0.08

Year 1976. At this point, the calculations for 1975 are complete, and the
catendar is advanced one year. Thus the present time (time XK) is now 1976. The
year 1975 has become time J, and 1977 is time L. The population in 1976 can
now be calculated, using the level equation: '

POP.K=POP.J+(DTYNBIRTH.JK)

The value used for net birth is, of course, the value for the pertod 1975 to 1976,
which is the value calculated as the final computation of the 1975 simulat-
ed year. To calculate the value of population in 1976, the product
(DTYNBIRTH.JK) should be entered in the table under the column Change in
population, and then the product can be added to the population in 1975,

~ Once the population for 1976 is calculated, net births for the period 1976
to 1977 can be computed, using the rate equation:

NBIRTH.KL = POP K+GF

This produces the following results.

Change in Net
Time population Population Births
1975 0 e 4.00 0.08
1976 0.08 4.08 0.08

These steps can then be continued for as many iterations as are desired.

Exercise 8. Computing World Population

Following theprocedure cutlined in Example IV, compute the world popula-
tion through the year 2000. Graph the results.

ENDNOTE

1. This accounts for the occasional awkwardness in reading a causal-lcop diagram,
discussed in Chapter 3.



