Evolving Complex Structures via Coop-
erative Coevolution®

Kenneth A. De Jong and Mitchell A. Potter

Abstract

A cooperative coevolutionary approach to learning complex structures
is presented which, although preliminary in nature, appears to have
a number of advantages over non-coevolutionary approaches. The co-
operative coevolutionary approach encourages the parallel evolution
of substructures which interact in useful ways to form more complex
higher level structures. The architecture is designed to be general
enough to permit the inclusion, if appropriate, of a priori knowledge
in the form of initial biases towards particular kinds of decompositions.
A brief summary of initial results obtained from testing this architec-
ture in several problem domains is presented which shows a significant
speedup over more traditional non-coevolutionary approaches.

1 INTRODUCTION

For both natural and artificial systems the ability to evolve complex
structures is desirable, but difficult to achieve. Our conventional evo-
lutionary algorithms typically provide performance-oriented feedback
and as a consequence place little if any selection pressure on the many
possible forms identically performing structures may take. As a re-
sult “pleasing” structures involving modularity, hierarchies, and so on
seldom evolve unless special additional steps are taken such as in-
cluding a structural evaluation component in the feedback function,
restricting the representation and operators to only produce desirable
structures, or manually decomposing problems and evolving the de-
sired subcomponents independently. In such approaches, the designer
plays a significant role in explicitly introducing his/her notion as to

*Accepted for publication in the Fourth Annual Conference on Evolutionary
Programming, March 1-3, 1995, San Diego, CA

the form such structures should take, appropriate decompositions, the
sequence in which substructures are evolved, and so on.

In this paper we present a cooperative coevolutionary approach
to learning complex behaviors which, although preliminary in nature,
appears to require much less explicit control by the designer. In our
approach shown in figure 1, multiple instances of an evolutionary algo-
rithm (EA) are run in parallel, each instance of which evolves a species
of individuals which represent possibly useful substructures. The form
of these substructures and their interaction with other substructures is
not enforced explicitly by the designer. He/she may seed initial pop-
ulations with potential candidates for useful substructures; however,
once the populations are seeded, the evolution of useful substructures
and superstructures proceeds without further intervention.

Species 2

[Species 1 \

() individual Species 3
» EA to be
> EA

evaluated Po

Species 4

EA
A
Y
Population

— fitness Domain ;/

Model

e
Population

=

I

<«——— repreg Pop
Merge
\ / collaboration repres

i

£

Figure 1: Cooperative coevolutionary architecture from the perspec-
tive of species number one

This is accomplished by selecting representatives from each of the
EA populations (the species), and combining them into a single com-
posite structure capable of being evaluating on the top level goal task.
Credit from evaluating the composite structures flows back to the in-
dividual subcomponents reflecting how well they collaborate with the

other subcomponents to achieve the top level goal. This credit is then
used by the local EAs to evolve better subcomponents. We call such
systems Cooperative Coevolutionary Algorithms (CCAs).

We have initially tested this CCA architecture in two quite different
domains: the well-studied and well-understood domain of function
optimization and the domain of learning robot task programs. In both
cases we achieved considerable performance improvements over more
traditional centralized architectures (Potter and De Jong 1994; Potter,
De Jong, and Grefenstette 1995). In the remainder of this paper, we
describe the architecture in more detail, summarize these initial case
studies, and then discuss ongoing efforts to scale up to more complex
problems

2 BASIC COEVOLUTIONARY FRAMEWORK

The hypothesis underlying the ideas presented here is that, in order to
evolve more and more complex structures, explicit notions of modular-
ity need to be introduced in order to provide reasonable opportunities
for complex solutions to evolve in the form of interacting co-adapted
subcomponents. The difficulty comes in finding reasonable compu-
tational extensions to our current evolutionary paradigms in which
such subcomponents “emerge” rather than being hand designed as in
(de Garis 1990). At issue here is how to represent such subcompo-
nents and how to apportion credit to them for their contributions to
the problem solving activity such that the evolution of complex struc-
tures proceeds without a human in the loop.

Classifier systems attempt to accomplish this via a single popu-
lation of interacting rules whose individual fitnesses are determined
by their interactions with other rules via a simulated micro-economy
(Holland and Reitman 1978). Other extensions have been proposed
to encourage the emergence of niches and species in a single popula-
tion (DeJong 1975; Deb and Goldberg 1989; Davidor 1991; Forrest,
Javornik, Smith, and Perelson 1993; Giordana, Saitta, and Zini 1994)
in which individual niches compete for the allocation of trials.

The use of multiple interacting subpopulations has also been ex-
plored as an alternate mechanism for coevolving niches using the
so-called island model (Grosso 1985; Cohoon, Hegde, Martin, and
Richards 1987; Tanese 1989; Whitley and Starkweather 1990). In
the island model a fixed number of subpopulations evolve competing
rather than cooperating solutions. In addition, individuals occasion-
ally migrate from one subpopulation (island) to another, so there is
a mixing of genetic material. The previous work that has looked at
cooperating rather than competing subpopulations has involved a user-

specified decomposition of the problem into species (see, for example,
(Husbands and Mill 1991) or (Hills 1990)).

Cooperative coevolutionary algorithms combine and extend ideas
from these earlier systems in several ways. A CCA consists of a col-
lection of independent subpopulations, each attempting to evolve sub-
components (species) which are useful as modules for achieving more
complex structures. Unlike the island model, the individuals from the
separate subpopulations do not interbreed. Although nothing explic-
itly prevents multiple species from existing within the same subpop-
ulation (a condition that is likely to occur during the early stages of
the evolution of a subpopulation) the existence of distinct subpopu-
lations eliminates haphazard and often destructive recombination be-
tween dominate species once niches are established.

Complete solutions are obtained by assembling representatives
from each of the species present. Credit assignment at the species level
is defined in terms of the fitness of the complete solutions in which the
species members participate. This provides evolutionary pressure for
species to cooperate rather than compete. However, competition still
exists among individuals within the same subpopulation.

In the system used in this paper, the evolution of each species (sub-
population) is handled by a standard GA (although we could just as
easily have chosen some other evolutionary algorithm). We emphasize
this choice by adopting the more specific terminology CCGA.

3 CASE STUDY 1: FUNCTION OPTIMIZATION

For our first test of these ideas we chose the domain of function opti-
mization. This domain has several advantages for the study of a new
coevolutionary architecture. It is a well-studied area with respect to
the use of evolutionary algorithms providing us with a solid frame of
reference. It is also the case that there is a natural decomposition of
the problem into a fixed number of individual subcomponents, namely,
the N parameters of the function to be optimized. This allowed us fo-
cus on the mechanisms of collaboration and credit assignment, and to
defer the more difficult issue of emergent problem decomposition to
later studies. In the remainder of this section we briefly summarize
the coevolutionary function optimization study. For more detail see
(Potter and De Jong 1994).

If we think of a solution to a function optimization problem as
consisting of specifying the value of N parameters (variables), a natural
decomposition is to maintain N subpopulations (species) each of which
contains competing values for a particular parameter. A collaboration
is then simply the process of assembling selected members of each

species into an N-dimensional vector whose fitness can be computed
in the normal fashion.

Local fitness within each species is intended to measure how
well members collaborate with other species to produce useful N-
dimensional vectors. Since it’s clearly infeasible to sample all (or even
a large percentage) of the possible collaborations, we initially tested
two simple estimates of collaborative effectiveness. The first method
assigned local fitness to each member of a species by having each one
form a single collaboration with the current best individual from each
other species, and used the global fitness measure associated with the
N-dimensional vector formed in this manner as the local measure of
fitness. This approach significantly outperformed a standard GA when
there were relatively few interdependencies between function variables.
However, this approach proved overly “greedy” when applied to the
optimization of functions with highly interdependent terms.

The second approach we explored was to “soften the greediness”
by constructing two collaboration vectors instead of just one. In one
vector the collaborators were the current best individuals from the
other species as before. The second vector was constructed from a
random sample of individuals from the each of the other species. Both
vectors were then applied to the target function and the better of
the two results was returned as the offspring’s fitness. The additional
exploration provided by this second approach enabled the CCGA to
perform well on functions with highly interdependent terms while only
performing slightly worse than the more greedy approach on functions
with relatively independent terms.

The interested reader can see (Potter and De Jong 1994) for more
detail. We briefly illustrate these effects here via two functions: the
Rastrigin function, a highly multimodal function with relatively lit-
tle interdependency between terms and whose primary characteristic
is the existence of many suboptimal peaks whose values increase as
the distance from the global optimum point increases (Miihlenbein,
Schomisch, and Born 1991; Gordon and Whitley 1993), and the Rosen-
brock function from the original De Jong test suite (DeJong 1975),
which is a function of two highly interdependent variables and is char-
acterized by an extremely deep parabolic valley that leads to the global
minimum.

The results from the Rastrigin optimization experiments are shown
in figure 2. The curve labeled “coevolution 1” refers to the greedy col-
laborator selection approach described above while the curve labeled
“coevolution 2” refers to the more exploratory approach. This plot
shows that both the greedy and more exploratory approaches signifi-

cantly outperform the standard GA both in the minimum value found
and in the speed of convergence to the minimum. It also shows the
slightly better performance of the greedy collaborator selection ap-
proach when applied to functions with relatively independent terms.

125

AT peemeememe- e e e
735 | ‘ coevol t"on 1

A volution 1|
E 7 P [coevolution 2
S \ N standard GA
: 50 == "'i """" """"""" Tty T
0 B : : :
4 . : ‘ ‘
o]
0 A ———F= -

0 10000 20000 30000 40000
function evaluations

Figure 2: Comparison of CCGA and standard GA optimization rate
on Rastrigin function

A similar plot from the Rosenbrock optimization experiments is
shown in figure 3. The discovery of the floor of the parabolic valley
where the interdependency between terms becomes an issue is clearly
visible as the point where the curves abruptly flatten out. The ex-
ploratory collaborator selection approach locates this region quickly;
but once found, its performance is comparable to the standard GA.
The greedy approach does not perform as well on this kind of function.

As a result of the study we felt comfortable with the basic archi-
tecture, and ready to test the system in less structured domains.

4 CASE STUDY 2: ROBOT LEARNING

We chose as our second test of the system the domain of learning task
programs for robots. This domain does not have generally have natural
decompositions like that of the function optimization domain, allowing
us to explore issues such as subcomponent formation and stability. To
simplify our efforts ans to test the generality of the CCA architecture,
we extended the SAMUEL system to allow multiple instantiations to
be run in parallel and communicate with each other for the purpose of
forming collaborations. SAMUEL is designed to evolve sets of sequential

0.8

06\

(_6 -
3 : coevolution 1
> N - coevolution 2
) 0.4 TN standard GA |
'% ! N\ ! . . :
qJ .
2 0.2+ :
| N
O = "\'Tf,f.—,,—,A;—,.—_,-,:::f,—,_—___,_,:,,,,__,__,”»

T T T
0 1000 2000 3000 4000 5000 6000
function evaluations

Figure 3: Comparison of CCGA and standard GA optimization rate
on Rosenbrock function

decision rules to be used by decision making agents (Grefenstette,
Ramsey, and Schultz 1990). The study is described in greater detail
in (Potter, De Jong, and Grefenstette 1995).

The architecture of SAMUEL consists of three main components: a
domain module, a production system, and a genetic algorithm. The
production system and domain module evaluate rule sets while the
genetic algorithm evolves new rule sets. The domain module consists
of a world model, agents, and an agent critic. The agents consist
of sensors and effectors and are controlled by the production system.
Pattern matching is done between rule antecedents and agent sensor
values. When a rule fires it modifies agent effectors. The GA sends
rule sets to be evaluated to the production system which communi-
cates with the agent critic to determine the fitness of the rules. This
information is then used by the GA to evolve better rule sets.

Because we were less concerned about nonlinear interactions among
rule sets and because we were concerned about the cost of evaluation,
we chose to implement the “greedy” form of local evaluation. That
is, in coevolutionary SAMUEL, each population makes its best rule
set available to the other SAMUEL populations so that collaborations
may be formed. This allows rules covering the entire spectrum of
required behaviors to be coevolved across multiple GA populations
rather than “shaping” behaviors in stages or evolving all behaviors in
a single chromosome. More specifically, in order for any of the multiple
SAMUEL instantiations to send a rule set to the production system and

domain module to be evaluated, the rule set must first be merged with
the best rule sets from the other instantiations. Credit from the agent
critic flows back to the local rule set reflecting how well it performed
with the rule sets from the other instantiations to achieve the top level
goal.

We tested coevolutionary SAMUEL on a moderately complex task
in which a robot had to maneuver itself around an obstacle free room
in which food pellets appeared at random locations and times. The
robot had to consume these food pellets to replace lost energy. Energy
loss was a function of the speed and turning rate of the robot. Fitness
was computed as the average energy level over multiple food gathering
episodes. There was a second robot in the environment controlled by
a fixed set of hand-crafted rules and which competed for the food
pellets. The goal was to evolve over time a set of behaviors (rule sets)
which would enable the robot to survive indefinitely in this stochastic,
unfriendly environment.

SAMUEL provides a simple mechanism for initially seeding each GA
population with user-supplied rules. We used that facility to provide
each of the GA populations with an initial bias to develop an area of
expertise different from the others. However, once evolution begins
there is nothing to prevent the roles of species from changing con-
siderably. This enabled us to study the stability of the cooperating
behaviors (niches) that were formed. The particular biases we chose
for this study was to evolve behavior related to food being absent and
food being present.

We investigated the stability of the cooperating behaviors by run-
ning coevolutionary SAMUEL until highly fit rule sets were evolved
and inspecting the best rule set from the final generation. This was
repeated on five separate runs. We found that most of the rules from
the final generation continued to exhibit the behavior their species was
biased toward, that is, the rules in the species biased toward behavior
related to food being absent would mostly fire when there was no food
and the rules in the species biased toward behavior related to food
being present would mostly fire when food pellets appeared.

We also discovered the appearance of a third class of behavior co-
existing within the population biased toward food being absent. This
unexpected behavior can be summarized as “if you are not hungry
then you should not waste energy seeking food”.

We were also interested in comparing learning rates between the
coevolutionary and standard SAMUEL systems. Figure 4 illustrates the
typical speedups achieved by the coevolutionary approach.

best individual

50 4--- £ KA coevolution
S standard Samuel

40 L T T T T
0 500 1000 1500 2000 2500

trials

Figure 4: Comparison of coevolutionary Samuel and standard Samuel
learning rate on robot domain

5 DISCUSSION AND CONCLUSIONS

Although our motivation for developing the CCA architecture was
driven by the need for an effective means to evolve complex struc-
tures, the CCA architecture appears to have an interesting potential
for speeding up more traditional domains such as function optimiza-
tion. Our intuition here is that process of forming collaborations places
context-sensitive constraints on the search process which, if not too
"greedy” can be quite effective in speeding up the search process. How-
ever, more work need to be done to understand better the dynamics
of cooperating populations.

As noted earlier, we are more interested in the potential for evolv-
ing more complex structures. To that end, we are currently using the
robot learning domain to test our ideas at the next level of difficulty:
one which requires the dynamic creation and destruction of species,
representing the birth and death of behavioral niches with the goal
of evolving complex robot task programs from these coevolving and
cooperating lower level behaviors. We hope to be able to report these
results in the near future.

Acknowledgments

This work was supported in part by the George Mason University De-
partment of Computer Science and by the Navy Center for Applied
Research in Artificial Intelligence. We also wish to acknowledge con-
tributions made by John Grefenstette and Bob Daley to the SAMUEL
case study.

References

Cohoon, J., S. Hegde, W. Martin, and D. Richards (1987). Punctu-
ated equilibria: A parallel genetic algorithm. In J. Grefenstette
(Ed.), Proceedings of the Second International Conference on
Genetic Algorithms, pp. 148-154. Lawrence Erlbaum Associates.

Davidor, Y. (1991). A naturally occuring niche & species phe-
nomenon: The model and first results. In R. Belew and L. Booker
(Eds.), Proceedings of the Fourth International Conference on
Genetic Algorithms, pp. 257-263. Morgan Kaufmann.

de Garis, H. (1990). Building artificial nervous systems using ge-
netically programmed neural network modules. In B. Porter and
R. Mooney (Eds.), Proceedings of the Seventh International Con-
ference on Machine Learning, pp. 132—139.

Deb, K. and D. Goldberg (1989). An investigation of niche and
species formation in genetic function optimization. In J. Schaf-
fer (Ed.), Proceedings of the Third International Conference on
Genetic Algorithms, pp. 42-50. Morgan Kaufmann.

DeJong, K. (1975). Analysis of Behavior of a Class of Genetic Adap-
tive Systems. Ph. D. thesis, University of Michigan, Ann Arbor,
MI.

Forrest, S., B. Javornik, R. Smith, and A. Perelson (1993). Using
genetic algorithms to explore pattern recognition in the immune
system. Evolutionary Computation 1(3), 191-211.

Giordana, A., L. Saitta, and F. Zini (1994). Learning disjunctive
concepts by means of genetic algorithms. In W. Cohen and
H. Hirsh (Eds.), Proceedings of the Eleventh International Con-
ference on Machine Learning, pp. 96—104. Morgan Kaufmann.

Gordon, V. and D. Whitley (1993). Serial and parallel genetic algo-
rithms as function optimizers. In S. Forrest (Ed.), Proceedings of

the Fifth International Conference on Genetic Algorithms, pp.
177-183. Morgan Kaufmann.

Grefenstette, J., C. Ramsey, and A. Schultz (1990). Learning se-
quential decision rules using simulation models and competition.
Machine Learning 5(4), 355-381.

Grosso, P. (1985). Computer Simulations of Genetic Adaptation:
Parallel Subcomponent Interaction in a Multilocus Model. Ph.
D. thesis, University of Michigan, Ann Arbor, MI.

Hills, D. (1990). Co-evolving parasites improve simulated evolu-
tion as an optimization procedure. In C. Langton, C. Taylor,
J. Farmer, and S. Rasmussen (Eds.), Artificial Life II, pp. 313—
324. Addison-Wesley.

Holland, J. and J. Reitman (1978). Cognitive systems based on
adaptive algorithms. In D. Waterman and F. Hayes-Roth (Eds.),
Pattern-Directed Inference Systems. Academic Press.

Husbands, P. and F. Mill (1991). Simulated co-evolution as the
mechanism for emergent planning and scheduling. In R. Belew
and L. Booker (Eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms, pp. 264-270. Morgan Kauf-
mann.

Miihlenbein, H., M. Schomisch, and J. Born (1991). The parallel ge-
netic algorithm as function optimizer. In R. Belew and L. Booker
(Eds.), Proceedings of the Fourth International Conference on
Genetic Algorithms, pp. 271-278. Morgan Kaufmann.

Potter, M. and K. De Jong (1994). A cooperative coevolutionary
approach to function optimization. In Y. Davidor and S. H.-P.
(Eds.), Proceedings of the Third Conference on Parallel Problem
Solving from Nature, pp. 249-257. Springer-Verlag.

Potter, M., K. De Jong, and J. Grefenstette (1995). A coevolution-
ary approach to learning sequential decision rules. Technical Re-
port AIC-95-010, Navy Center for Applied Research in Artificial
Intelligence, Washington DC.

Tanese, R. (1989). Distributed genetic algorithms. In J. Schaffer
(Ed.), Proceedings of the Third International Conference on Ge-
netic Algorithms, pp. 434-439. Morgan Kaufmann.

Whitley, D. and T. Starkweather (1990). Genitor II: a distributed
genetic algorithm. Journal of Experimental and Theoretical Ar-
tificial Intelligence 2, 189-214.

