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Abstract

The random graph of Erdős and Rényi is one of the oldest and best studied
models of a network, and possesses the considerable advantage of being exactly
solvable for many of its average properties. However, as a model of real-world
networks such as the Internet, social networks or biological networks it leaves a
lot to be desired. In particular, it differs from real networks in two crucial ways: it
lacks network clustering or transitivity, and it has an unrealistic Poissonian degree
distribution. In this paper we review some recent work on generalizations of the
random graph aimed at correcting these shortcomings. We describe generalized
random graph models of both directed and undirected networks that incorporate
arbitrary non-Poisson degree distributions, and extensions of these models that
incorporate clustering too. We also describe two recent applications of random
graph models to the problems of network robustness and of epidemics spreading
on contact networks.

1 Introduction

In a series of seminal papers in the 1950s and 1960s, Paul Erdős and Alfréd Rényi
proposed and studied one of the earliest theoretical models of a network, the random

graph (Erdős and Rényi, 1959, 1960, 1961). This minimal model consists of n nodes
or vertices, joined by links or edges which are placed between pairs of vertices
chosen uniformly at random. Erdős and Rényi gave a number of versions of their
model. The most commonly studied is the one denoted Gn,p, in which each possible
edge between two vertices is present with independent probability p, and absent with
probability 1 − p. Technically, in fact, Gn,p is the ensemble of graphs of n vertices in
which each graph appears with the probability appropriate to its number of edges.1

Often one wishes to express properties of Gn,p not in terms of p but in terms of
the average degree z of a vertex. (The degree of a vertex is the number of edges
connected to that vertex.) The average number of edges on the graph as a whole is
1
2n(n−1)p, and the average number of ends of edges is twice this, since each edge has
two ends. So the average degree of a vertex is

z =
n(n − 1)p

n
= (n − 1)p ' np, (1)

where the last approximate equality is good for large n. Thus, once we know n, any
property that can be expressed in terms of p can also be expressed in terms of z.

1For a graph with n vertices and m edges this probability is pm(1−p)M−m, where M = 1

2
n(n−1).
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The Erdős–Rényi random graph has a number of desirable properties as a model
of a network. In particular it is found that many of its ensemble average properties
can be calculated exactly in the limit of large n (Bollobás, 1985; Janson et al., 1999).
For example, one interesting feature, which was demonstrated in the original papers
by Erdős and Rényi, is that the model shows a phase transition2 with increasing z at
which a giant component forms. A component is a subset of vertices in the graph
each of which is reachable from the others by some path through the network. For
small values of z, when there are few edges in the graph, it is not surprising to find that
most vertices are disconnected from one another, and components are small, having
an average size that remains constant as the graph becomes large. However, there is
a critical value of z above which the one largest component in the graph contains a
finite fraction S of the total number of vertices, i.e., its size nS scales linearly with the
size of the whole graph. This largest component is the giant component. In general
there will be other components in addition to the giant component, but these are still
small, having an average size that remains constant as the graph grows larger. The
phase transition at which the giant component forms occurs precisely at z = 1. If
we regard the fraction S of the graph occupied by the largest component as an order
parameter, then the transition falls in the same universality class as the mean-field
percolation transition (Stauffer and Aharony, 1992).

The formation of a giant component in the random graph is reminiscent of the
behaviour of many real-world networks. One can imagine loose-knit networks for
which there are so few edges that, presumably, the network has no giant component,
and all vertices are connected to only a few others. The social network in which pairs
of people are connected if they have had a conversation within the last 60 seconds, for
example, is probably so sparse that it has no giant component. The network in which
people are connected if they have ever had a conversation, on the other hand, is very
densely connected and certainly has a giant component.

However, the random graph differs from real-world networks in some fundamental
ways also. Two differences in particular have been noted in the recent literature
(Strogatz, 2001; Albert and Barabási, 2002). First, as pointed out by Watts and
Strogatz (1998; Watts 1999) real-world networks show strong clustering or network

transitivity, where Erdős and Rényi’s model does not. A network is said to show
clustering if the probability of two vertices being connected by an edge is higher when
the vertices in question have a common neighbour. That is, there is another vertex
in the network to which they are both attached. Watts and Strogatz measured this
clustering by defining a clustering coefficient C, which is the average probability
that two neighbours of a given vertex are also neighbours of one another. In many
real-world networks the clustering coefficient is found to have a high value, anywhere
from a few percent to 50 percent or even more. In the random graph of Erdős and
Rényi on the other hand, the probabilities of vertex pairs being connected by edges
are by definition independent, so that there is no greater probability of two vertices
being connected if they have a mutual neighbour than if they do not. This means
that the clustering coefficient for a random graph is simply C = p, or equivalently

2Erdős and Rényi didn’t call it that, but that’s what it is.
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clustering coefficient C
network n z measured random graph

Internet (autonomous systems)a 6 374 3.8 0.24 0.00060
World-Wide Web (sites)b 153 127 35.2 0.11 0.00023
power gridc 4 941 2.7 0.080 0.00054
biology collaborationsd 1 520 251 15.5 0.081 0.000010
mathematics collaborationse 253 339 3.9 0.15 0.000015
film actor collaborationsf 449 913 113.4 0.20 0.00025
company directorsf 7 673 14.4 0.59 0.0019
word co-occurrenceg 460 902 70.1 0.44 0.00015
neural networkc 282 14.0 0.28 0.049
metabolic networkh 315 28.3 0.59 0.090
food webi 134 8.7 0.22 0.065

Table 1: Number of vertices n, mean degree z, and clustering coefficient C for a number of
different networks. Numbers are taken from aPastor-Satorras et al. (2001), bAdamic (1999),
cWatts and Strogatz (1998), dNewman (2001b), eNewman (2001d), fNewman et al. (2001),
gi Cancho and Solé (2001), hMontoya and Solé (2001), iFell and Wagner (2000).

C ' z/n. In Table 1 we compare clustering coefficients for a number of real-world
networks with their values on a random graph with the same number of vertices and
edges. The graphs listed in the table are:

• Internet: a graph of the fibre optic connections that comprise the Internet, at
the level of so-called “autonomous systems.” An autonomous system is a group
of computers within which data flow is handled autonomously, while data flow
between groups is conveyed over the public Internet. Examples of autonomous
systems might be the computers at a company, a university, or an Internet
service provider.

• World-Wide Web: a graph of sites on the World-Wide Web in which edges rep-
resent “hyperlinks” connecting one site to another. A site in this case means
a collection of pages residing on a server with a given name. Although hyper-
links are directional, their direction has been ignored in this calculation of the
clustering coefficient.

• Power grid: a graph of the Western States electricity transmission grid in the
United States. Vertices represent stations and substations; edges represent
transmission lines.

• Biology collaborations: a graph of collaborations between researchers working in
biology and medicine. A collaboration between two scientists is defined in this
case as coauthorship of a paper that was catalogued in the Medline bibliographic
database between 1995 and 1999 inclusive.

• Mathematics collaborations: a similar collaboration graph for mathematicians,
derived from the archives of Mathematical Reviews.

• Film actor collaborations: a graph of collaborations between film actors, where
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a collaboration means that the two actors in question have appeared in a film
together. The data are from the Internet Movie Database.

• Company directors: a collaboration graph of the directors of companies in the
Fortune 1000 for 1999. (The Fortune 1000 is the 1000 US companies with the
highest revenues during the year in question.) Collaboration in this case means
that two directors served on the board of a Fortune 1000 company together.

• Word co-occurrences: a graph in which the vertices represent words in the En-
glish language, and an edge signifies that the vertices it connects frequently
occur in adjacent positions in sentences.

• Neural network: a graph of the neural network of the worm C. Elegans.

• Metabolic network: a graph of interactions forming a part of the energy gener-
ation and small building block synthesis metabolism of the bacterium E. Coli.

Vertices represent substrates and products, and edges represent interactions.

• Food web: the food web of predator–prey interactions between species in Ythan
Estuary, a marine estuary near Aberdeen, Scotland. Like the links in the World-
Wide Web graph, the directed nature of the interactions in this food web have
been neglected for the purposes of calculating the clustering coefficient.

As the table shows, the agreement between the clustering coefficients in the real
networks and in the corresponding random graphs is not good. The real and theoret-
ical figures differ by as much as four orders of magnitude in some cases. Clearly, the
random graph does a poor job of capturing this particular property of networks.

A second way in which random graphs differ from their real-world counterparts is
in their degree distributions, a point which has been emphasized particularly in the
work of Albert, Barabási, and collaborators (Albert et al., 1999; Barabási and Albert,
1999). The probability pk that a vertex in an Erdős–Rényi random graph has degree
exactly k is given by the binomial distribution:

pk =

(

n − 1

k

)

pk(1 − p)n−1−k. (2)

In the limit where n � kz, this becomes

pk =
zke−z

k!
, (3)

which is the well-known Poisson distribution. Both binomial and Poisson distributions
are strongly peaked about the mean z, and have a large-k tail that decays rapidly as
1/k!. We can compare these predictions to the degree distributions of real networks by
constructing histograms of the degrees of vertices in the real networks. We show some
examples, taken from the networks described above, in Fig. 1. As the figure shows,
in most cases the degree distribution of the real network is very different from the
Poisson distribution. Many of the networks, including Internet and World-Wide Web
graphs, appear to have power-law degree distributions (Albert et al., 1999; Faloutsos
et al., 1999; Broder et al., 2000), which means that a small but non-negligible fraction
of the vertices in these networks have very large degree. This behaviour is quite unlike
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Figure 1: Measured degree distributions for a number of different networks. (a) Physical
connections between autonomous systems on the Internet, circa 1997 (Faloutsos et al., 1999).
(b) A 200 million page subset of the World-Wide Web, circa 1999 (Broder et al., 2000).
The figure shows the out-degree of pages, i.e., numbers of links pointing from those pages to
other pages. (c) Collaborations between biomedical scientists and between mathematicians
(Newman, 2001b,d). (d) Collaborations of film actors (Amaral et al., 2000). (e) Co-occurrence
of words in the English language (i Cancho and Solé, 2001). (f) Board membership of directors
of Fortune 1000 companies for year 1999 (Newman et al., 2001).
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the rapidly decaying Poisson degree distribution, and can have profound effects on the
behaviour of the network, as we will see later in this paper. Other networks, partic-
ularly the collaboration graphs, appear to have power-law degree distributions with
an exponential cutoff at high degree (Amaral et al., 2000; Newman, 2001a,b), while
others still, such as the graph of company directors, seem to have degree distributions
with a purely exponential tail (Newman et al., 2001). The power grid of Table 1 is
another example of a network that has an exponential degree distribution (Amaral
et al., 2000).

In this paper we show how to generalize the Erdős–Rényi random graph to mimic
the clustering and degree properties of real-world networks. In fact, most of the paper
is devoted to extensions that correct the degree distribution, for which an elegant
body of theory has been developed in the last few years. However, towards the end of
the paper we also consider ways in which clustering can be introduced into random
graphs. Work on this latter problem is significantly less far advanced than work on
degree distributions, and we have at present only a few preliminary results. Whether
these results can be extended, and how, are open questions.

2 Random graphs with specified degree distributions

It is relatively straightforward to generate random graphs that have non-Poisson de-
gree distributions. The method for doing this has been discussed a number of times
in the literature, but appears to have been put forward first by Bender and Can-
field (1978). The trick is to restrict oneself to a specific degree sequence, i.e., to a
specified set {ki} of the degrees of the vertices i = 1 . . . n. Typically this set will be
chosen in such a way that the fraction of vertices having degree k will tend to the
desired degree distribution pk as n becomes large. For practical purposes however,
such as numerical simulation, it is almost always adequate simply to draw a degree
sequence {ki} from the distribution pk directly.

Once one has one’s degree sequence, the method for generating the graph is as
follows: one gives each vertex i a number ki of “stubs”—ends of edges emerging
from the vertex—and then one chooses pairs of these stubs uniformly at random and
joins them together to make complete edges. When all stubs have been used up, the
resulting graph is a random member of the ensemble of graphs with the desired degree
sequence.3 Note that, because of the ki! possible permutations of the stubs emerging
from the ith vertex, there are

∏

i ki! different ways of generating each graph in the
ensemble. However, this factor is constant so long as the degree sequence {ki} is held
fixed, so it does not prevent the method from sampling the ensemble correctly. This
is the reason why we restrict ourselves to a fixed degree sequence—merely fixing the
degree distribution is not adequate to ensure that the method described here generates
graphs uniformly at random from the desired ensemble.

The method of Bender and Canfield does not allow us to specify a clustering coeffi-
cient for our graph. (The clustering coefficient had not been invented yet when Bender

3The only small catch to this algorithm is that the total number of stubs must be even if we are
not to have one stub left over at the end of the pairing process. Thus we should restrict ourselves to
degree sequences for which

�
i
ki is even.
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and Canfield were writing in 1978.) Indeed the fact that the clustering coefficient is
not specified is one of the crucial properties of these graphs that makes it possible, as
we will show, to solve exactly for many of their properties in the limit of large graph
size. As an example of why this is important, consider the following simple calcula-
tion. The mean number of neighbours of a randomly chosen vertex A in a graph with
degree distribution pk is z = 〈k〉 =

∑

k kpk. Suppose however that we want to know
the mean number of second neighbours of vertex A, i.e., the mean number of vertices
two steps away from A in the graph. In a network with clustering, many of the second
neighbours of a vertex are also first neighbours—the friend of my friend is also my
friend—and we would have to allow for this effect to order avoid overcounting the
number of second neighbours. In our random graphs however, no allowances need be
made. The probability that one of the second neighbours of A is also a first neighbour
goes as n−1 in the random graph, regardless of degree distribution, and hence can be
ignored in the limit of large n.

There is another effect, however, that we certainly must take into account if we
wish to compute correctly the number of second neighbours: the degree distribution
of the first neighbour of a vertex is not the same as the degree distribution of vertices
on the graph as a whole. Because a high-degree vertex has more edges connected to
it, there is a higher chance that any given edge on the graph will be connected to it,
in precise proportion to the vertex’s degree. Thus the probability distribution of the
degree of the vertex to which an edge leads is proportional to kpk and not just pk (Feld,
1991; Molloy and Reed, 1995; Newman, 2001d). This distinction is absolutely crucial
to all the further developments of this paper, and the reader will find it worthwhile
to make sure that he or she is comfortable with it before continuing.

In fact, we are interested here not in the complete degree of the vertex reached by
following an edge from A, but in the number of edges emerging from such a vertex
other than the one we arrived along, since the latter edge only leads back to vertex A
and so does not contribute to the number of second neighbours of A. This number is
one less than the total degree of the vertex and its correctly normalized distribution
is therefore qk−1 = kpk/

∑

j jpj , or equivalently

qk =
(k + 1)pk+1

∑

j jpj
. (4)

The average degree of such a vertex is then

∞
∑

k=0

kqk =

∑

∞

k=0 k(k + 1)pk+1
∑

j jpj
=

∑

∞

k=0(k − 1)kpk
∑

j jpj
=

〈k2〉 − 〈k〉

〈k〉
. (5)

This is the average number of vertices two steps away from our vertex A via a particular
one of its neighbours. Multiplying this by the mean degree of A, which is just z = 〈k〉,
we thus find that the mean number of second neighbours of a vertex is

z2 = 〈k2〉 − 〈k〉. (6)

If we evaluate this expression using the Poisson degree distribution, Eq. (3), then we
get z2 = 〈k〉2—the mean number of second neighbours of a vertex in an Erdős–Rényi
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random graph is just the square of the mean number of first neighbours. This is a
special case however. For most degree distributions Eq. (6) will be dominated by the
term 〈k2〉, so the number of second neighbours is roughly the mean square degree,
rather than the square of the mean. For broad distributions such as those seen in
Fig. 1, these two quantities can be very different (Newman, 2001d).

We can extend this calculation to further neighbours also. The average number
of edges leading from each second neighbour, other than the one we arrived along, is
also given by (5), and indeed this is true at any distance m away from vertex A. Thus
the average number of neighbours at distance m is

zm =
〈k2〉 − 〈k〉

〈k〉
zm−1 =

z2

z1
zm−1, (7)

where z1 ≡ z = 〈k〉 and z2 is given by Eq. (6). Iterating this equation we then
determine that

zm =

[

z2

z1

]m−1

z1. (8)

Depending on whether z2 is greater than z1 or not, this expression will either diverge
or converge exponentially as m becomes large, so that the average total number of
neighbours of vertex A at all distances is finite if z2 < z1 or infinite if z2 > z1

(in the limit of infinite n).4 If this number is finite, then clearly there can be no
giant component in the graph. Conversely, if it is infinite, then there must be a
giant component. Thus the graph shows a phase transition similar to that of the
Erdős–Rényi graph precisely at the point where z2 = z1. Making use of Eq. (6) and
rearranging, we find that this condition is also equivalent to 〈k2〉 − 2〈k〉 = 0, or, as it
is more commonly written,

∞
∑

k=0

k(k − 2)pk = 0. (9)

This condition for the position of the phase transition in a random graph with arbitrary
degree sequence was first given by Molloy and Reed (1995).

An interesting feature of Eq. (9) is that, because of the factor k(k − 2), vertices of
degree zero and degree two contribute nothing to the sum, and therefore the number
of such vertices does not affect the position of the phase transition or the existence of
the giant component. It is easy to see why this should be the case for vertices of degree
zero; obviously one can remove (or add) degree-zero vertices without changing the fact
of whether a giant component does or does not exist in a graph. But why vertices
of degree two? This has a simple explanation also: removing vertices of degree two
does not change the topological structure of a graph because all such vertices fall in
the middle of edges between other pairs of vertices. We can therefore remove (or add)
any number of such vertices without affecting the existence of the giant component.

Another quantity of interest in many networks is the typical distance through
the network between pairs of vertices (Milgram, 1967; Travers and Milgram, 1969;

4The case of z1 = z2 is deliberately missed out here, since it is non-trivial to show how the graph
behaves exactly at this transition point (Bollobás, 1985). For our current practical purposes however,
this matters little, since the chances of any real graph being precisely at the transition point are
negligible.
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Pool and Kochen, 1978; Watts and Strogatz, 1998; Amaral et al., 2000). We can use
Eq. (8) to make a calculation of this quantity for our random graph as follows. If
we are “below” the phase transition of Eq. (9), in the regime where there is no giant
component, then most pairs of vertices will not be connected to one another at all, so
vertex–vertex distance has little meaning. Well above the transition on the other hand,
where there is a giant component, all vertices in this giant component are connected
by some path to all others. Eq. (8) tells us the average number of vertices a distance
m away from a given vertex A in the giant component. When the total number of
vertices within distance m is equal to the size n of the whole graph, m is equal to
the so-called “radius” r of the network around vertex A. Indeed, since z2/z1 � 1 well
above the transition, the number of vertices at distance m grows quickly with m in this
regime (see Eq. (8) again), which means that most of the vertices in the network will
be far from A, around distance r, and r is thus also approximately equal to the average
vertex–vertex distance `. Well above the transition therefore, ` is given approximately
by z` ' n, or

` =
log(n/z1)

log(z2/z1)
+ 1. (10)

For the special case of the Erdős–Rényi random graph, for which z1 = z and z2 = z2

as noted above, this expression reduces to the well-known standard formula for this
case: ` = log n/ log z (Bollobás, 1985).

The important point to notice about Eq. (10) is that the vertex–vertex distance
increases logarithmically with the graph size n, i.e., it grows rather slowly.5 Even
for very large networks we expect the typical distance through the network from one
vertex to another to be quite small. In social networks this effect is known as the
small-world effect,6 and was famously observed by the experimental psychologist
Stanley Milgram in the letter-passing experiments he conducted in the 1960s (Milgram,
1967; Travers and Milgram, 1969; Kleinfeld, 2000). More recently it has been observed
also in many other networks including non-social networks (Watts and Strogatz, 1998;
Amaral et al., 2000). This should come as no great surprise to us however. On the
contrary, it would be surprising if most networks did not show the small-world effect.
If we define the diameter d of a graph to be the maximum distance between any two
connected vertices in the graph, then it can be proven rigorously that the fraction of
all possible graphs for which d > c log n for some constant c tends to zero as n becomes
large (Bollobás, 1985). And clearly if the diameter increases as log n or slower, then so
also must the average vertex–vertex distance. Thus our chances of finding a network
that does not show the small-world effect are very small for large n.

As a test of Eq. (10), Fig. 2 compares our predictions of average distance ` with
direct measurements for fourteen different scientific collaboration networks, including

5Krzywicki (2001) points out that this is true only for components such as the giant component
that contain loops. For tree-like components that contain no loops the mean vertex–vertex distance
typically scales as a power of n. Since the giant components of neither our models nor our real-world
networks are tree-like, however, this is not a problem.

6Some authors, notably Watts and Strogatz (1998), have used the expression “small-world network”
to refer to a network that simultaneously shows both the small-world effect and high clustering. To
prevent confusion however we will avoid this usage here.
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Figure 2: Comparison of mean vertex–vertex distance measured in fourteen collaboration net-
works against our theoretical predictions of the same quantities from Eq. (10). The networks
are constructed using bibliographic data for papers in biology and medicine (Medline), physics
(Los Alamos E-print Archive), high-energy physics (SPIRES), and mathematics (Mathemat-
ical Reviews). If empirical results and theory agreed perfectly, the points would fall on the
dotted diagonal line. After Newman (2001c).

the biology and mathematics networks of Table 1. In this figure, each network is
represented by a single point, whose position along the horizontal axis corresponds
to the theoretically predicted value of ` and along the vertical axis the measured
value. If Eq. (10) were exactly correct, all the points in the figure would fall on the
dotted diagonal line. Since we know that the equation is only approximate, it comes
as no surprise that the points do not fall perfectly along this line, but the results
are encouraging nonetheless; in most cases the theoretical prediction is close to the
correct result and the overall scaling of ` with log n is clear. If the theory were equally
successful for networks of other types, it would provide a useful way of estimating
average vertex–vertex separation. Since z1 and z2 are local quantities that can be
calculated at least approximately from measurements on only a small portion of the
network, it would in many cases be considerably simpler and more practical to apply
Eq. (10) than to measure ` directly.

Although our random graph model does not allow us to fix the level of clustering
in the network, we can still calculate an average clustering coefficient for the Bender–
Canfield ensemble easily enough. Consider a particular vertex A again. The ith
neighbour of A has ki edges emerging from it other than the edge attached to A, and
ki is distributed according to the distribution qk, Eq. (4). The probability that this
vertex is connected to another neighbour j is kikj/(nz), where kj is also distributed
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according to qk, and average of this probability is precisely the clustering coefficient:

C =
〈kikj〉

nz
=

1

nz

[

∑

k

kqk

]2
=

z

n

[

〈k2〉 − 〈k〉

〈k〉2

]2

=
z

n

[

c2
v +

z − 1

z

]2

. (11)

The quantity cv is the so-called coefficient of variation of the degree distribution—the
ratio of the standard deviation to the mean. Thus the clustering coefficient for the
random graph with a non-Poisson degree distribution is equal to its value z/n for the
Poisson-distributed case, times a function whose leading term goes as the fourth power
of the coefficient of variation of the degree distribution. So the clustering coefficient
still vanishes with increasing graph size, but may have a much larger leading coefficient,
since cv can be quite large, especially for degree distributions with long tails, such as
those seen in Fig. 1.

Take for example the World-Wide Web. If one ignores the directed nature of links
on the Web, then the resulting graph is measured to have quite a high clustering
coefficient of 0.11 (Adamic, 1999), as shown in Table 1. The Erdős–Rényi random
graph with the same n and z, by contrast, has a clustering coefficient of only 0.00023.
However, if we use the degree distribution shown in Fig. 1a to calculate a mean degree
and coefficient of variation for the Web, we get z = 10.23 and cv = 3.685, which
means that (c2

v + (z − 1)/z)2 = 209.7. Eq. (11) then tells us that the random graph
with the correct degree distribution would actually have a clustering coefficient of
C = 0.00023× 209.7 = 0.048. This is still about a factor of two away from the correct
answer, but a lot closer to the mark than the original estimate, which was off by a
factor of more than 400. Furthermore, the degree distribution used in this calculation
was truncated at k = 4096. (The data were supplied to author in this form.) Without
this truncation, the coefficient of variation would presumably be larger still. It seems
possible therefore, that most, if not all, of the clustering seen in the Web can be
accounted for merely as a result of the long-tailed degree distribution. Thus the fact
that our random graph models do not explicitly include clustering is not necessarily
a problem.

On the other hand, some of the other networks of Table 1 do show significantly
higher clustering than would be predicted by Eq. (11). For these, our random graphs
will be an imperfect model, although as we will see they still have much to contribute.
Extension of our models to include clustering explicitly is discussed in Section 6.

It would be possible to continue the analysis of our random graph models using the
simple methods of this section. However, this leads to a lot of tedious algebra which
can be avoided by introducing an elegant tool, the probability generating function.

3 Probability generating functions

In this section we describe the use of probability generating functions to calculate
the properties of random graphs. Our presentation closely follows that of New-
man et al. (2001).

A probability generating function is an alternative representation of a prob-
ability distribution. Take the probability distribution pk introduced in the previous
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section, for instance, which is the distribution of vertex degrees in a graph. The
corresponding generating function is

G0(x) =
∞

∑

k=0

pkx
k. (12)

It is clear that this function captures all of the information present in the original
distribution pk, since we can recover pk from G0(x) by simple differentiation:

pk =
1

k!

dkG0

dxk

∣

∣

∣

∣

x=0

. (13)

We say that the function G0 “generates” the probability distribution pk.
We can also define a generating function for the distribution qk, Eq. (4), of other

edges leaving the vertex we reach by following an edge in the graph:

G1(x) =

∞
∑

k=0

qkx
k =

∑

∞

k=0(k + 1)pk+1x
k

∑

j jpj
=

∑

∞

k=0 kpkx
k−1

∑

j jpj
=

G′

0(x)

z
, (14)

where G′

0(x) denotes the first derivative of G0(x) with respect to its argument. This
generating function will be useful to us in following developments.

3.1 Properties of generating functions

Generating functions have some properties that will be of use in this paper. First, if
the distribution they generate is properly normalized then

G0(1) =
∑

k

pk = 1. (15)

Second, the mean of the distribution can be calculated directly by differentiation:

G′

0(1) =
∑

k

kpk = 〈k〉. (16)

Indeed we can calculate any moment of the distribution by taking a suitable derivative.
In general,

〈kn〉 =
∑

k

knpk =

[(

x
d

dx

)n

G0(x)

]

x=1

. (17)

Third, and most important, if a generating function generates the probability
distribution of some property k of an object, such as the degree of a vertex, then the
sum of that property over n independent such objects is distributed according to the
nth power of the generating function. Thus the sum of the degrees of n randomly
chosen vertices on our graph has a distribution which is generated by the function
[G0(x)]n. To see this, note that the coefficient of xm in [G0(x)]n has one term of
the form pk1

pk2
. . . pkn

for every set {ki} of the degrees of the n vertices such that
∑

i ki = m. But these terms are precisely the probabilities that the degrees sum to m
in every possible way, and hence [G0(x)]n is the correct generating function. This
property is the reason why generating functions are useful in the study of random
graphs. Most of the results of this paper rely on it.
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3.2 Examples

To make these ideas more concrete, let us consider some specific examples of generating
functions. Suppose for instance that we are interested in the standard Erdős–Rényi
random graph, with its Poisson degree distribution. Substituting Eq. (3) into (12),
we get

G0(x) = e−z
∞
∑

k=0

zk

k!
xk = ez(x−1). (18)

This is the generating function for the Poisson distribution. The generating function
G1(x) for vertices reached by following an edge is also easily found, from Eq. (14):

G1(x) =
G′

0(x)

z
= ez(x−1). (19)

Thus, for the case of the Poisson distribution we have G1(x) = G0(x). This identity
is the reason why the properties of the Erdős–Rényi random graph are particularly
simple to solve analytically.7

As a second example, consider a graph with an exponential degree distribution:

pk = (1 − e−1/κ)e−k/κ, (20)

where κ is a constant. The generating function for this distribution is

G0(x) = (1 − e−1/κ)

∞
∑

k=0

e−k/κxk =
1 − e−1/κ

1 − xe−1/κ
, (21)

and

G1(x) =

[

1 − e−1/κ

1 − xe−1/κ

]2

. (22)

As a third example, consider a graph in which all vertices have degree 0, 1, 2, or 3
with probabilities p0 . . . p3. Then the generating functions take the form of simple
polynomials

G0(x) = p3x
3 + p2x

2 + p1x + p0, (23)

G1(x) = q2x
2 + q1x + q0 =

3p3x
2 + 2p2x + p1

3p3 + 2p2 + p1
. (24)

4 Properties of undirected graphs

We now apply our generating functions to the calculation of a variety of properties of
undirected graphs. In Section 5 we extend the method to directed graphs as well.

7This result is also closely connected to our earlier result that the mean number of second neigh-
bours of a vertex on an Erdős–Rényi graph is simply the square of the mean number of first neighbours.
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4.1 Distribution of component sizes

The most basic property we will consider is the distribution of the sizes of connected
components of vertices in the graph. Let us suppose for the moment that we are
below the phase transition, in the regime in which there is no giant component. (We
will consider the regime above the phase transition in a moment.) As discussed in
Section 2, the calculations will depend crucially on the fact that our graphs do not
have significant clustering. Instead, the clustering coefficient—the probability that
two of your friends are also friends of one another—is given by Eq. (11), which tends
to zero as n → ∞. The probability of any two randomly chosen vertices i and j with
degrees ki and kj being connected is the same regardless of where the vertices are. It
is always equal to kikj/(nz), and hence also tends to zero as n → ∞. This means
that any finite component of connected vertices has no closed loops in it, and this is
the crucial property that makes exact solutions possible. In physics jargon, all finite
components are tree-like.

Given this, we can calculate the distribution of component sizes below the transi-
tion as follows. Consider a randomly chosen edge somewhere in our graph and imagine
following that edge to one of its ends and then to every other vertex reachable from
that end. This set of vertices we refer to as the cluster at the end of a randomly chosen
edge. Let H1(x) be the generating function that generates the distribution of sizes of
such clusters, in terms of numbers of vertices. Each cluster can take many different
forms, as shown in Fig. 3. We can follow our randomly chosen edge and find only a
single vertex at its end, with no further edges emanating from it. Or we can find a
vertex with one or more edges emanating from it. Each edge then leads to another
complete cluster whose size is also distributed according to H1(x).

The number of edges k emanating from our vertex, other than the one along which
we arrived, is distributed according to the distribution qk of Eq. (4), and, using the
multiplication property of generating functions from Section 3.1, the distribution of
the sum of the sizes of the k clusters that they lead to is generated by [H1(x)]k.
Thus the total number of vertices reachable by following our randomly chosen edge is
generated by

H1(x) = x

∞
∑

k=0

qk[H1(x)]k = xG1(H1(x)), (25)

.  .  .+++= +

Figure 3: Schematic representation of the possible forms for the connected component of
vertices reached by following a randomly chosen edge. The total probability of all possible
forms (left-hand side) can be represented self-consistently as the sum of the probabilities (right-
hand side) of having only a single vertex (the circle), having a single vertex connected to one
other component, or two other components, and so forth. The entire sum can be expressed in
closed form as Eq. (25).
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where the leading factor of x accounts for the one vertex at the end of our edge, and
we have made use of Eq. (14).

The quantity we actually want to know is the distribution of the sizes of the clusters
to which a randomly chosen vertex belongs. The number of edges emanating from
such a vertex is distributed according to the degree distribution pk, and each such
edge leads to a cluster whose size in vertices is drawn from the distribution generated
by the function H1(x) above. Thus the size of the complete component to which a
randomly vertex belongs is generated by

H0(x) = x
∞

∑

k=0

pk[H1(x)]k = xG0(H1(x)). (26)

Now we can calculate the complete distribution of component sizes by solving (25)
self-consistently for H1(x) and then substituting the result into (26).

Consider for instance the third example from Section 3.2, of a graph in which all
vertices have degree three or less. Then Eq. (25) implies that u = H1(x) is a solution
of the quadratic equation

q2u
2 +

(

q1 −
1

x

)

u + q0 = 0, (27)

or

H1(x) =

1
x − q1 ±

√

(

q1 −
1
x

)2
− 4q0q2

2q2
. (28)

Substituting this into Eq. (26) and differentiating m times then gives the probability
that a randomly chosen vertex belongs to a component of exactly m vertices total.

Unfortunately, cases such as this in which we can solve exactly for H0(x) and H1(x)
are rare. More often no closed-form solution is possible. (For the simple Poissonian
case of the Erdős–Rényi random graph, for instance, Eq. (25) is transcendental and has
no closed-form solution.) We can still find closed-form expressions for the generating
functions up to any finite order in x however, by iteration of (25). To see this,
suppose that we have an approximate expression for H1(x) that is correct up to some
finite order xm, but possibly incorrect at order xm+1 and higher. If we substitute this
approximate expression into the right-hand side of Eq. (25), we get a new expression for
H1(x) and, because of the leading factor of x, the only contributions to the coefficient
of xm+1 in this expression come from the coefficients of xm and lower in the old
expression. Since these lower coefficients were exactly correct, it immediately follows
that the coefficient of xm+1 in the new expression is correct also. Thus, if we start
with the expression H1(x) = q0x, which is correct to order x1, substitute it into (25),
and iterate, then on each iteration we will generate an expression for H1(x) that is
accurate to one order higher. After m iterations, we will have an expression in which
the coefficients for all orders up to and including xm+1 are exactly correct.

Take for example the Erdős–Rényi random graph with its Poisson degree distribu-
tion, for which G0(x) = G1(x) = ez(x−1), as shown in Section 3.2. Then, noting that
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q0 = e−z for this case, we find that the first few iterations of Eq. (25) give

zH
(1)
1 (x) = xze−z + O(x2), (29a)

zH
(2)
1 (x) = xze−z + (xze−z)2 + O(x3), (29b)

...

zH
(5)
1 (x) = xze−z + (xze−z)2 + 3

2(xze−z)3 + 5
3(xze−z)4 + 8

3(xze−z)5 + O(x6),

(29c)

and so forth, from which we conclude that the probabilities Ps of a randomly chosen
site belonging to components of size s = 1, 2, 3 . . . are

P1 = e−z, P2 = ze−2z , P3 = 3
2z2e−3z, P4 = 5

3z3e−4z, P5 = 8
3z4e−5z . (30)

With a good symbolic manipulation program it is straightforward to calculate such
probabilities to order 100 or so. If we require probabilities to higher order it is still
possible to use Eqs. (25) and (26) to get answers, by iterating (25) numerically from
a starting value of H1(x) = q0x. Doing this for a variety of different values of x close
to x = 0, we can use the results to calculate the derivatives of H0(x) and so evaluate
the Ps. Unfortunately, this technique is only usable for the first few Ps, because,
as is usually the case with numerical derivatives, limits on the precision of floating-
point numbers result in large errors at higher orders. To circumvent this problem we
can employ a technique suggested by Moore and Newman (2000), and evaluate the
derivatives instead by numerically integrating the Cauchy formula

Ps =
1

s!

∂sH0

∂xs

∣

∣

∣

∣

x=0

=
1

2πi

∮

H0(ζ) dζ

ζs
, (31)

where the integral is performed around any contour surrounding the origin but inside
the first pole in H0(ζ). For the best precision, Moore and Newman suggest using the
largest such contour possible. In the present case, where Ps is a properly normalized
probability distribution, it is straightforward to show that H0(ζ) must always converge
within the unit circle and hence we recommend using this circle as the contour. Doing
so appears to give excellent results in practice (Newman et al., 2001), with a thousand
or more derivatives easily calculable in reasonable time.

4.2 Mean component size

Although, as we have seen, it is not usually possible to calculate the probability dis-
tribution of component sizes Ps to all orders in closed form, we can calculate moments
of the distribution, which in many cases is more useful anyway. The simplest case
is the first moment, the mean component size. As we saw in Section 3.1, the mean
of the distribution generated by a generating function is given by the derivative of
the generating function evaluated at unity (Eq. (16)). Below the phase transition,
the component size distribution is generated by H0(x), Eq. (26), and hence the mean
component size below the transition is

〈s〉 = H ′

0(1) =
[

G0(H1(x)) + xG′

0(H1(x))H ′

1(x)
]

x=1
= 1 + G′

0(1)H ′

1(1), (32)
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where we have made use of the fact, Eq. (15), that properly normalized generating
functions are equal to 1 at x = 1, so that G0(1) = H1(1) = 1. The value of H ′

1(1) we
can calculate from Eq. (25) by differentiating and rearranging to give

H ′

1(1) =
1

1 − G′

1(1)
, (33)

and substituting into (32) we find

〈s〉 = 1 +
G′

0(1)

1 − G′

1(1)
. (34)

This expression can also be written in a number of other forms. For example, we note
that

G′

0(1) =
∑

k

kpk = 〈k〉 = z1, (35)

G′

1(1) =

∑

k k(k − 1)pk
∑

k kpk
=

〈k2〉 − 〈k〉

〈k〉
=

z2

z1
, (36)

where we have made use of Eq. (6). Substituting into (34) then gives the average
component size below the transition as

〈s〉 = 1 +
z2
1

z1 − z2
. (37)

This expression has a divergence at z1 = z2, which signifies the formation of the
giant component and gives an alternative and more rigorous derivation of the position
of the critical point to that given in Section 2. Using Eq. (34), we could also write
the condition for the phase transition as G′

1(1) = 1.

4.3 Above the phase transition

The calculations of the previous sections concerned the behaviour of the graph below
the phase transition where there is no giant component in the graph. Almost all graphs
studied empirically seem to be in the regime above the transition and do have a giant
component. (This may be a tautologous statement, since it probably rarely occurs to
researchers to consider a network representation of a set of objects or people so loosely
linked that there is no connection between most pairs.) Can our generating function
techniques be extended to this regime? As we now show, they can, although we will
have to use some tricks to make things work. The problem is that the giant component
is not a component like those we have considered so far. Those components had a
finite average size, which meant that in the limit of large graph size they were all tree-
like, containing no closed loops, as discussed in Section 4.1. The giant component, on
the other hand, scales, by definition, as the size of the graph as a whole, and therefore
becomes infinite as n → ∞. This means that there will in general be loops in the giant
component, which makes all the arguments of the previous sections break down. This
problem can be fixed however by the following simple ploy. Above the transition,
we define H0(x) and H1(x) to be the generating functions for the distributions of
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component sizes excluding the giant component. The non-giant components are still
tree-like even above the transition, so Eqs. (25) and (26) are correct for this definition.
The only difference is that now H0(1) is no longer equal to 1 (and neither is H1(1)).
Instead,

H0(1) =
∑

s

Ps = fraction of vertices not in giant component, (38)

which follows because the sum over s is now over only the non-giant components, so
the probabilities Ps no longer add up to 1. This result is very useful; it allows us to
calculate the size S of the giant component above the transition as a fraction of the
total graph size, since S = 1 − H0(1). From Eqs. (25) and (26), we can see that S
must be the solution of the equations

S = 1 − G0(v), v = G1(v), (39)

where v ≡ H1(1). As with the calculation of the component size distribution in
Section 4.1, these equations are not normally solvable in closed form, but a solution
can be found to arbitrary numerical accuracy by iteration starting from a suitable
initial value of v, such as v = 0.

We can also calculate the average sizes of the non-giant components in the standard
way by differentiating Eq. (26). We must be careful however, for a couple of reasons.
First, we can no longer assume that H0(1) = H1(1) = 1 as is the case below the
transition. Second, since the distribution Ps is not normalized to 1, we have to perform
the normalization ourselves. The correct expression for the average component size is

〈s〉 =
H ′

0(1)

H0(1)
=

1

H0(1)

[

G0(H1(1)) +
G′

0(H1(1))G1(H1(1))

1 − G′

1(H1(1))

]

= 1 +
zv2

[1 − S][1 − G′

1(v)]
, (40)

where v and S are found from Eq. (39). It is straightforward to verify that this
becomes equal to Eq. (34) when we are below the transition and S = 0, v = 1.

As an example of these results, we show in Fig. 4 the size of the giant component
and the average (non-giant) component size for graphs with an exponential degree
distribution of the form of Eq. (20), as a function of the exponential constant κ. As
the figure shows, there is a divergence in the average component size at the phase
transition, with the giant component becoming non-zero smoothly above the transi-
tion. Those accustomed to the physics of continuous phase transitions will find this
behaviour familiar; the size of the giant component acts as an order parameter here, as
it did in the Erdős–Rényi random graph in the introduction to this paper, and the av-
erage component size behaves like a susceptibility. Indeed one can define and calculate
critical exponents for the transition using this analogy, and as with the Erdős–Rényi
model, their values put us in the same universality class as the mean-field (i.e., infi-
nite dimension) percolation transition (Newman et al., 2001). The phase transition
in Fig. 4 takes place just a little below κ = 1 when G′

1(1) = 1, which gives a critical
value of κc = (log 3)−1 = 0.910 . . .
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Figure 4: Behaviour of a random graph with an exponential degree distribution of the form
of Eq. (20). Top: fraction of the graph occupied by the giant component. Bottom: average
component size. Note that the horizontal axis is logarithmic.

5 Properties of directed graphs

Some of the graphs discussed in the introduction to this paper are directed graphs.
That is, the edges in the network have a direction to them. Examples are the World-
Wide Web, in which hyperlinks from one page to another point in only one direction,
and food webs, in which predator–prey interactions are asymmetric and can be thought
of as pointing from predator to prey. Other recently studied examples of directed
networks include telephone call graphs (Abello et al., 1998; Hayes, 2000; Aiello et al.,
2000), citation networks (Redner, 1998; Vazquez, 2001), and email networks (Ebel
et al., 2002).

Directed networks are more complex than their undirected counterparts. For a
start, each vertex in an directed network has two degrees, an in-degree, which is
the number of edges that point into the vertex, and an out-degree, which is the
number pointing out. There are also, correspondingly, two degree distributions. In
fact, to be completely general, we must allow for a joint degree distribution of in-
and out-degree: we define pjk to be the probability that a randomly chosen vertex
simultaneously has in-degree j and out-degree k. Defining a joint distribution like this
allows for the possibility that the in- and out-degrees may be correlated. For example
in a graph where every vertex had precisely the same in- and out-degree, pjk would
be non-zero if and only if j = k.

The component structure of a directed graph is more complex than that of an
undirected graph also, because a directed path may exist through the network from
vertex A to vertex B, but that does not guarantee that one exists from B to A. As a
result, any vertex A belongs to components of four different types:

1. The in-component is the set of vertices from which A can be reached.
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2. The out-component is the set of vertices which can be reached from A.

3. The strongly connected component is the set of vertices from which vertex A
can be reached and which can be reached from A.

4. The weakly connected component is the set of vertices that can be reached
from A ignoring the directed nature of the edges altogether.

The weakly connected component is just the normal component to which A belongs
if one treats the graph as undirected. Clearly the details of weakly connected compo-
nents can be worked out using the formalism of Section 4, so we will ignore this case.
For vertex A to belong to a strongly connected component of size greater than one,
there must be at least one other vertex that can both be reached from A and from
which A can be reached. This however implies that there is a closed loop of directed
edges in the graph, something which, as we saw in Section 4.1, does not happen in
the limit of large graph size. So we ignore this case also. The two remaining cases,
the in- and out-components, we consider in more detail in the following sections.

5.1 Generating functions

Because the degree distribution pjk for a directed graph is a function of two variables,
the corresponding generating function is also:

G(x, y) =

∞
∑

j,k=0

pjkx
jyk. (41)

This function satisfies the normalization condition G(1, 1) = 1, and the means of the
in- and out-degree distributions are given by its first derivatives with respect to x
and y. However, there is only one mean degree z for a directed graph, since every
edge must start and end at a site. This means that the total and hence also the
average numbers of in-going and out-going edges are the same. This gives rise to a
constraint on the generating function of the form

∂G

∂x

∣

∣

∣

∣

x,y=1

= z =
∂G

∂y

∣

∣

∣

∣

x,y=1

, (42)

and there is a corresponding constraint on the probability distribution pjk itself, which
can be written

∑

jk

(j − k)pjk = 0. (43)

From G(x, y), we can now define single-argument generating functions G0 and G1

for the number of out-going edges leaving a randomly chosen vertex, and the number
leaving the vertex reached by following a randomly chosen edge. These play a similar
role to the functions of the same name in Section 4. We can also define generating
functions F0 and F1 for the number of edges arriving at a vertex. These functions are
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given by

F0(x) = G(x, 1), F1(x) =
1

z

∂G

∂y

∣

∣

∣

∣

y=1

, (44)

G0(y) = G(1, y), G1(y) =
1

z

∂G

∂x

∣

∣

∣

∣

x=1

. (45)

Once we have these functions, many results follow as before.

5.2 Results

The probability distribution of the numbers of vertices reachable from a randomly cho-
sen vertex in a directed graph—i.e., of the sizes of the out-components—is generated by
the function H0(y) = yG0(H1(y)), where H1(y) is a solution of H1(y) = yG1(H1(y)),
just as before. (A similar and obvious pair of equations governs the sizes of the in-
components.) The average out-component size for the case where there is no giant
component is then given by Eq. (34), and thus the point at which a giant compo-
nent first appears is given once more by G′

1(1) = 1. Substituting Eq. (45) into this
expression gives the explicit condition

∑

jk

(2jk − j − k)pjk = 0 (46)

for the first appearance of the giant component. This expression is the equivalent
for the directed graph of Eq. (9). It is also possible, and equally valid, to define
the position at which the giant component appears by F ′

1(1) = 1, which provides an
alternative derivation for Eq. (46).

But this raises an interesting issue. Which giant component are we talking about?
Just as with the small components, there are four types of giant component, the giant
in- and out-components, and the giant weakly and strongly connected components.
Furthermore, while the giant weakly connected component is as before trivial, the
giant strongly connected component does not normally vanish as the other strongly
connected components do. There is no reason why a giant component should contain
no loops, and therefore no reason why we should not have a non-zero giant strongly
connected component.

The condition for the position of the phase transition given above is derived from
the point at which the mean size of the out-component reachable from a vertex di-
verges, and thus this is the position at which the giant in-component forms (since
above this point an extensive number of vertices can be reached starting from one
vertex, and hence that vertex must belong to the giant in-component). Furthermore,
as we have seen, we get the same condition if we ask where the mean in-component
size diverges, i.e., where the giant out -component forms, and so we conclude that both
giant in- and out-components appear at the same time, at the point given by Eq. (46).

The sizes of these two giant components can also be calculated with only a little
extra effort. As before, we can generalize the functions H0(y) and H1(y) to the regime
above the transition by defining them to be the generating functions for the non-giant
out-components in this regime. In that case, H0(1) is equal to the fraction of all
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vertices that have a finite out-component. But any vertex A that has only a finite
out-component cannot, by definition, belong to the giant in-component, i.e., there
definitely do not exist an extensive number of vertices that can be reached from A.
Thus the size of the giant in-component is simply Sin = 1 − H0(1), which can be
calculated as before from Eq. (39). Similarly the size of the giant out-component can
be calculated from (39) with G0 → F0 and G1 → F1.

To calculate the size of the giant strongly connected component, we observe the
following (Dorogovtsev et al., 2001). If at least one of a vertex’s outgoing edges leads to
anywhere in the giant in-component, then one can reach the giant strongly connected
component from that vertex. Conversely, if at least one of a vertex’s incoming edges
leads from anywhere in the giant out -component, then the vertex can be reached from
the strongly connected component. If and only if both of these conditions are satisfied
simultaneously, then the vertex belongs to the giant strongly connected component
itself.

Consider then the outgoing edges. The function H1(x) gives the probability dis-
tribution of the sizes of finite out-components reached by following a randomly chosen
edge. This implies that H1(1) is the total probability that an edge leads to a finite
out-component (i.e., not to the giant in-component) and as before (Eq. (39)) H1(1) is
the fixed point of G1(x), which we denote by v. For a vertex with k outgoing edges,
vk is then the probability that all of them lead to finite components and 1 − vk is
the probability that at least one edge leads to the giant in-component. Similarly the
probability that at least one incoming edge leads from the giant out-component is
1 − uj, where u is the fixed point of F1(x) and j is the in-degree of the vertex. Thus
the probability that a vertex with in- and out-degrees j and k is in the giant strongly
connected component is (1 − uj)(1 − vk), and the average of this probability over all
vertices, which is also the fractional size of the giant strongly connected component, is

Ss =
∑

jk

pjk(1 − uj)(1 − vk) =
∑

jk

pjk(1 − uj − vk + ujvk)

= 1 − G(u, 1) − G(1, v) + G(u, v), (47)

where u and v are solutions of

u = F1(u), v = G1(v), (48)

and we have made use of the definition, Eq. (41), of G(x, y). Noting that u = v = 1
below the transition at which the giant in- and out-components appear, and that
G(1, 1) = 1, we see that the giant strongly connected component also first appears at
the transition point given by Eq. (46). Thus there are in general two phase transitions
in a directed graph: the one at which the giant weakly connected component appears,
and the one at which the other three giant components all appear.

Applying the theory of directed random graphs to real directed networks has
proved difficult so far, because experimenters rarely measure the joint in- and out-
degree distribution pjk that is needed to perform the calculations described above. A
few results can be calculated without the joint distribution—see Newman et al. (2001),
for instance. By and large, however, the theory presented in this section is still await-
ing empirical tests.
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6 Networks with clustering

Far fewer analytical results exist for networks that incorporate clustering than for
the non-clustered networks of the previous sections. A first attempt at extending
random graph models to incorporate clustering has been made by the present author,
who studied the correction to the quantity z2—the average number of next-nearest
neighbours of a vertex—in graphs with a non-zero clustering coefficient C (Newman,
2001d).

Consider a vertex A, with its first and second neighbours in the network arrayed
around it in two concentric rings. In a normal random graph, a neighbour of A that
has degree m contributes m − 1 vertices to the ring of second neighbours of A, as
discussed in Section 2. That is, all of the second neighbours of A are independent;
each of them is a new vertex never before seen. This is the reasoning that led to
our earlier expression, Eq. (6): z2 = 〈k2〉 − 〈k〉. In a clustered network however, the
picture is different. In a clustered network, many of the neighbours of A’s neighbour
are neighbours of A themselves. This is the meaning of clustering: your friend’s friend
is also your friend. In fact, by definition, an average fraction C of the m−1 neighbours
are themselves neighbours of the central vertex A and hence should not be counted
as second neighbours. Correspondingly, this reduces our estimate of z2 by a factor of
1 − C to give z2 = (1 − C)(〈k2〉 − 〈k〉).

But this is not all. There is another effect we need to take into account if we
are to estimate z2 correctly. It is also possible that we are overcounting the second
neighbours of A because some of them are neighbours of more than one of the first
neighbours. In other words, you may know two people who have another friend in
common, whom you personally don’t know. Such connections create “squares” in the
network, whose density can be quantified by the so-called mutuality M :

M =
mean number of vertices two steps away from a vertex

mean number of paths of length two to those vertices
. (49)

In words, M measures the average number of paths of length two leading to a vertex’s
second neighbour. As a result of the mutuality effect, our current estimate of z2 will
be too great by a factor of 1/M , and hence a better estimate is

z2 = M(1 − C)(〈k2〉 − 〈k〉). (50)

But now we have a problem. Calculating the mutuality M using Eq. (49) re-
quires that we know the mean number of individuals two steps away from the central
vertex A. But this mean number is precisely the quantity z2 that our calculation is
supposed to estimate in the first place. There is a partial solution to this problem.
Consider the two configurations depicted in Fig. 5, parts (a) and (b). In (a) our ver-
tex A has two neighbours D and E, both of whom are connected to F, although F is
not itself an neighbour of A. The same is true in (b), but now D and E are friends
of one another also. Empirically, it appears that in many networks situation (a) is
quite uncommon, while situation (b) is much more common. And we can estimate
the frequency of occurrence of (b) from a knowledge of the clustering coefficient.

Consider Fig. 5c. The central vertex A shares an edge with D, which shares an
edge with F. How many other paths of length two are there from A to F? Well, if A has
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Figure 5: (a) An example of a vertex (F) that is two steps away from the center vertex (A,
shaded), but is connected to two of A’s neighbours (D and E). F should only be counted
once as a second neighbour of A, not twice. (b) A similar situation in which D and E are
also neighbours of one another. (c) The probability of situation (b) can be calculated by
considering this situation. Since D is friends with both E and F, the probability that E and
F also know one another (dotted line), thereby completing the quadrilateral in (b), is by
definition equal to the clustering coefficient.

k1 neighbours, then by the definition of the clustering coefficient, D will be connected
to C(k1 − 1) of them on average. The edge between vertices D and E in the figure is
an example of one such. But now D is connected to both E and F, and hence, using
the definition of the clustering coefficient again, E and F will themselves be connected
(dotted line) with probability equal to the clustering coefficient C. Thus there will on
average be C2(k1 − 1) other paths of length 2 to F, or 1 + C2(k1 − 1) paths in total,
counting the one that runs through D. This is the average factor by which we will
overcount the number of second neighbours of A because of the mutuality effect. As
shown by Newman (2001d), the mutuality coefficient is then given by

M =
〈k/[1 + C2(k − 1)]〉

〈k〉
. (51)

Substituting this into Eq. (50) then gives us an estimate of z2.
In essence what Eq. (51) does is estimate the value of M in a network in which

triangles of ties are common, but squares that are not composed of adjacent triangles
are assumed to occur with frequency no greater than one would expect in a purely
random network. It is only an approximate expression, since this assumption will
usually not be obeyed perfectly. Nonetheless, it appears to give good results. The
author applied Eqs. (50) and (51) to estimation of z2 for the two coauthorship networks
of Fig. 1c, and found that they gave results accurate to within 10% in both cases.

This calculation is certainly only a first step. Ideally we would like to be able to
calculate numbers of vertices at any distance from a randomly chosen central vertex in
the presence of clustering, and to do it exactly rather than just approximately. If this
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were possible, then, as in Section 2, one could use the ratio of the numbers of vertices
at different distances to derive a condition for the position of the phase transition at
which a giant component forms on a clustered graph. At present it is not clear if such
a calculation is possible.

7 Models defined on random graphs

In addition to providing an analytic framework for calculating topological properties
of networks, such as typical path lengths or distributions of cluster sizes, random
graphs form a useful substrate for studying the behaviour of phenomena that take
place on networks. Analytic work in this area is in its infancy; here we describe two
examples of recent work on models that use ideas drawn from percolation theory.

7.1 Network resilience

As emphasized by Albert and co-workers, the highly skewed degree distributions of
Fig. 1 have substantial implications for the robustness of networks to the removal of
vertices (Albert et al., 2000). Because most of the vertices in a network with such
a degree distribution typically have low degree, the random removal of vertices from
the network has little effect on the connectivity of the remaining vertices, i.e., on the
existence of paths between pairs of vertices, a crucial property of networks such as
the Internet, for which functionality relies on connectivity.8 In particular, removal of
vertices with degree zero or one will never have any effect on the connectivity of the
remaining vertices. (Vertices of degree zero are not connected to anyone else anyway,
and vertices of degree one do not lie on any path between another pair of vertices.)

Conversely, however, the specific removal of the vertices in the network with the
highest degree frequently has a devastating effect. These vertices lie on many of
the paths between pairs of other vertices and their removal can destroy the connec-
tivity of the network in short order. This was first demonstrated numerically by
Albert et al. (2000) and independently by Broder et al. (2000) using data for subsets
of the World-Wide Web. More recently however it has been demonstrated analytically
also, for random graphs with arbitrary degree distributions, by Callaway et al. (2000)
and by Cohen et al. (2001). Here we follow the derivation of Callaway et al., which
closely mirrors some of the earlier mathematical developments of this paper.

Consider a simple model defined on a network in which each vertex is either
“present” or “absent”. Absent vertices are vertices that have either been removed, or
more realistically are present but non-functional, such as Internet routers that have
failed or Web sites whose host computer has gone down. We define a probability bk of
being present which is some arbitrary function of the degree k of a vertex, and then

8A few recent papers in the physics literature have used the word “connectivity” to mean the same
thing as “degree”, i.e., number of edges attaching to a vertex. In this paper however the word has its
standard graph theoretical meaning of existence of connecting paths between pairs of vertices.



26 Random graphs as models of networks

define the generating function

F0(x) =
∞
∑

k=0

pkbkx
k, (52)

whose coefficients are the probabilities that a vertex has degree k and is present. Note
that this generating function is not equal to 1 at x = 1; instead it is equal to the
fraction of all vertices that are present. By analogy with Eq. (14) we also define

F1(x) =

∑

k kpkbkx
k−1

∑

k kpk
=

F ′

0(x)

z
. (53)

Then the distributions of the sizes of connected clusters of present vertices reachable
from a randomly chosen vertex or edge are generated respectively by

H0(x) = 1 − F0(1) + xF0(H1(x)), H1(x) = 1 − F1(1) + xF1(H1(x)), (54)

which are logical equivalents of Eqs. (25) and (26).
Take for instance the case of random failure of vertices. In this case, the proba-

bility bk of a vertex being present is independent of the degree k and just equal to a
constant b, which means that

H0(x) = 1 − b + bxG0(H1(x)), H1(x) = 1 − b + bxG1(H1(x)), (55)

where G0(x) and G1(x) are the standard generating functions for vertex degree,
Eqs. (12) and (14). This implies that the mean size of a cluster of connected and
present vertices is

〈s〉 = H ′

0(1) = b + bF ′

0(1)H ′

1(1) = b

[

1 +
bG′

0(1)

1 − bG′

1(1)

]

, (56)

and the model has a phase transition at the critical value of b

bc =
1

G′

1(1)
. (57)

If a fraction b < bc of the vertices are present in the network, then there will be no
giant component. This is the point at which the network ceases to be functional in
terms of connectivity. When there is no giant component, connecting paths exist only
within small isolated groups of vertices, but no long-range connectivity exists. For a
communication network such as the Internet, this would be fatal. As we would expect
from the arguments above however, bc is usually a very small number for networks
with skewed degree distributions. For example, if a network has a pure power-law
degree distribution with exponent α, as both the Internet and the World-Wide Web
appear to do (see Fig. 1a and 1b), then

bc =
ζ(α − 1)

ζ(α − 2) − ζ(α − 1)
, (58)

where ζ(x) is the Riemann ζ-function. This expression is formally zero for all α ≤ 3.
Since none of the distributions in Fig. 1 have an exponent greater than 3, it follows
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that, at least to the extent that these graphs can be modelled as random graphs,
none of them has a phase transition at all. No matter how many vertices fail in
these networks, as long as the failing vertices are selected at random without regard
for degree, there will always be a giant component in the network and an extensive
fraction of the vertices will be connected to one another. In this sense, networks
with power-law distributed degrees are highly robust, as the numerical experiments
of Albert et al. (2000) and Broder et al. (2000) also found.

But now consider the case in which the vertices are removed in decreasing order
of their degrees, starting with the highest degree vertex. Mathematically we can
represent this by setting

bk = θ(kmax − k), (59)

where θ(x) is the Heaviside step function

θ(x) =

{

0 for x < 0
1 for x ≥ 0.

(60)

This is equivalent to setting the upper limit of the sum in Eq. (52) to kmax.
For this case we need to use the full definition of H0(x) and H1(x), Eq. (54), which

gives the position of the phase transition as the point at which F ′

1(1) = 1, or

∑

∞

k=1 k(k − 1)pkbk
∑

∞

k=1 kpk
= 1. (61)

Taking the example of our power-law degree distribution again, pk ∝ k−α, this then
implies that the phase transition occurs at a value kc of kmax satisfying

H
(α−2)
kc

− H
(α−1)
kc

= ζ(α − 1), (62)

where H
(r)
n is the nth harmonic number of order r:

H(r)
n =

n
∑

k=1

1

kr
. (63)

This solution is not in a very useful form however. What we really want to know
is what fraction fc of the vertices have been removed when we reach the transition.
This fraction is given by

fc = 1 −
H

(α)
kc

ζ(α)
. (64)

Although we cannot eliminate kc from (62) and (64) to get fc in closed form, we can
solve Eq. (62) numerically for kc and substitute into (64). The result is shown as
a function of α in Fig. 6. As the figure shows, one need only remove a very small
fraction of the high-degree vertices to destroy the giant component in a power-law
graph, always less than 3%, with the most robust graphs being those around α = 2.2,
interestingly quite close to the exponent seen in a number of real-world networks
(Fig. (1)). Below α = 2, there is no real solution for fc: power-law distributions
with α < 2 have no finite mean anyway and therefore make little sense physically.
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Figure 6: The critical fraction, Eq. (64), of highest degree vertices that must be removed in
order to destroy the giant component in a graph with a power-law degree distribution having
exponent α.

And fc = 0 for all values α > 3.4788 . . ., where the latter figure is the solution of
ζ(α − 2) = 2ζ(α − 1), because the underlying network itself has no giant component
for such values of α (Aiello et al., 2000).

Overall, therefore, our results agree with the findings of the previous numerical
studies that graphs with skewed degree distributions, such as power laws, can be
highly robust to the random removal of vertices, but extremely fragile to the specific
removal of their highest-degree vertices.

7.2 Epidemiology

An important application of the theory of networks is in epidemiology, the study
of the spread of disease. Diseases are communicated from one host to another by
physical contact, and the pattern of who has contact with whom forms a contact

network whose structure has implications for the shape of epidemics. In particular,
the small-world effect discussed in Section 2 means that diseases will spread through
a community much faster than one might otherwise imagine.

In the standard mathematical treatments of diseases, researchers use the so-called
fully mixed approximation, in which it is assumed that every individual has equal
chance of contact with every other. This is an unrealistic assumption, but it has proven
popular because it allows one to write differential equations for the time evolution of
the disease that can be solved or numerically integrated with relative ease. More
realistic treatments have also been given in which populations are divided into groups
according to age or other characteristics. These models are still fully mixed within
each group however. To go beyond these approximations, we need to incorporate a
full network structure into the model, and the random graphs of this paper and the
generating function methods we have developed to handle them provide a good basis
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for doing this.
In this section we show that the most fundamental standard model of disease

propagation, the SIR model, and a large set of its generalized forms, can be solved on
random graphs by mapping them onto percolation problems. These solutions provide
exact criteria for deciding when an epidemic will occur, how many people will be
affected, and how the network structure or the transmission properties of the disease
could be modified in order to prevent the epidemic.

7.3 The SIR model

First formulated (though never published) by Lowell Reed and Wade Hampton Frost
in the 1920s, the SIR model (Bailey, 1975; Anderson and May, 1991; Hethcote, 2000)
is a model of disease propagation in which members of a population are divided into
three classes: susceptible (S), meaning they are free of the disease but can catch
it; infective (I), meaning they have the disease and can pass it on to others;9 and
removed (R), meaning they have recovered from the disease or died, and can no longer
pass it on. There is a fixed probability per unit time that an infective individual will
pass the disease to a susceptible individual with whom they have contact, rendering
that individual infective. Individuals who contract the disease remain infective for a
certain time period before recovering (or dying) and thereby losing their infectivity.

As first pointed out by Grassberger (1983), the SIR model on a network can be
simply mapped to a bond percolation process. Consider an outbreak on a network that
starts with a single individual and spreads to encompass some subset of the network.
The vertices of the network represent potential hosts and the edges represent pairs of
hosts who have contact with one another. If we imagine occupying or colouring in all
the edges that result in transmission of the disease during the current outbreak, then
the set of vertices representing the hosts infected in this outbreak form a connected
percolation cluster of occupied edges. Furthermore, it is easy to convince oneself that
each edge is occupied with independent probability. If we denote by τ the time for
which an infected host remains infective and by r the probability per unit time that
that host will infect one of its neighbours in the network, then the total probability
of infection is

T = 1 − lim
δt→0

(1 − r δt)τ/δt = 1 − e−rτ . (65)

This quantity we call the transmissibility, and it is the probability that any edge on
the network is occupied. The size distribution of outbreaks of the disease is then given
by the size distribution of percolation clusters on the network when edges are occupied
with this probability. When the mean cluster size diverges, we get outbreaks that
occupy a finite fraction of the entire network, i.e., epidemics; the percolation threshold
corresponds to what an epidemiologist would call the epidemic threshold for the
disease. Above this threshold, there exists a giant component for the percolation
problem, whose size corresponds to the size of the epidemic. Thus, if we can solve
bond percolation on our random graphs, we can also solve the SIR model.

9In common parlance, the word “infectious” is more often used, but in the epidemiological literature
“infective” is the accepted term.
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In fact, we can also solve a generalized form of the SIR in which both τ and r are
allowed to vary across the network. If τ and r instead of being constant are picked
at random for each vertex or edge from some distributions P (τ) and P (r), then the
probability of percolation along any edge is simply the average of Eq. (65) over these
two distributions (Warren et al., 2001; Newman, 2002):

T = 1 −

∫

P (r)P (τ) e−rτ dr dτ. (66)

7.4 Solution of the SIR model

The bond percolation problem on a random graph can be solved by techniques very
similar to those of Section 7.1 (Callaway et al., 2000; Newman, 2002). The equivalent
of Eq. (55) for bond percolation with bond occupation probability T is

H0(x) = xG0(H1(x)), H1(x) = 1 − T + TxG1(H1(x)), (67)

which gives an average outbreak size below the epidemic threshold of

〈s〉 = H ′

0(1) = 1 +
TG′

0(1)

1 − TG′

1(1)
. (68)

The threshold itself then falls at the point where TG′

1(1) = 1, giving a critical trans-
missibility of

Tc =
1

G′

1(1)
=

〈k〉

〈k2〉 − 〈k〉
=

z1

z2
, (69)

where we have used Eq. (6). The size S of the epidemic above the epidemic transition
can be calculated by finding the solution of

S = 1 − G0(v), v = 1 − T + TG1(v), (70)

which will normally have to be solved numerically, since closed form solutions are rare.
It is also interesting to ask what the probability is that an outbreak starting with a
single carrier will become an epidemic. This is precisely equal to the probability that
the carrier belongs to the giant percolating cluster, which is also just equal to S. The
probability that a given infection event (i.e., transmission along a given edge) will give
rise to an epidemic is v ≡ H ′

1(1).
Newman and co-workers have given a variety of further generalizations of these

solutions to networks with structure of various kinds, models in which the probabili-
ties of transmission between pairs of hosts are correlated in various ways, and models
incorporating vaccination, either random or targeted, which is represented as a site
percolation process (Ancel et al., 2001; Newman, 2002). To give one example, con-
sider the network by which a sexually transmitted disease is communicated, which is
also the network of sexual partnerships between individuals. In a recent study of 2810
respondents, Liljeros et al. (2001) recorded the numbers of sexual partners of men and
women over the course of a year. From their data it appears that the distributions of
these numbers follow a power law similar to those of the distributions in Fig. 1, with
exponents α that fall in the range 3.1 to 3.3. If we assume that the disease of interest
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is transmitted primarily by contacts between men and women (true only for some
diseases), then to a good approximation the network of contacts is bipartite, having
two separate sets of vertices representing men and women and edges representing con-
tacts running only between vertices of unlike kinds. We define two pairs of generating
functions for males and females:

F0(x) =
∑

j

pjx
j, F1(x) =

1

µ

∑

j

jpjx
j−1, (71)

G0(x) =
∑

k

qkx
k, G1(x) =

1

ν

∑

k

kqkx
k−1, (72)

where pj and qk are the two degree distributions and µ and ν are their means. We
can then develop expressions similar to Eqs. (68) and (69) for an epidemic on this
new network. We find, for instance, that the epidemic transition takes place at the
point where TmfTfm = 1/[F ′

1(1)G′

1(1)] where Tmf and Tfm are the transmissibilities
for male-to-female and female-to-male infection respectively.

One important result that follows immediately is that if the degree distributions
are truly power-law in form, then there exists an epidemic transition only for a small
range of values of the exponent α of the power law. Let us assume, as appears to be the
case (Liljeros et al., 2001), that the exponents are roughly equal for men and women:
αm = αf = α. Then if α ≤ 3, we find that TmfTfm = 0, which is only possible if at
least one of the transmissibilities Tmf and Tfm is zero. As long as both are positive,
we will always be in the epidemic regime, and this would clearly be bad news. No
amount of precautionary measures to reduce the probability of transmission would ever
eradicate the disease. (Similar results have been seen in other types of models also
(Pastor-Satorras and Vespignani, 2001; Lloyd and May, 2001).) Conversely, if α > αc,
where αc = 3.4788 . . . is the solution of ζ(α−2) = 2ζ(α−1), we find that TmfTfm > 1,
which is not possible. (This latter result arises because networks with α > αc have
no giant component at all, as mentioned in Section 7.1 (Aiello et al., 2000).) In this
regime then, no epidemic can ever occur, which would be good news. Only in the small
intermediate region 3 < α < 3.4788 . . . does the model possess an epidemic transition.
Interestingly, the real-world network measured by Liljeros et al. (2001) appears to fall
precisely in this region, with α ' 3.2. If true, this would be both good and bad news.
On the bad side, it means that epidemics can occur. But on the good side, it means
that that it is in theory possible to prevent an epidemic by reducing the probability of
transmission, which is precisely what most health education campaigns attempt to do.
The predicted critical value of the transmissibility is ζ(α − 1)/[ζ(α − 2) − ζ(α − 1)],
which gives Tc = 0.363 . . . for α = 3.2. Epidemic behaviour would cease were it
possible to arrange that TmfTfm < T 2

c .

8 Summary

In this paper we have given an introduction to the use of random graphs as models
of real-world networks. We have shown (Section 2) how the much studied random
graph model of Erdős and Rényi can be generalized to the case of arbitrary degree
distributions, allowing us to mimic the highly skewed degree distributions seen in
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many networks. The resulting models can be solved exactly using generating function
methods in the case where there is no clustering (Sections 3 and 4). If clustering is
introduced, then solutions become significantly harder, and only a few approximate
analytic results are known (Section 6). We have also given solutions for the properties
of directed random graphs (Section 5), in which each edge has a direction that it
points in. Directed graphs are useful as models of the World-Wide Web and food
webs, amongst other things. In the last part of this paper (Section 7) we have given
two examples of the use of random graphs as a substrate for models of dynamical
processes taking place on networks, the first being a model of network robustness
under failure of vertices (e.g., failure of routers on the Internet), and the second being
a model of the spread of disease across the network of physical contacts between
disease hosts. Both of these models can be mapped onto percolation problems of one
kind of another, which can then be solved exactly, again using generating function
methods.

There are many conceivable extensions of the theory presented in this paper. In
particular, there is room for many more and diverse models of processes taking place
on networks. It would also be of great interest if it proved possible to extend the
results of Section 6 to obtain exact or approximate estimates of the global properties
of networks with non-zero clustering.
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