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CHAPTER 15

USING SIMULATION TO ANALYZE
SIMPLE POSITIVE AND NEGATIVE
LOOPS

The computer simulation techniques developed so far can be used to analyze
the behavior of simple positive and negative loops. Because simple positive
and negative loops form the building blocks of more complex models, it is im-
portant to understand the kinds of behavior they can generate in fairly rich de-
tail. The examples that follow illustrate some of the most common positive
and negative loop structures, and some usefuf ways of employing simulation to
probe system behavior. :

EXAMPLE I: YEAST BUDDING (POSITIVE LOOPS)

The simplest and most fundamental positive feedback leop consists of one
level and one rate, and the rate is directly proportional to the level. An exam-
ple, shown in Figure 15.1, is the model of yeast budding taken from Chapter
14. (The equations for this model are listed after Exercise 3 of Chapter 14.)

e YEAST
CELLS

BUDDING ~

Figure 15.1 Flow diagram of yeast budding
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In a simple positive feedback loop with one rate and one level, as the leve[
increases, the rate increases as well, so the level grows at an increasing pace. If
the rate is directly proportional to the level (as in the yeast example), the be-
havior gencrated is exponential growth.

A quantity that is growing exponentially will double in a fixed amount of
time, no matter how long it has been growing or how large the quantity has be-
come. For example, in the yeast budding loop, if the budding fraction
BUDFR = 0.1, it can be shown that the doubling time for the number of yeast
cells is roughly 7 hours. Thus, if the initial number of veast cells is 10, the nuem-
ber of cells will reach 20 in about 7 hours, and it will reach 40 in another 7
hours.' ’ )

The following exercises provide an opportunity o explore the relationship
between the growth fraction and the doubling time in simple positive loops.

Exercise I: Simulation of a Positive Feedback Loop

Look up the equations for yeast growth from Chapter 14. From your first ragn
of the model, describe the behavior of the level and rate.

Exercise 2: Doubling Time
#. Run the yeast model for forty simulated hours.

b. Measuré the time needed for the number of yeast cells to double from the
initial value of yeast.

c. Measure the time fequired for the number of yeast to double from its
value at hour twenty.

Exercise 3: Effect of Budding Fraction
a. Run the yeast model with a budding fraction of 0.2,

b. Run the model with a budding fraction of 0.05. How do the results differ?
Does the model still generate exponential growth? Is there a value of the
budding fraction which will cause the model not to produce exponential
growth?

c. Ifthe budding fraction were negative, would the feedback loop still be
positive?

Exercise 4: The Baﬁk Account—Part I

Suppose you deposit $500 in a bank account earning 10 percent interest com-
pounded annually. -
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a. Draw a causal-loop diagram and flow diagram for the bank account case.
(Assume no money is withdrawn from the account.)

b. Write DYNAMO equations and simulate the bank account for a twenty-
year period. (Set DT = 1 year).

¢. How much money is in the account in year twenty? What is the doubling '
time for the account?

Exercise 5: The Bank Account—Part II

In Part I of the bank account problem, you deposited $500 in the bank and left
it there to gather interest. Suppose the account earns interest exactly as before,
but you must withdraw at the constant rate of $50 per vear from the account.

a. Modify your flow diagram to include the withdrawal rate of $50 per year.

b. Modify your DYNAMO equations and run the model on the computer.
How do the results differ from your results in Part I?

¢. Suppose you begin with $600 in your account, rather than $500, and with-
draw 350 per year. How do the results differ?

d. Suppose you begin with $400 in the account. How do the results differ?

STARTING A MODEL IN EQUILIBRIUM

In analyzing the behavior of a system, it is often helpful to begin by determin-
ing the systern’s equilibrium point. This can be done by trial and error, but it is
often easier to determine the equilibrium point by examining the flow diagram
and system equations. For example, in the preceding bank account case, equi-
librium occurs when the money withdrawn each year exactly equals the
amount of interest earned. If $50 is withdrawn per year, this means that equi-
librium occurs when $50 interest is earned. If the rate is 10 percent, this corre-
sponds to a bank account balance of $500.

Once you have determined the equilibrium point mathematically, it is easy
to check your calculations by simulating the results on the computer. Just set
the initial values of the system levels to their equilibrium points. If your calcu-
lations are correct, the model should remain in equilibrivm.

Exercise 6: Calculating Equilibrium Values

a. Suppose you withdraw $60 per year from a savings account earning 10
percent interest. What is the equilibrium balance?

b. Suppose you withdraw $50 per year from an account earning 8 percent in-
terest. What is the equilibrium balance?
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EXAMINING A SYSTEM'S RESPONSE TO DISTURBANCES—PART 1

Once you have started a system in equilibrium, it is often useful te see how the
system responds to exogenous (i.e., outside the system) disturbances. For
example, suppose you place $500 in a bank account earning 10 percent inter-
est, and withdraw $50 per year. Then, however, starting five years from now,
it becomes necessary to withdraw $75 per year. How will the system respond?

One way to test the response of the system is to use a special DYNAMO
function called the STEP function to simulate the sudden $25 increase in the
withdrawal rate beginning in five years. A reasonable set of equations for the
model includes the following: :

BANK ACCOUNT

BAL.K=BAL.J+(DTHINT.JK - WDRW.JK) DOLLARS
BAL =500

INT.KL ={0.10)(BAL,K) POLLARS/YEAR

WDRW KL =50+ STEP(25,5) DOLLARS/YEAR’

mmZ ok

The expression ““STEP(23,5)" instructs the computer to increase the with-
drawal rate by 25 dollars in year 5. Thus a graph of the withdrawal rate would
look like Figure 15.2, '

‘The STEP function can be used whenever it is necessary to simulate a sud-
den step change in a system rate. The general DYNAMO form of the STEP
function is:

STEP(HEIGHT,STTIME)

where HEIGHT is the height of the STEP, and STTIME is the abbreviation
for step time, the time when the step occurs. Any numerical values can be used
for HEIGHT and STTIME.

75
WITHORAWAL
RATE
{'$/ YEAR)
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TIME (YEARS}

Figure 15,2 Step function graphed
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Exercise 7: Using the STEP Function

a. Usethe STEP function to test the response of the bank account model to
an increase in the withdrawal rate from $50 to $75 at TIME = five years.
. What behavior does the system generate?

b. Usethe STEP function to test the response to the mode! to a decrease in
the withdrawal rate from $50 to $30 at TIME = three years. What behav-
ior does the system generate?

EXAMPLE II: YEAST DEATHS (NEGATIVE LOOP})

The simplest and most fundamental negative loop contains one rate and one
level. An example, shown in Figure 15.3, is the yeast deaths case taken from
Chapter 14. If, in a simple negative loop, the rate is directly proportional to
the level, the loop will generate exponential decay.

YEAST < -
CELLS o

. YEAST
>~ . DEATHS

Figure 15.3 Yeast deaths

A quantity that is decaying exponentially will move half-way to its equi-
librium value in a fixed amount of time, no matter how far from equilibrium it
begins. For example, if the average lifetime of yeast is 20 hours, it can be
shown that the halving time is 14 hours. Thus if the initial number of yeast
cells is 10, the number of cells will fall to 5 in 14 hours; and it will fall to 2.5 in
another 14 hours.?

The exercises that follow provide an opportunity to explore the relation-
ship between the average lifetime and the halving time for simple negative
loops.

Exercise 8: Simulation of a Negative Loop

Simulate the yeast deaths loop, using the equations developed in Chapter 14.
(Assume an initial value of 10 yeast cells, and do not include yeast budding.)

Examine the behavior of the level and the rate. How do they differ from the

behavior of the yeast budding loop? What is the equilibrium point for the

number of yeast cells?
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Exercise 9: Halving Time

How long does it take the number of yeast cefls to get half-way from its initial
value to its equilibrium value? How long does it take it to get from half-way 1o
one-quarter of the way?

Exercise 10: Effect of the Yeast Lifetime

Run the model with an average lifetime of yeast equal to 10 hours. Run the
model again with the average lifetime of yeast equal to 40 hours. Does the
behavior in each case still represent exponential decay? How do the results dif-
fer?

Exercise 11: Yeast Medel with Budding and Deaths

Run the yeast model, including both veast budding and yeast deaths. Does the
model exhibit exponential growth or decay? If the model exhibits growth, try
to find values of constants that will cause the model to show decay. If the
model shows decay, try to find values of constants that will cause the model to
show growth, Is there a set of constants that will cause the model to show
growth and then decay? Why or why not?

Exercise 12: Central Library—Part I

Books in the Central Library in East Rapids are frequently stelen or lost, and
often they just plain fall apart. In fact, the average lifetime of books in the li-
brary is just 10 years. The East Rapids City Council provides a library budget
large enough for the purchase of 500 new books a year.

a. Draw a causal-loop diagram and flow diagram for the Central Library
case,

b. Write equations for the model.

¢. Determine the equilibrium point for the number of books in the library,
and start the model in equilibrium.

Exercise 13: Central Library—Part 11

The City Counci! in East Rapids has just completed a lengthy analysis of its
budget, and, as a result, the library budget is expected to fall sharply, starting
in three years. With the planned budget cut, the library will be able to purchase
only 300 books a year, rather than 500.
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a. Use a STEP function to sirnuiate the effects of the sharp reduction in the
book purchase rate in three years,

b. What is the new equilibiium level of books? How long does it take the
number of books to fail half-way to the new equilibrium level?

¢. Suppose a wealthy donor provides an endowment that permits the library
to purchase 700 books a year, beginning in six years. Use a STEP function
to simulate the increase in the purchase rate, What is the new equilibrium?
How long does it take the number of books to rise half-way to the new
equilibrium?

d. How would the number of books in the Central Library be affected, if
the average lifetime of books could be increased from 10 years to 20
years?

MORE COMPLEX RATE FORMULATIONS

The simple positive and negative loops considered so far all involve rate equa-
tions based on one of the following three forms:

RATE = CONSTANT ‘
RATE = LEVEL«(GROWTH FRACTION)
RATE = LEVEL/(AVERAGE LIFETIME)

The following example introduces a rate formulation that is closely related to
the average lifetime formulation, but is mere complex. -

EXAMPLE III: COFFEE COOLING (NEGATIVE LOOP)

This example involves performing a simple physical experiment and then
medeling the system in the experiment. You will need the following equip-
ment: ' '

I. Acup of hot coifee or other liquid at a temperature well above room
temperature;

2. A thermometer capable of measuring the temperature of the coffee (use
one that will rcad at least as high as 100 degrees Celsius; a laberatory or -
candy thermometer should work);

3. A watch or stop watch;
4. A pencil and paper.

While the temperature is still hot, measure the coffee’s temperature at
regular intervals (every few minutes). Record the temperature and the time of
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the reading on a sheet of paper. Stop taking readings when the temperature is
near room temperature.

=T
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Exercise 14: Craphing Temperature

Plot the iemperature versus time.

MODELING TEMPERATURE CHANGE

Development of a model of coffee cooling starts, of course, with a causal-loop
diagram. Figure 15.4 depicts a possible diagram.

The diagram says that the decline in temperature reduces the temperature,
and the lower the temperature, the smaller the decline. (Is this hypothesis con-
sistent with the data from your experiment?) Figure 15.5 depicts a flow dia-
gram based on the causal-loop diagram in Figure 15.4.

DECLINE IN '
TEMPERATURE - TEMPERATURE

Figure 15.4 Causal-loop diagram of temperature change
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TEMPERATURE

Figure 15.5 Flow diagram of temperature change

Using the name TEMP for temperature (in degrees Celsius} and the name
DECLINE for the decline in temperature (in degrees Celsius per minute), the
level equation for temperature can be written in the usual form:

TEMP.K = TEMP.J +(DT) (- DECLINE.JK)

Now, how should the rate equation for the decline in temperature
DECLINE be formulated? Two assumptions are involved. First, according to
the causal-loop diagram, the higher the temperature, the faster the decline.
Second, common sense suggests that, when a cup of coffee reaches room tem-
perature, it will not decline further. Therefore, perhaps the decline in tempera-
ture shoutld be formulated as a function of the difference between the tempera-
ture of the coffee and room temperature. The further above room temperature
a cup of coffee is, the faster its temperature will decline.

This suggests the following rate equation:

DECLNE.KL =(TEMP.K—~ROOMTP)/T

where ROOMTP is room temperature, and T is a *‘cooling constant.””

The ““cooling constant™” T determines how fast the adjustment of temper-
ature occurs, (Thus T is measured in minutes.) The larger the value of T, the
slower the decline in temperature. The value of T might depend on several
things. One is the type of coffee container. For example, a glass generally will
release heat more quickly than a ceramic cup. (You might redo the previous
exercise, comparing several containers.) In addition, the larger the surface area
of the container relative to the volume of liquid, the smaller T generally will
be.

Exercise 15: Simulating the Coffee Cooling Case

Write DYNAMO equations and simulate the coffee cooling system. (Set
DT =1 minute.) Once you have simulated the values of temperature, plot them
on the graph you used for Exercise 14. To carry out the simulation, you need
to estimate T. There are at least two ways to do this. One is to start by
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simulating the system using a guess for T. If the simulated ternperature drops
faster than in the experiment, increase T and redo the simulation. Similarly, if
the simulated temperature drops more slowly than the experimenta! data,
decrease T. Keep trying values of T until the behavior of the model matches
the behavior in the experiment.

Another way to estimate T is as follows. Let TEMP.J equal one observa.
tion in the experiment, tet TEMP.K equal the next observation, and let DT
equal the time between observations. Then T can be estimated using the for.
mula:

T=(DT) (TEMP.J— ROOMTP}/(TEMP J-TEMP.K)

For example if a reading at one point is 50 degrees Celsius and two minutes
later is 45 degrees Celsius, and if room temperature is 20 degrees Celsius, then
T would be:

(2)(50-20)/(50 -45) = 12

Averaging two or more estimates will give a more accurate value of T,

AUXILIARY VARIABLES

The coffee flow coding diagram in Figure 15.5 has one defect: much of the
detail involved in the rate equation for the decline in coffee temperature is hid-
den in a singled dashed line connecting the level and the rate. One way to
clarify the flow diagram is to define a new variable DIFF, which is the differ-
ence between the temperature of the coffee (TEMP) and the room temperature
(ROOMTP): DIFF.K = TEMP.K ~-ROOMTP, This new variable is called an
auxifiary variable because it aids in forming a rate. (This is similar to the role
of auxiliary verbs in English, which aid in expressing an action verb.) Using the
auxiliary variable DIFF, the equations for the coffee cooling model can be re-
written as follows:

TEMP.K=TEMP.J+ (DT)(- BECLNE.JK) DEGREES
TEMP =350

DECLNE KL =DIFF. K/T DEGREES/MINUTE
T=MINUTES

DIFF. K =TEMP.K-ROOMTP DEGREES
ROOMTP=20 DEGREES

O oRZC

Figure 15.6 indicates how DIFF can be added to the coffce cooling flow
diagram.

Auxiliary variables are often useful in formulating complex rate equa-
tions. Auxiliaries arise when the formulation of a level’s influence on a rate
mvolves one or more intermediate calculations—similar to the calculation of
DIFF in the coffee cooling case. This sort of intermediate calculation occurs
quite frequently in complex models, as will be seen, and the use of auxiliaries
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Figure 15.6 Flow diagram with auxiliary added

can clarify otherwise confusing formulations. A summary of flow diagrams
symbols is given at the end of this chapter.

THE GOAL-GAP FORMULATION

The rate equation for the decline in temperature in the coffee-cooling model is
an example of a quite general rate formulation:

RATE =(LEVEL —GOALY/(ADJUSTMENT TIME) .

In the coffee cooling example, the coffec temperature (the system level) can be
viewed as drifting toward a “*goal”’ (the room temperature). The “‘adjustment
time” in this formulation plays a role analogous to the average lifetime in a
simple decay formulation: It determines how rapidly the system level adjusts
toward its geal. In fact, the simple decay formulation can be viewed as a
special case of the goal formulation, in which the “goal’’ is zero.

RATE = LEVEL/(ADJUSTMENT TIME)

The goal formulation is frequently wseful in representing purposeful
action. For example, suppose the manager of a department store wishes to
- maintain a certain fixed number of shoes in stock. The rate at which the man-
ager orders new shoes might depend on the diffcrence bet ween the actual num-
ber of shoes in stock and the goal (i.e., the number the manager desires).
Furthermore, if a gap exists between the number of shoes desired and the
actual number in stock, the manager might not attempt to fill the gap all at
once, but might prefer to close the gap gradually, over a period of time.
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In this case, the shoe order rate might be written:
ORDERS.KL = (GOAL — SHOES.K)/ADJT

This indicates that the number of shoes ordered per month (ORDERS)
depends on the gap between the desired number of shoes in stock (the GOAL)
and the current level of shoes in stock (SHOES). Furthermore, the gap is not
closed all at once, but instead is closed over a period of time, the adjustiment
time ADJT. (Note that, in this case, the order rate is formulated “*GOQAL
minus LEVEL.” In the coffee cooling example, the decline rate was formulat-
ed “LEVEL minus GOAL.”’ The iwo formulations are equally useful. Which
is chosen depends on the logic of the particular example.)

More generally, the goal-gap rate formulation is useful whenever an iden-
tifiable goal exists, aliernatively seen as an objective, a target, a norm, or a
desired condition. In comparison or in contrast to this goal is the actual situg-
tion, which is inevitably a level. The difference between the goal and the actual
condition, the “‘goal-gap,”’ is the motivator or driving force underlying correc-
tive action. But the corrective action does not occur all at once; instead, it
occurs over some adjustment time, (See Figure 15.7.)

The following exercise provides an opportunity to explore the goal-gap
formulation,
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Figure 15.7 Flow diagram for goal-gap formulation
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Exercise 16: Jobs and Migration—Part 1

According to Example IIT in Chapter 3, the availability of job openings in-
fluences workers to migrate into the city; and as workers migrate into the city,
they fill the available openings. This suggests the negative loop shown in Fig-
ure 15.8,

a. Formulate a flow diagram for the jobs and migration case, choosing a
goal-gap structure. (Hini: It is easiest to view the population of workers in
the city as the system level.)

b. Write equations for the model. (Note: You do not need to choose param-
eters or run the model on the computer, That will be treated in the [ast
exercise of this chapter.)

A-&
NUMBER OF
Ngg%EPgNCI}EGS 3 PEOPLE MOVING
J (NTO TOWN

Figure 15.8 Effect of jobs on migration

EXAMINING A SYSTEM’S RESPONSE TO DISTURBANCES—PART I _

Recall that earlier in the chapter, the response of the bank account system to

_an exogenous change in the withdrawal rate was examined, as well as the re-
spense of the library system to an exogenous change in the book acquisition
rate. In a similar fashion, the response of the coffee cooling system to an exog-
enous change in room temperature can be analyzed.

For exampie, suppose a cup of tepid {20 degree Celsius) coffee that has
been sitting on the kitchen table is suddenly placed in the refrigerator. How
would it respond?

Once again, an easy way to examine the response of the system is to use a
STEP function. In this case, the “‘variable’” that needs to be stepped is the
room temperature ROOMTP, which is currently a constant. In order to pro-
duce a step change in ROOMTP, it is necessary to redefine ROOMTP as an
auxiliary variable and give it a subscript K. (ROOMTP must have a subscript,
because it now will vary with time.} This produces the following equations:

L TEMP.K =TEMP.J + (DT)(—DECLNE., JK)
N TEMP =20

R DECLNE. KL DIFF.K/T

C T=
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A DIFF.K = TEMP.K - ROOMTP.K
A ROOMTP.K =20+ STEP(TCHG, 10)
C TCHG=—15

The equation for ROOMTP indicates that after 10 minutes, the room tempera-
ture drops 15 degrees, from 20 to 5.

Exercise 17: Stepping Room Temperature

a. Modify the coffee cooling-model to include the STEP change in
ROOMTP. Run the model with step change from 20 degrees to 5 degrees
as just mentioned.

b. Suppose the coffee was moved from the kitchen table to the sauna (35
degrees centrigrade). How would the system respond?

ADDITIONAL RATE FORMULATIONS

Sometimes, when trying to move from a causal-loop diagram to a flow dia-
gram, it is difficult to decide which variables are levels, which are rates, and
which are auxiliaries. In addition, once rates and levels have been identified, it
is sometimes difficult to decide on an appropriate formulation for the rate
equations. Frequently, none of the formulations discussed so far seem appro-
priate, and new formulations must be invented to fit the purpose. Often,
formulating rate equations requires a certain amount of ingenuity—and a
healthy willingness to try out alternative possibilities. The following example
illustrates some of the problems involved in writing equations for a somewhat
difficult model. :

EXAMPLE IV: PUSHUPS AND PRACTICE (POSITIVE LOOP VERSION)

The causal-locp diagram in Figure 15.9 relates the number of pushups Jim can
do, and the amount he practices. (Sce Exercise 1 in Chapter 4 for a discussion
of this example.)

+
NUMBER OF + AMOUNT OF
PUSHUPS PRACTICE

+

Figure 15,9 Pushups and practice cycle
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Both the number of pushups Jim can do and the amount he practices seem
at first glance to be levels; certainly neither appears to be a rate. This creates a
problem, though, because levels cannot change unless there are rates to change
them. Thus a rate must be “*hidden’’ in the causal-loop diagram. One solution
to the problem is the following. Assume that the number of pushups Jim can
do is a level. Then there ought to be an “‘improvement rate’ that causes the
number of pushups to increase. (Jim’s improvement rate would be the number
of additionai pushups he can do per month.} This produces the causal-loop
diagram shown in Figure [5.10.

Now, what about “Amount of Practice”? One simplifying assumption
would be that the amount Jim practices is a direct function of the number of
pushups ke can do; and the more he practices, the faster he improves. Under
this simplification, ““Amount of Practice’’ would be an auxiliary variable, and
the complete flow diagram would look like Figure 15.11. Of course, more
complicated assumptions about decisions affecting practicing would lead to
quite different flow diagrams. ) ]

Now all that remains is to write the equations. According to the flow dia-
gram, the number of pushups Jim can do influences the amount he practices.
But what is the exact relationship between the two? Jim would have to be
observed for some period to find out. Since this is a speculative model, a
simple plausible relationship will be hypothesized. (In fact, one reason 10 build
a simulation model is to examine the implications of plausible hypothesized
relationships.)

One simple assumption is that the amount Jim practices is a linear func-
tion of the number of pushups he can do. For example, perhaps he practices
one-half minute per day for each pushup he can do. This produces the follow-
ing equation:

Amount of Praclicc(minulcs)=0.S(minutcs/pushup)*Number of
Pushups .

Thus, for example, if Jim can do 30 pushups, he practices 15 minutes a day,
under this assumption,

NUMBER OF
PUSHUPS +
+ n AMOUNT OF
PRACTICE
IMPROVEMENT
RATE
+

Figure 15.10 Pushups and practice—enlarged
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AMOUNT
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Figure 15.11 Flow diagram of pushups and practice

Now, the relationship between the amount Jim practices and his improve-
ment rate must be formulated. It seems plausible to assume that Jim must
practice at least a certain amount of time, simply to maintain his current level
of pushups, Any practice above and beyond this maintenance amount would
result in improved performance, [t might be reasonable to assume that Jim
must practice 10 minutes a day to maintain his performance; and for every
minute he practices above 10, he improves at the rate of 0.2 pushups per
month. This produces the following equation:

Improvement Rate (pushups/month) = (Amount of Practice— 10
minutes)+0.2 (pushups/month/minute)

This relationship implies that when Jim practices 10 minutes a day, he does not
improve at all. If he practices 15 minutes a day, he improves at the rate of 1
pushup per month; and if he practices only 5 minutes a day, his performance
drops by 1 pushup per month.

Exercise 18: A Model of Pushups and Practice

1. Write DYNAMO cquations for the pushup and practice model. (Choose
DT =t month.)

b. Run the model setting the initial number of pushups Jim can do to 30.
Rerun the model, setting the initial number he can do to 20. Rerun the
model again, setting the initial number of pushups to 10, How do the
results differ? Why?
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c. How does the model’s equilibrium point depend on the amount of time
Jim practices per pushup he can do? Run the model several times, choos-
ing different values for this parameter, ““Practice Time per Pushup.”’

d. How does the equilibrium peint depend on the value 0.2 in the equation
relating the amount Jim practices and his improvement rate? Try running
the model with alternate values for this ““Practice Effectiveness’’ param-
eter.

e, How does the equilibrium point depend on the value [0 in the equation
relating the amount Jim practices and his improvement rate? Run the
model with alternate values of the ‘‘Maintenance’” parameter.

EXAMPLE V: PUSHUPS AND PRACTICE (NEGATIVE LOOP VERSION)

An alternative model can be formulated by assuming that Jim has a pushup
goal. Assume that Jim would like to be able to do 50 pushups, and assume as
~ well that the amount he practices is a direct function of how far he is from his
goal. As before, assume that Jim’s improvement rate depends on the amount
he practices. This produces the causal-loop diagram shown in Figure 15.12.

Notice that this goal-gap formulation produces a negative feedback loop,
which controls the amount of practice in an effort to achieve a goal of 50 push-
ups. In Example IV, on the other hand, the loop was positive, potentially
resulting in unlimited growth in Jim’s ability to do pushups.

The new flow diagram looks like Figure 15.13. (As before, still more com-
plicated or different assumptions about decisions affecting practice would lead
to different flow diagrams.)

Now all that remains is to write equations. According to the flow dia-
gram, the difference between the number of pushups Jim would like to do (his
goal) and the number he actually can do (the ““actual’’) influences or activates
the amount he practices. Jim would have to be observed for some period of
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Figure 15.12 Pushups and practice, with goal
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Figure 15.13 Flow diagram of pushups and practice, with goal

time to find out the exact relationship between the size of the ““gap”’ and the
amount he practices. But a plausible hypothesized relationship might be that
Jim will practice one-half minute per day for each pushup he desires but can- -
not do:

Difference(pushups) = Goal for Pushups — Number of Pushups = 50—
Number of Pushups

Amount of Practice(minutes)= 0. 5(minutes/pushup)*Difference
(pushups)

Thus, for example, if Jim can do 20 pushups, while wanting to do 50, he prac-
tices (0.5}(50 —20) = 15 minutes a day. '

Now, all that remains is to specify the relationship between the amount
Jim practices and the rate at which he improves. For simplicity, we might as
well retain the assumption used in Example IV,

Improvement Rate(pushups/month) = (Amount of Practice— 10
minutes)*0.2(pushups/month/minute)

Exercise 19: Pushups and Practice Model, with Goal

a. Write DYNAMO equations for the pushup and practice model, (Choose
DT =1 month.)

b. Run the model setting the initial number of pushups Jim can do to 30. Re-
riin the model, setting the initial number he can do to 20. Rerun the model
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again, setting the initial number of pushups to 10. How do the results dif-
fer? Why?

¢. How does the model’s equilibrium point depend on the amount of time
Jim practices per desired pushup he cannot do? Run the model several
times, choosing different values for this parameter, Practice Time per De-
sired Pushup.

d. How does the equilibrium point depend on the value 0.2 in the equation
relating the amount Jim practices and his improvement rate? Try running
the model with alternate values for this parameter.

e. How does the equilibrium point depend on the value 10 in the equation
relating the amount Jim practices with his improvement rate? Run the
model with alternate values of this Practice Effectiveness parameter.,

f. What changes in equaticon structures or parameters would enable Jim to
reach his goal of 50 pushups? Run the model to demonstrate this.

CHOOSING A YALUE FOR DT

In the exercises and examples so far, an important technical issue has been
treated lightly. The simulation technique used proceeds iteratively, stepping
through time in intervals of length DT, In the library example, for instance,
DT = one year; in the pushups example, DT = one month; in the yeast case,
DT = one hour; and in the coffee cooling example, DT = one minute. Why
were these values chosen to use in simulating the models? What would have
happened had different values for DT been used?

The yeast example will be used to examine some of these issues more care-
fuily. Table 15.1 shows four simulations of the veast budding peositive feed-
back loop, each using a different value of DT. (The four valucs are DT = 10,
DT = 1, DT = 0.5, and DT = (.1.) Table 15.2 shows four simulations of the
yeast deaths negative feedback look, using the same four values of DT.

Table 15.1 Yeast budding simulations

Time )
fhours) DT =Jo DT=1 DT=5 DT = .1
0 10.000 10.000 10.000 - 10.000
5 16:11 16.29 16.45
10 20.000 25.94 26.53 27.05
15 41.77 43.22 44.48
20 | 40.000 67.28 70.40 73.16
25 108.35 114.67 120.32
30 80.000 174.49 186.79 197.88
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Table 15.2 Yeast deaths simulations

Time
(howrs) DT = [t pr=1 DTr=.5 DT =g
1] 10.000 10.600 10.000 10.000
5 7.738 7.763 7.783
10 5.000 5.087 6.027 6.058
15 4.633 4,679 4715
20 2.500 3.585 3.632 1.670
25 2.774 2.820 2.85¢
30 . 1.250 2.146 2.189 2.223

As can be seen, in both the yeast budding and yeast deaths examples, the
precise numerical results produced by the simulations differ depending on the
values chosen for DT. For example, in the yeast budding case, the number of-
yeast cells grows most rapidly when DT = 0.1, and least rapidly when
DT = 10. At first glance, this seems puzzling, since the budding fraction in all
four cases is identical: BUDFR = 0.1. But a2 moment’s reflection suggests an
explanation: The situation is exactly analogous to compound interest. When
DT = I, for example, new cells are added to the yeast population exactly once
per hour. When DT = 5 new cells are added every half hour, and thus new
cells produced in one half-hour interval can themselves produce new yeast
buds in the next half hour. (Hand-simulating the results for two or three
hours, using DT = 1 and DT = 0.5, should illustrate this adequately.)

Which (if any) of these values for DT is correct? Certainly, yeast cells do
not wait uniil the exact stroke of each hour to bud. For that matter, they surely
do not bud exactly on the half hour, or at quarter-hour intervals. Presumably,
individual yeast cells bud at various times throughout the hour.

For all practical purposes, it seems appropriate to assume that yeast cells
bud more or less continuously. That is, at any moment, some yeast cells are in
the process of budding. Similarly, at any moment, some are in the process of
dying. But if this is true, how small a value of DT is needed to represent appro-
priately the yeast cell behavior?

It would be possible, of course, to simulate yeast budding using a DT of
one minute, or even one second, if necessary. The main restriction is a practi-
cal one. The smailer the value selected for DT, the more compuier iime
required to run the model {since more jterations are required). Thus choosing
small values of DT increases the cost of running a model and lengihens the
time spent sitting at the computer waiting for a model run to be compleied.

In general, the proper approach in choosing DT is to select a value small
enough to provide a reasonable approximation of the process being modeled,
put not a value so small that it requires unnecessary computation time.

How small a value of DT is small enough? Consider the yeast deaths case
first. Notice that when DT = 10, the number of yeast cells drops most quickly,
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falling to 1.25 cells in 30 hours. When DT = 1, the number of cells falls some-
what less rapidly, reaching about 2.1 in 30 hours. The results for DT = 0.5 and
DT = 0.1 are very similar to the results for DT = 1. Thus in simulating the
process of yeast deaths, it scems reasonable to choose DT = 1. Choosing a
value of DT less than one would not produce a noticeably better approxima-
tion of the process of yeast deaths, and it would use up unnecessary computer
time.

Now turn to the veast budding loop, When DT = 10, the number of cells
rises most slowly, reaching BO cells in 30 hours. When DT = 1, the number of
cells grows to about 174; when DT = (.5, the number of cells reaches about
187; and when DT = 0.1, the number of cells rises to 197. The results for
DT = 0.5 and DT = 0.1 are fairly similar to one another, although they still
differ a bit. In simulating the process of yeast budding, a value of DT = 0.5 or
possibly DT = 0.1 might be best. (The value used in Chapter 14, DT =1, is
perhaps a bit large.}

When formulating a model, it is important to give some attention to the
choice of DT before using the model to draw any final conclusions about sys-
tem behavior. The easiest way to choose an appropriate vatue of DT is to try
various values, until one small enough is found, such that still. smaller values
do not produce noticeable changes in the simulated results. Once an appropri-
ate choice of DT has been chosen, that value can, in general, continue to be
used when employing the model to analyze system behavior and to test pro-
posed policies. (Of course, experiments with DT should not be conducted
when the model is in equilibrium, or nothing will happen!)

A few general rules of thumb can often provide a good starting point
in selecting DT, Models that generate exponential growth require a DT that
ts much smaller than the doubling time involved. It is often a good first
step to choose a DT from 1/5 to 1/10 the doubling time. (For example, the
doubling time in the yeast budding case is roughly 7 hours. Thus a valuc of
DT around one-half hour is a reasonably conservative choice.} Models that
generate exponential growth over an extended period of time are especially
sensitive to the choice of DT. (For example, the yeast population doubles
roughly 4 times in a 30-hour simulation run, and thus, small errors mount
up fairly quickly.)

Models involving negative loops require a DT smaller than the halving-
times associated with the negative loops. A DT of roughly 1/3 ot 1/4 the halv-
ing time is often a reasonable choice. (For example, the halving time in the
yeast deaths case is roughly 15 hours. Thus any value of DT shorter than4 or 5
hours is appropriate.)

Onme difficulty in trying to apply these rules of thumb is that, for complex
models, it is often hard to determine, in advance of simulating the model, what
the exact doubling times or halving times involved in various loops might be.
In many cases, the rules of thumb provide only a rough general idea, and
madel experiments must be used to select an appropriate DT}
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Exercise 20; Experiments with DT

a.
b.

c.

Run the coffee cooling model, trying various values of DT.
How does the choice of DT affect model behavior?

Which value of DT do you think is best?

Exercise 21: Jobs and Migration—Part 11

Review Exercise 16 earlier in the chapter, and then do the following:

ra.

Use your judgment to select some plausible parameters for the model of
jobs and migration you developed there. (You might want to choose pa-
rameters that reflect a hypothetical city.}

Write DYNAMO equations for your model.
Simulate the model, experimenting with various values of DT.
Determine the equilibrium level of population in the city.

Suppose the population in your city is in equilibrium, but intwo yearsa
major industrial company in the town closes, causing the number of jobs
to fall by 10 percent. Use a STEP function to analyze the response of the
system to the sudden decline in jobs.

ENDNOTES

i.

Students with some background in calcutus will recognize that the yeast budding
model ¢an be written in differential equation form as

dy

i ),
where y(f) = the number of yeast cells at time ¢, and b = the budding fraction. The
solution to the equation is y(#) = y(O)eb‘, where ¥{() = the initial number of yeast
cells.

This solution to the differential equation can be used to derive the doubling
time for the number of yeast cells, The number of cells will double when
(5 = 2¢(0), and this takes place when e? = 2. Taking logarithms, the number of
cells will double when bf = fn2. Since /a2 is roughly 0.7, and the budding fraction
b = 0.1, the doubling time ¢ = (0.7/0.1) = 7 hours.

The differential equation for the yeast deaths loop can be written dy/dt =
—y(#}/a, where ¥(t) = the number of yeast cells at time 1, and @ = the average life-
time of yeast. The solutien to this equation is ¥{({) = y({))e“’( 9 where y(0) = the
initial number of yeast cells.

This solution can be used to derive the halving time for the number of yeast
cells. The number of cells will fall to hatf its initial value when y(£) = ¥2{(0), and
this takes place when e /% = ¥4, Thus taking logarithms, the number of cells will
reach one-half its initial value when —¢/a = fn{¥2). Since In(%4) is roughly equal to
—0.7, and the average lifetime of yeast @ = 20, the halving time ¢ = 20)(0.7) = 14
hours.
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In discussing the choice of DT, it has been assumed that the process being modeled
takes place continuously in time. In the yeast case, for example, at any moment,
some yeast cells are in the process of budding and others are in the process of dy-
ing. The coffee cooling case is a particularty good example of a continuous pro-
cess. For an actual cup of coffee, a certain amount of cooling occurs every secand,
or every micro-second for that matter.,

In some cases, the assumption that the process being modeled is continuous
may seent less valid. For instance, in the pushup case, Jim might practice exactly
once each day, at 2:00in the aftcrnoon Thus at first glance, it may seem that any
improvement that takes place in the number of pushups }im can do is not coatinu-
ous, but occurs in once-a-day jumps. It is nevertheless possible that some of the
tmprovement in Jim’s ability to do pushups occurs following his practice session
each day, while he is eating, sleeping, and so forth. Although the daily practice
sessions are not continuous, the overall process of improvement can be viewed as
at least approximately continuous,

By and large, for most social and economic systems, it is reasonable to
assume that the process being modeled is roughly continuous, at least 1o a first
approximation. In cases where the processes being modeled are quite clearly not
continuous, the metheds of analysis descrlbed in this chapter are not smctly
appropriate.
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