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of the model are infrequent upward shifts (‘updates’), followed by a rapid process of15
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the system. By integrating analytical techniques and numerical simulations, we come
to the following two main conclusions. (1) If non-coordination costs are su?ciently19
high, the system behaves critically, in the sense customarily used in physics. (2) The
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1. Introduction1

Social and economic change typically comes in ‘waves’ or ‘avalanches’
with seemingly little intertemporal structure. Its complex dynamics are partly3
a result of the following two features: (a) the stimulus for change spreads
throughout the population by cumulative local interaction channeled along5
a social network; (b) the payo; incentives that govern individual behavior
are subject to considerations of (local) compatibility and=or coordination with7
neighbors. In this paper, we focus on a simple model displaying these two
features. To Kx ideas, we shall often propose a technological interpretation9
of the model and conceive its dynamics as an unbounded process of tech-
nological change. Its motion may then be seen as fueled by two forces:11
(i) infrequent upward perturbations, which are payo; independent and will
be simply referred to as ‘updates’; (ii) relatively rapid payo;-responsive ad-13
justment, which will be known as ‘di;usion’. Thus, for the sake of focus, we
study a context where di;usion is the only purposeful activity, reacting to a15
stochastic process of gradual ‘invention’ that is fully exogenous.

In our stylized framework, it turns out that di;erent technological scenarios17
can be solely characterized by the value of a certain cost related parameter
k ∈ R+: This parameter reMects the relative costs of upward versus lower19
non-coordination with neighbors, higher values of k indicating a situation
where the former costs are relatively larger than the latter. In this context,21
our main conclusions can be summarized as follows. First, we Knd that there
is a certain threshold for k which (roughly) separates the region where the23
population evolves in almost perfect coordination from the region where a
wide range of technological heterogeneity tends to persist over time. More-25
over, within the latter region, the system behaves in a critical manner, the
concept of criticality being understood here as in modern physics (Bak et al.,27
1987). In particular, it refers to the fact that the distribution over ‘avalanche
sizes’ (i.e. the range of di;usion waves) generated by the recurrent updates29
obeys a power law. This fact has interesting theoretical implications. For
example, it indicates that the system displays no characteristic scales (or mag-31
nitudes), the trade-o; between avalanche size and its corresponding empirical
frequency remaining constant throughout (in terms of proportional changes). 133
But perhaps more importantly for our present purposes, another useful impli-
cation of criticality pertains to the extreme simplicity displayed by long-run35
aggregate behavior under those circumstances. Such simplicity will render it

1 Such a constant tradeo; can also be understood as an indication that local stimuli have
a relatively large (i.e. non-local) range of inMuence. (For example, this would not occur if
the decay of avalanche frequency with respect to size were exponential.) Traditionally, it was
thought that physical environments had to be accurately tuned to some critical state in order to
obtain such long-range e;ects. Since the work of Bak et al. (1987), such criticality is known
to be attainable without any external Kne-tuning (i.e. through self-organization).
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tractable to carry out an analytical study of the model, thus shedding light1
on some important issues. In particular, our main focus here will be on how
the long-run performance of the system depends on k, the key parameter of3
the model.

In this latter respect, our main conclusion is quite stark: under some5
natural measure of ‘performance’ (see later for details), the behavior of the
system is optimized within a rather thin region for k where the system has7
already abandoned the synchronization region (a region that physicists of-
ten call supercritical) and has barely entered the critical region. Borrowing a9
well-known phrase of Kaufman (1993), we may interpret this conclusion as
a tangible embodiment of the tenet that many dynamical systems have their11
performance optimized at the thin ‘edge of order and chaos’.

The reason why some heterogeneity must be conducive to better perfor-13
mance is not di?cult to comprehend: only if some inter-agent di;erences arise
along the process may di;usion have a signiKcant role to play. However, to15
understand why optimality should be attained at the ‘brink’ where such het-
erogeneity is about to recede is a more subtle issue. In essence, we shall17
Knd it to be a consequence of the following intriguing feature displayed by
critical behavior: across di;erent avalanche sizes and values of k, there is a19
constant (proportional) e;ect of avalanche size on the induced technological
advance.21

In this paper, our approach to studying these phenomena relies on a syn-
ergic use of both numerical simulations and analytical techniques. On the23
one hand, we resort to numerical simulations to obtain some regularities (e.g.
the veriKcation of power laws) on which to build our ensuing formal anal-25
ysis. This analysis is then used to gain a theoretical understanding of some
of the key conclusions also obtained from numerical simulations (e.g. those27
concerning the optimal performance of the system). Overall, it is such a
‘symbiosis’ of mathematical analysis and numerical results that will provide29
us with most of the insights obtained on a dynamical system that, because of
its huge complexity, would be hardly tractable otherwise (e.g. by an exclusive31
use of analytical techniques).

This paper owes much of its original inspiration to the booming literature33
on self-organized criticality developed in physics over the last decade. (The
seminal articles are Bak et al. (1987, 1988), whereas a good recent survey can35
be found in the monograph by Jensen (1998).) This Keld of research started
with the study of simple sandpile-like setups, where many of the essential37
ideas and insights Krst originated. Subsequently, there has been a wide variety
of di;erent contexts (biological evolution, the time pattern of earthquakes,39
the functioning of the brain, the dynamics of tra?c jams, etc.) where simple
adjustment rules have been seen to generate self-organized critical behavior41
(see Bak (1996) for an informal survey of applications). More in line with
our present concerns, critical behavior has also been observed in the way

43
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‘information’ di;uses through social systems. For example, Redner (1998) has1
showed that the ‘waves’ of academic quotation display power distributions,
and similar conclusions have been found for how connections are distributed3
in the internet (Faloutsos et al., 1999) or in the World-Wide Web (Albert
et al., 1999 or Huberman and Adamic, 1999). In economics and game the-5
ory, these ideas have received only little attention. However, they have been
applied to the study of business cycles by Scheinkman and Woodford (1994),7
economic geography by Krugman (1996), or games displaying strategic sub-
stitutabilities (i.e. ‘anti-coordination’ games) by Agliardi (1998, Chapter 6).9
Our essential change of focus over this work is that our objective here is not
only positive (describing long-run regularities of complex dynamic systems)11
but also normative, i.e. linking the particular form of these regularities to the
performance of the system. In spirit, therefore, our perspective is quite akin to13
that held by those researchers (see Arthur et al. (1997) for a wide collection
of representative work) whose objective has been to understand the interplay15
between complexity and performance in large socio-economic systems. This
is also the concern of a previous paper of ours (Arenas et al., 2000), where17
some preliminary results along these lines were originally reported.

Our model has also borrowed some important features from the recent19
evolutionary literature on learning in games, initiated by the seminal pa-
pers of Kandori et al. (1993) and Young (1993). In particular, we pursue21
the same methodology of integrating selection adjustment (here, myopic best
response) with occasional perturbations. More speciKcally, the present model23
is akin to those of Blume (1993), Ellison (1993), or Young (1998) where,
as in our case, a topology of local interaction is introduced and each agent25
is constrained to playing the game with her immediate neighbors. The game
being played, on the other hand, bears some key similarities to the so-called27
minimum-e;ort game (see Bryant, 1983; van Huyck et al., 1990 or Craw-
ford, 1991), which has also been widely studied in the equilibrium-selection29
literature. Our approach, however, displays two essential di;erences with this
literature: (i) the setup involves a ‘changing game’ with an unbounded set of31
potential actions; (ii) the concern is not one of equilibrium selection but of
dynamic performance.33

In fact, it is precisely the ever-changing nature of the (coordination) game
that allows us to interpret the dynamics induced as a process of technological35
change carried out under local complementarities (recall our former discus-
sion). This then brings to mind two vast strands of related research: the37
literature concerned with the so-called network externalities and that studying
technological change and growth. We address each of them in turn.39

Network externalities have been a major Keld of study in the theory of
industrial organization at least since Farrel and Saloner (1985) and Katz and41
Shapiro (1985) wrote their seminal papers on the subject—see Economides
(1996) for a recent survey. The primary aim of this literature has been to
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understand, from a strategic viewpoint, the considerations that might promote1
or deter technological adoption when the payo;s to it are directly depen-
dent on the decisions of others; speciKcally, that is, on the number of other3
producers (or consumers) producing (or buying) the new good.

On the other hand, concerning the relationship between technological change5
and economic growth, this issue has regained a central role in recent times
due to the importance accorded to it by the so-called New Growth The-7
ory. A good case in point is the Schumpeterian model of growth through
‘creative destruction’ developed by Aghion and Howitt (1992), where inno-9
vations (that improve the whole production activities in the economy) arrive
stochastically through investment in R & D geared towards the enjoyment11
of (temporary) monopoly gains. This model was enriched by Grossman and
Helpman (1991) by integrating the technological-ladder approach proposed13
by Aghion and Howitt with the multi-sectorial features of a model formu-
lated by Sergestrom et al. (1990). In such an enriched Schumpeterian model,15
technological ladders are climbed in each separate sector by speciKc R & D
expenditures targeted at each of them. In every sector, therefore, a process17
of creative destruction unfolds, which forever pushes the economy’s average
technological level upwards over time.19

Heuristically, one could interpret our model as reMecting a stylized process
of technological change that merges the Schumpeterian features displayed by21
the Grossman-Helpman approach with the technological complementarities
studied by the aforementioned literature on network externalities. In contrast23
with the former, innovation is taken here to be purely random (i.e. not the
outcome of purposeful and forward-looking agents). And, in contrast with25
the latter, the technological complementarities are studied dynamically, thus
amounting to an unbounded process of technological growth through (pur-27
poseful, albeit myopic) di;usion.

The rest of the paper is organized as follows. Section 2 describes the29
framework. Section 3 presents the dynamics. Section 4 presents the numer-
ical simulations: while its Section 4.1 focuses on the regularities displayed31
by the induced limit distributions, Section 4.2 is concerned with identifying
interesting conclusions regarding issues of self-organization and long-run per-33
formance. Section 5 pursues a task of synthesis. That is, it builds upon the
regularities found in Section 4.1 to provide an analytical explanation for the35
results obtained in Section 4.2. Finally, Section 6 closes the paper with a
summary and a discussion of some issues left for future research.37

2. The framework

We consider n agents, each of them occupying a particular node in a39
one-dimensional boundariless lattice (i.e. a ring). Time is discrete. At every
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t = 0; 1; 2; : : : ; each agent i ∈ N ≡ {1; 2; : : : ; n} adopts a certain action ai(t) ∈1
R+ that, for concreteness, may be conceived as the technology level she
currently uses. Every agent i is assumed to interact with the individual to the3
right and to the left of her. For simplicity, these neighbors are taken to be
those agents with adjacent indices, i + 1 and i − 1; where 0 and n + 1 are5
respectively interpreted as n and 1. Out of each of her two interactions, agent
i obtains corresponding payo;s,  (ai(t); ai+1(t)) and  (ai(t); ai−1(t)), where7
 :R+ × R+ → R is a Kxed and common payo9 function.

We shall postulate that the payo; function may be written in the following9
way:

 (a; a′) = f(a) − g(a; a′) (1)

for some function f :R+ → R+ which is unboundedly increasing (i.e. lima→∞11
f(a) = ∞) and a function g :R+ × R+ → R+ which is bounded and satisKes

g(a; a′)¿0 ⇔ a 
= a′: (2)

For any given action a ∈ R+; f(a) may be viewed as the payo; ceiling for13
this action. In view of (1) and (2), this maximum payo; is attained in any
given interaction with someone playing a′ if, and only if, a = a′: Otherwise,15
there are some bounded ‘incompatibility costs’ that detract from the base
payo;. By way of illustration, we may think of every two neighboring agents17
as involved in the completion of a certain joint project, for which dissimilarity
of actions (or technological levels) leads to some waste of resources.19

In general, the incompatibility costs incurred by any given agent may arise
from two alternative sources: (i) the agent is too advanced relative to her21
neighbors; or (ii) she is too backward. In either case, the induced e;ects
may be of di;erent signiKcance. To account for this possibility, we posit:23

g(a; a′) =

{
�1(a′ − a) if a′¿a;

�2(a− a′) if a¿a′;
(3)

where the functions �1; �2 :R++ → R++ reMect, respectively, the negative pay-
o; consequences of being more or less (technologically) advance than one’s25
partner. For simplicity, these two functions will be taken to be ‘scaled sym-
metric counterparts’ in the following sense: there are positive parameters k127
and k2 such that, for all x ∈ R++,

1
k1

�1(x) ≡ 1
k2

�2(x): (4)

Intuitively, the larger (smaller) k1 is as compared to k2 the more (less) detri-29
mental it is to be more advanced than one’s partner as opposed to being
more backwards. As it turns out, only the di;erence k ≡ k1 − k2 will play a31
relevant role in the analysis.
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Thus, heuristically, one may conceive the context described as reMecting1
a situation where every two neighboring agents, i and i + 1; are involved in
a coordination game that, if faced in isolation, would induce both of them3
to choose the same action. Nevertheless, the key feature of our approach
is that every player i must choose a common action in each of the games5
she plays. Therefore, the games played by agent i with i − 1 and i + 1
are not independent, i.e. cannot be treated in isolation. This is precisely the7
assumption that renders the model interesting, and is akin to that posited by
the received evolutionary literature concerned with equilibrium selection in9
coordination games (recall the Introduction). Unlike this literature, however,
we contemplate an unbounded ladder of possible actions where players may11
coordinate. This provides the basis for the rich adjustment dynamics that will
be seen to arise along the induced ‘ever-moving game’. A formal description13
of this dynamics is undertaken in the next subsection.

3. The dynamics15

Within the basic framework just introduced, we posit an adjustment dynam-
ics displaying the following two components:

17
Di9usion: When receiving a revision opportunity, each agent i behaves

‘myopically’ and adopts an action that is a best response to what19
her neighbors are currently doing. Such a di;usion component of
the process is taken to operate in a relatively fast manner.21

Updates: Occasionally, an agent is subject to an exogenous perturbation (that
may be conceived as an innovation) which shifts her action (tech-23
nology level) upward by some randomly chosen amount. This com-
ponent of the process is to be thought of as relatively slow.25

For the sake of tractability, the di;usion and update processes are formally
decoupled. That is, we postulate that the updates only perturb (‘punctuate’)27
the system when the di;usion has reached a standstill. Thus, in between any
two consecutive updates, the process is supposed to have enough time to29
reach a point where no agent wants to revise her action any further. This
is a convenient but extreme assumption made by the whole literature on31
self-organized criticality (recall the Introduction), since it allows for sharp
deKnitions of the key notions of wave or avalanche (see below). However,33
the same long-run qualitative behavior of the model would be observed if
the two dynamics (di;usion and updates) were genuinely integrated but the35
former happened to be much faster than the latter. In this sense, therefore,
such a less extreme situation can be seen as suitably approximated by a37
context where both dynamics are formally separated.
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Next, we describe precisely each of those two components of the dynamics:1
Krst the slow updates, then the fast di;usion.

3.1. Updates3

Updates are indexed by t = 1; 2; : : : . As explained, after any given update,
there is a di;usion wave that must reach a standstill before the next update5
occurs. Denote by a(t) ≡ [ai(t)]

n
i=1 the proKle displayed by the population

once the di;usion phase triggered by update t has come to a halt. Then,7
update t + 1 is taken to operate as follows.

A single agent �(t +1) is randomly chosen to have her technological level9
subject to an upward shift. SpeciKcally, her new technological level becomes
a�(t+1)(t) + �̃ where �̃ is a i.i.d. random variable, distributed on a Knite in-11
terval [0; v] according to some continuous density ’. These updates play the
role of exogenous (i.e. unmodelled) perturbations that shift the technologi-13
cal level of a particular agent upwards. They may be provided with several
motivations, e.g. payo; shocks or population renewal. However, our preferred15
interpretation is that of ‘innovation possibilities’ arising in conjunction with
‘optimistic expectations’.17

More speciKcally, we propose to view an update as embodying some new
option=idea received by the agent in question that, when pursued, this agent19
optimistically expects to be followed by a su?cient upward adjustment by her
neighbors. Notice that in view of the assumption that every update originates21
at an equilibrium state, there is a natural asymmetry between upward and
downward changes in this respect. That is, even if an agent were to receive23
exogenously the option of moving to a lower action (i.e. a downward update),
she will never choose to do so if she believes that others would only react25
(if at all) in the same direction. For, in this case, whatever expectations she
might hold on the pattern of adjustment that could ensue, she can only lose27
by adopting a downward update.

As explained below (see (ii)), di;usion adjustments turn out to display29
the aforementioned monotonicity property, i.e. they always operate in the
same direction as the update that triggers them. Thus, we may rely on the31
considerations just described to provide a heuristic motivation for an update
as the combination of an innovation plus optimistic expectations. In this light,33
it is natural to assume that, once some optimistic expectations of this kind are
in place, they should exhibit some persistence. That is, they need not always35
be downgraded (say, to static expectations 2 ) if the expected response fails

2 Static expectations (i.e. the belief that the actions currently adopted by others will remain in
place in the next period) can be taken to underlie the myopic best-response dynamics posited
below for the di;usion dynamics. Thus, in this light, an update can be regarded as an infrequent
and ‘optimistic’ deviation of this state of a;airs.
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to materialize in the ensuing avalanche. Otherwise, updates would generally1
prove to be an insu?cient ‘fuel’ for sustained advance, and our model would
eventually become trapped in an uninteresting deadlock. 3 For convenience,3
we shall introduce such persistence into the model quite starkly and simply
assume that any player who undertakes an update towards some a(t) at any5
t never adjusts her level below a(t) thereafter. Formally, this is captured by
deKning, for each agent i and each t, a lower bound &ti on her adjustments7
that is given by the last former update experienced by this player. That is,
the action level attained at that last update is assumed to act as a Moor on9
player i’s future adjustments (see below for details).

3.2. Di9usion11

After agent �(t) has been perturbed at t; a di;usion (or adjustment) process
ensues. Let us index the stages of this process by q= 0; 1; 2; : : : and let �t

i(q)13
denote the action chosen by any agent i in stage q. With this notation in
hand, the di;usion process may be described as follows.15

At q=0, we have �t
j(0)=aj(t−1) for j 
= �(t) and �t

�(t)(0)=a�(t)(t−1)+�t ,
where �t is the realization of the random variable �̃ at t. Subsequently, at ev-17
ery q=1; 2; : : :, agents are randomly chosen to revise their action. SpeciKcally,
we postulate that any agent i ∈ N who receives an adjustment opportunity at19
stage q chooses an action �t

i(q) that maximizes (myopically) her payo;s under
the following double constraint. On the one hand, she cannot surpass the cur-21
rent action ceiling prevailing in her own neighborhood. On the other hand, her
new action cannot fall below the Moor given by her own last update. The moti-23
vation for the Krst constraint is that any adjustment by player i which exceeds
the maximum action level �t

i(q− 1) ≡ max{�t
i+1(q− 1); �t

i(q− 1); �t
i−1(q− 1)}25

should be conceived as an ‘innovation’ and thus restricted to enter the system
as an update. 4 The motivation for the second was already explained above27
when introducing our formulation of updates.

Formally, each agent i ∈ N who receives a revision opportunity at q is29
taken to solve the following optimization problem:

max
�

[ (�; �t
i+1(q− 1)) +  (�; �t

i−1(q− 1))]

s:t: &ti6 �6�t
i(q− 1):

(5)

3 For example, in the speciKc context studied in Section 4, we Knd that if the process starts at
a homogeneous proKle no single update can produce a genuine avalanche (involving more than
one agent) when k ≡ k1 − k2 is above the threshold value of 3:164: Consequently, under these
conditions, the process would not grow at all if the updates did not exhibit some persistence.

4 Thus, implicitly, we suppose that new (technological) information only di;uses locally. We
believe that this informational restriction can be substantially relaxed but have not yet conducted
any detailed explorations of di;erent alternatives.
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The above problem determines whether the agent in question might be in-1
terested in revising her former action. Denote by �t

i(q) the set of solutions
to the above problem, which is assumed non-empty (possibly including sev-3
eral actions, of which one may be the status-quo �t

i(q − 1)). Furthermore,
let It(q) ≡ {i ∈ N : �t

i(q − 1) 
∈ �t
i(q)} stand for the set of agents whose5

prior action is not optimal. Then, if It(q) 
= ∅, we choose at random one
individual i ∈ It(q) and make:

7
(a) �t

i(q) ∈ �t
i(q), any choice in �t

i(q) with equal probability;
(b) �t

j(q) = �t
j(q− 1) for all other agents j 
= i.9

Once (a) and (b) have been implemented, the process enters stage q + 1.
The payo; function  (·) will be assumed to guarantee the following two-fold11
property (see (8) for an example): 5

(†) �t
i(q)¿ �t

i(q− 1) for all i and q;13
(‡) there is some Knite Vq at which there is no agent left in a position to

revise her action, i.e. It( Vq) = ∅.15

Then, having reached the latter Vq, we make ai(t) = �t
i( Vq).

The concatenation of di;usion phases and updates deKnes the dynamical17
system under consideration. For each t; the adjustment process that restores
stability after the corresponding update is called a (technological) avalanche,19
where we use the usual term coined in the physics literature for this phe-
nomenon. We shall be interested in quantifying the size s(t) of each avalanche21
at t as follows:

s(t) ≡ #{i: ai(t) 
= ai(t − 1)}; (6)

where #{·} stands for the cardinality of the set in question. We shall also23
concern ourselves with the total advance triggered by the avalanche, as given
by25

H (t) ≡
n∑

i=1

[ai(t) − ai(t − 1)]: (7)

As explained next, our numerical simulations show that these magnitudes,
s(·) and H (·), display interesting long-run regularities.27

4. Numerical analysis

Given the large dynamic complexity of our model, some of its key fea-29
tures have been determined through the performance of extensive numerical

5 In general terms, if the ceiling-payo; function f(·) is increasing and weakly convex (e.g.
linear) and the cost functions �i(·) are increasing and strictly concave, this is enough to ensure
that the desired property holds.
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simulations. For concreteness, the numerical analysis reported here will focus1
on a simple scenario where the conditions required from our general model
are satisKed in a specially transparent manner. Other alternative speciKcations3
consistent with the conditions posited in Sections 2 and 3 have been found
to yield the same qualitative conclusions.5

Essentially, the only two components of the model which need to be
speciKed pertain to the payo; function  (·) and the update density ’(·).7
Concerning the payo; function, let it be given by:

 (a; a′) = a− k1(1 − exp(−[a− a′]+) − k2(1 − exp(−[a′ − a]+) (8)

for some k1; k2¿0; where [x]+ ≡ max {0; x}. In terms of the general frame-9
work given by (1) and (3), this amounts to making

f(a) = a (9)

�1(x)
k1

=
�2(x)
k2

= 1 − exp(−[x]+): (10)

This is obviously compatible with the required conditions—in particular,11
(2) and (4). Moreover, under suitable parameter conditions, (9) and (10)
turns the bilateral situation faced by every two neighbors into a coordina-13
tion game which, locally around an equilibrium, behaves like the well-known
minimum-e;ort game—a context widely discussed in the evolutionary and15
experimental literature (recall the Introduction). SpeciKcally, the game then
displays the following local property: if two individuals with ‘marginally17
di;erent’ actions play the game, the one with the lower one obtains a higher
payo;. To see this, note that if we consider two di;erent actions, a and a′,19
with � ≡ a′−a¿0, the function h(·) deKned by h(�) ≡  (a′; a)− (a; a′) has
the following derivative at � = 0:21

h′(0) = 1 − (k1 − k2):

Thus, if k1 − k2¿1 (which is wholly within the range of interest to be con-
sidered below), we have  (a′; a)−  (a; a′)¡0 provided that a′ is marginally23
larger than a.

It is easy to check that the payo; function given in (8) guarantees that25
the di;usion dynamics satisKes (†) and (‡) above. On the other hand, a fur-
ther convenient feature following from this formulation is that the decision27
problem described in (5) has its optimal solution necessarily lying in the
set {�t

i+1(q − 1); �t
i(q − 1); �t

i−1(q − 1)}. That is, the optimal action must be29
one of those currently chosen in the neighborhood of the player in question.
Obviously, this will facilitate matters in what follows by allowing us to han-31
dle the optimization problem faced by each agent in an especially simple
manner.33
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Finally, concerning the stochastic updates, we shall postulate that they are1
distributed uniformly and independently on [0; 1], i.e.

’(x) = 1; ∀x ∈ [0; 1]: (11)

Much of our analysis will dwell on the e;ect of the incompatibility-cost3
parameters, k1 and k2, on the long-run evolution of the process. In fact, to
understand the main issues involved, it turns out that only the di;erence5
k ≡ k1 − k2 needs to concern us. In view of (8), one can interpret k as
the cost di;erence resulting from ‘downwards incompatibility’ (i.e. being too7
advanced) as compared to that derived from ‘upwards incompatibility’ (i.e.
being too backwards).9

To gain a heuristic understanding of why this cost di;erence should be the
key parameter, suppose that the system starts at a synchronized state at some11
t: That is, the previous state [ai(t − 1)]ni=1 satisKes ai(t − 1) = â for some
â and all i = 1; 2; : : : ; n. Now suppose that the magnitude of the ensuing tth13
update is � and let io be the particular agent a;ected by it. We may then
ask: When will this update again lead the system (once the corresponding15
di;usion phase has come to an end) into a new synchronized state at t? Of
course, this will occur if the payo; to any agent i 
= io of adopting â + �17
when at least one of his neighbors has done so is higher than if he were to
remain at level â. Thus, if we focus on the only non-trivial case where one19
neighbor still adopts â; the relevant inequality is:

2(â + �) − k1(1 − e−�)¿2â− k2(1 − e−�);

or equivalently:21

k ≡ k1 − k2¡k∗(�) ≡ 2�
1 − e−� : (12)

If (12) holds, the update carried out by io will lead the system into a new
synchronized state at the common level â + �, i.e. ai(t) = â + � for all23
i=1; 2; : : : ; n. Otherwise, the update will introduce some ‘local heterogeneity’
(i.e. asynchronization) around io.25

In general, as � ranges from 0 to 1 (i.e. the support of �̃), the value
for k∗(�) increases from lim�↓0 k∗(�) = 2 to k∗(1) = 3:164. Thus, in view27
of our preceding discussion, one may expect to Knd a transition from fully
synchronized behavior (i.e. what physicists often call supercriticality) for29
k6 2 to increasingly more heterogenous behavior as k grows above this
threshold. Indeed, such a transition will be clearly observed in our simulations,31
with sharply critical behavior (i.e. power laws) arising when k approaches
the higher threshold given by k∗(1).33

Next, we discuss our numerical simulations in some detail. We shall focus
in turn on the following issues:

35
• long-run distributions for the sizes of the avalanches;
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Fig. 1. Distribution of avalanche sizes, k = 2; 3; 3:5; 4; 6; n = 4096—double logarithmic scale
(log frequency versus log size).

• long-run distributions for the (technological) advances induced by1
avalanches;

• long-run relationship between size and advance across di;erent avalanches.3

4.1. Power laws

We have obtained the (empirical) avalanche size distributions for di;erent5
values of k and di;erent values of n, the latter being considered in order to
check for possible scale e;ects. The outcome of these simulations is summa-7
rized in Figs. 1 and 2, where the relationship is depicted in doubly logarithmic
scale. 69

In Fig. 1, we show the size distribution for di;erent values of k and a Kxed
population size n=4096: We can notice the transition from a regime (k6 2)11
where all avalanches are system-size wide to a regime (k¿ 3:5) where the
avalanche size sharply obeys a power-law distribution. As this transition un-13
folds (e.g. around k =3), 7 one observes that avalanches of di;erent sizes do

6 Each point in the diagram gives the average log-frequency across all sizes in a corresponding
interval. To identify graphically every such interval we take its mid-point (also in logarithmic
scale).

7 For intermediate values of k ∈ (2; 3), the relationships between frequency and size is found
to be increasing, thus reMecting a gradual approach to the situation where all valances are of
full system size as k decreases towards 2. Fig. 1 only shows the results for k=2; 3 in order not
to complicate the diagram with the depiction of non-critical behavior in the transition phase.
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Fig. 2. Distribution of avalanche sizes, k =4; n=1024; 2048; 4096; 8192; 16384; 32768—double
logarithmic scale (log frequency versus log size).

occur, but they do not yet exhibit the clear-cut power-law regularities that1
are the hallmark of criticality.

On the other hand, Fig. 2 shows that the power-law relationship between3
size and frequency displayed for any given k in the critical region is inde-
pendent of population size. For concreteness, this is shown for k = 4 and n5
spanning three orders of magnitude, but similar diagrams are obtained for all
k in the critical region and even wider ranges in population size.7

In Fig. 3, we show that analogous conclusions are obtained for the empiri-
cal distribution of advances across di;erent avalanches. This distribution also9
obeys a power law for values of k¿ 3:5, which is the (rough) threshold given
before for critical behavior to start manifesting itself fully in terms of size11
distributions. This conclusion can be shown to be independent of population
size, much as this was also shown to be the case in Fig. 2 for avalanche13
size.

The above results indicate that, as soon as downwards (relative) incompat-15
ibility costs become signiKcant, avalanche size and avalanche advance both
display a surprising regularity: the size- or advance-elasticity of the corre-17
sponding long-run frequencies are constant throughout. In physics, this phe-
nomenon goes by the name of criticality, a term that points to the absence19
of characteristic scales, i.e. the lack of prominent (relative) scales at which
the system behavior mainly takes place.21
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Fig. 3. Distribution of avalanche advances, k = 3; 3:5; 4; 6; n = 4096—double logarithmic (log
frequency versus log advance).

Given the common qualitative features displayed by size and advance dis-1
tributions, it is typically expected (see Jensen, 1998) that both magnitudes
also display a power-like relationship between them. Indeed, this is conKrmed3
by Fig. 4, where we have plotted avalanche size versus associated average
advance for di;erent values of k in the critical region (k¿ 3:5).5

Fig. 4 also points to an additional important feature of our simulation
results: throughout the critical region; the elasticity of total average advance7
with respect to avalanche size (i.e. the slope in double logarithmic scale) is
independent of k, remaining essentially constant to a value slightly above 19
(more precisely, at roughly 1:2). In contrast with previous observations (cf.
Figs. 1–3), note that such a constant elasticity is not simply a feature that11
prevails for given k but, rather, is a characteristic that holds uniformly across
di9erent (critical) values for k. The implications of this intriguing observation13
will be discussed below at some length.

Finally, it is worth mentioning that critical behavior is gradually lost for15
very large values of k. 8 SpeciKcally, as k → ∞; any interaction between
neighboring sites vanishes and one obtains a process of so-called random17
deposition, a well known process in the study of surface growth (cf. Barabasi

8 In our present context, the main distinguishing features of criticality start to fade away when
k¿ 30:
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Fig. 4. Average advance versus avalanche size, double logarithmic scale k = 3:5; 4; 6; 9;
n = 4096.

and Stanley, 1995). As usual in these cases, the transition towards such a1
state of a;airs involves an intermediate phase where the frequency decay is
exponentially decreasing in avalanche size (i.e. it is much faster than the3
power decrease displayed in the critical region). For very large k; therefore,
a disproportionate amount of avalanches are of very small size. Since this5
state of a;airs displays few implications of interest for our purposes, we do
not describe it here in any detail.7

To recapitulate, it is useful to provide a formal summary of the main
power-law regularities observed in our simulations as follows. There are some9
thresholds k and Vk deKning the critical region (roughly, k = 3:5 and Vk = 30)
such that if k¡k¡ Vk:

11
P1 The long-run distribution of avalanche sizes s follows a power law of the

form: 913

P(s) ∼ 1=s� (13)

for some �¿0; dependent of k but independent of population size n.

9 As standard, the symbol ∼ signiKes an asymptotic long-run equality between the two sides
of the expression, modulo suitable constants.
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P2 The long-run distribution of total advances H follows a power law of the1
form:

P(H) ∼ 1=H� (14)

for some �¿0, dependent of k but independent of n.3
P3 The relationship between avalanche sizes and corresponding advances fol-

lows:5

H ∼ s�; (15)

where the exponent �¿1 is independent of k and n.

The above conclusions indicate that, when k belongs to the critical region,7
the dynamic behavior of the system is in sharp contrast with that displayed
by the customary approaches to modelling social behavior in coordination9
setups. For example, in received models of evolutionary game theory (both
when interaction is assumed local as well as global), a population facing11
a coordination game is almost always to be found ‘synchronized’ (i.e. at a
homogenous equilibrium). Instead, in our case, the heterogeneous waves (and13
corresponding advances) realized along the process will typically induce the
rich diversity one often observes in real-world phenomena (e.g. concerning15
technological change).

4.2. Criticality and long-run behavior17

In view of P1–P3, it is natural to conjecture that some macroscopic vari-
ables (e.g. certain population averages) might exhibit interesting long-run19
regularities as well. Indeed, this is conKrmed in what follows concerning two
interesting ‘summaries’ of the limit behavior of the system. The Krst one is21
a simple measure of population heterogeneity, often called the width of the
system. The second one captures a certain measure of its performance. We23
address each of them in turn.

In problems of surface growth in physics, it is common to quantify the25
roughness of an interface (what in our case could be conceived as the het-
erogeneity of the technological proKle) by its so-called width. Restricting27
attention to states reached once the di;usion process is complete, the width
of the system after update t is deKned by29

W (t) =
√

a(t)2 − a(t)
2
; (16)

where the overline denotes spatial average, i.e.

a(t)q ≡ 1
n

n∑
i=1

(ai(t))q:

Of course, the width of the system at any given point in time simply co-31
incides with the standard deviation of the action levels. It is, therefore, a
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Fig. 5. Time evolution of the system width, k = 4; n = 64; 128; 256; 512; 1024—double loga-
rithmic scale (log width versus log (updates=n)).

global statistic which would seem to abstract from the (local) spatial gra-1
dients that are the essential driving force of the model. Our interest in this
magnitude, however, derives from the fact that when the system is critical,3
its width turns out to be closely related (i.e. is proportional, in a suitably
extended fashion) to the spatial gradient functions—see Barabasi and Stan-5
ley (1995) for details. Thus, in this sense, the width of our critical system
provides average ‘local’ information and may be regarded as a convenient7
(indirect) measure of ‘technological roughness’ for the induced proKles.

Figs. 5 and 6 below depict (again in doubly logarithmic scale) the time9
evolution of the width of the system, as deKned in (16), for two di;erent
values of k in the critical region and several population sizes (we have found11
the same qualitative behavior for other values of k in the critical region
and larger population sizes). Since we are only interested in the statistical13
properties of the proKle dynamics, the evolution of this magnitude is averaged
over 1000 independent runs, 10 the time periods reMecting the number of15
updates having materialized up to that point.

10 Note that, of course, the interface roughness is not a smooth increasing function of time for
each independent run!
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Fig. 6. Time evolution of the system width, k = 7; n = 64; 128; 256; 512; 1024—double loga-
rithmic scale (log width versus log (updates=n)).

The main conclusion to be derived from the above diagrams is that, within1
the critical region, there exists a well-deKned long-run level of heterogeneity
(technological diversity) on which the system tends to settle as the process3
evolves and ‘self-organizes’. This is another interesting long-run regularity
that follows from critical behavior. It indicates that, even though avalanches5
of all sizes (and, therefore, proKles of very di;erent roughness) are to be
observed over time, the long-run level of heterogeneity (either locally or7
globally deKned) grows monotonically, on an average, to some well-deKned
magnitude. Naturally, this magnitude depends on the relevant parameters of9
the model, k and n: In this respect, the dependence on k is as one would
expect: the larger k is, the larger is the long-run width and the slower (i.e.11
farther into the future) such a long-run level is attained. On the other hand,
the dependence on n is equally clear-cut but perhaps less intuitive: population13
size a;ects positively long-run width but has no implications on the speed at
which it is attained.15

Now, we turn to what seems a richer and possibly more interesting impli-
cation of criticality. It concerns the relationship between criticality and some17
suitable measure of the performance of the system. To Kx ideas, suppose that
the parameter k of our model deKnes a family of ‘technological systems’19
(computer architecture, communication protocols, etc.) that display identical
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payo; possibilities but di;er in their internal vertical compatibility. More1
speciKcally, assume that the payo; potential for each system grows along
a common ‘performance ladder’ that is applicable only when agents coordi-3
nate on the same action. On the other hand, pertaining to non-coordinated
situations, each system di;ers in the relative magnitudes of upward versus5
downward compatibility, as captured by their corresponding value of k in
(8).7

Suppose that the user population consists of individuals belonging to a cer-
tain organization (say, a big Krm) and every adjustment involves a certain9
(arbitrary) cost c¿0 that is independent of the extent of the change—for
example, any adjustment might involve buying a new piece of equipment at11
a Kxed cost. In this context, we may ask ourselves the following question:
What is the cheapest way (i.e. cheapest technological system) by which the13
organization may eventually attain some pre-speciKed (average) technological
level? Clearly, if the pre-speciKed level is high enough, such a cost minimiza-15
tion is essentially equivalent to a maximization of the following magnitude:

$ = lim
T→∞

$(T ) = lim
T→∞

∑T
t=1 H (t)∑T
t=1 s(t)

; (17)

where H (t) and s(t) are deKned by (6) and (7). For want of a better term,17
$ will be called the performance rate of the system.

Consider now a related route to motivate the above measure of perfor-19
mance. Suppose that, within every time period, there is a Kxed amount of
resources that can be devoted to the upgrading of the actions (technologies)21
of the population, each such adjustment (purchase of new equipment) still
requiring some Kxed cost c¿0. Furthermore, assume that there are always23
enough candidates for upgrades (either as ‘adjustment’ or ‘updates’), but those
that are geared towards matching a neighbor’s action (di;usion) always en-25
joy higher priority than those that are not (i.e. updates). In this context,
maximizing the long-run time rate of technological change is equivalent to27
maximizing $, as deKned in (17).

To facilitate the discussion, write $(T; k) and $(k) to reMect the dependence29
of $(T ) and $ on k. Several interesting conclusions concerning these magni-
tudes are obtained from our numerical simulations, as depicted in31
Figs. 7 and 8.

Concerning Fig. 7, the Krst observation one may readily make is that,33
for any given k; the long-run rate $(k) ≡ limT→∞ $(T; k) is a well-deKned
magnitude since $(T; k) is a (bounded) monotone function of T . This, how-35
ever, does not entail any new information by itself, but is just an indirect
conKrmation that the avalanche and advance distributions display long-run37
distributions with well-deKned averages. For, in view of (17), note that the
performance rate can be simply computed as the ratio of the average advance39
over the average avalanche size over a time path.
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Fig. 7. Time evolution of performance rate $ for di;erent values of k and n = 512.

Fig. 8. Long-run performance rate $ for di;erent values of k and n = 128; 512; 2048.

There are, however, some additional and genuinely new observations aris-1
ing from Figs. 7 and 8 that will underlie much of our ensuing discussion. For
future reference, it is useful to organize them into the following two (partially3
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overlapping) conclusions.
1

C1 The system’s dynamic performance (as reMected by $) enjoys positive
dependence on n only within (or very close to) the critical region—cf.3
Fig. 8. This implies that, for large n; the performance rate $ is optimized
within (or very close to) the critical region.5

C2 The optimal value of k that maximizes $(k) is independent of n and is
located at the ‘lower edge’ of the critical region, i.e. in a narrow range7
around k = 3:5.

By C1, signiKcant scale e9ects (i.e. improvements in performance due to9
population increases) are intimately associated to criticality, i.e. they only
arise when, roughly, k ∈ (3; 30). On the other hand, C2 indicates that the11
performance of the system is maximized around the point where such crit-
icality starts to set in. This latter conclusion may be interpreted along the13
lines put forward by some authors (e.g. Kaufman, 1993) who have argued
that the dynamic response of large interacting systems is often optimized at15
the brink where heterogeneity and ‘disorder’ (i.e. criticality in our case) just
begins to manifest itself.17

The former considerations suggest that our analysis may be provided with
some normative interpretation. Again, to be speciKc, suppose that k is a policy19
variable that determines the ‘technological system’ to be applied in a certain
organization (recall our former discussion). Then, if the underlying conditions21
are suitably approximated by the model (in particular, updates are infrequent
relative to adjustment and the rate $ is a relevant measure of performance),23
our results indicate that the optimal k is one that induces some ‘barely critical’
amount of inter-agent heterogeneity.25

In a related vein, one may instead approach matters from an evolution-
ary viewpoint. SpeciKcally, suppose that the underlying environment consists27
of a variety of di;erent organizations that are characterized by alternative
technological systems (i.e. idiosyncratic k’s), all of them initially co-existing29
as part of a heterogenous population. Then, our conclusions suggest that if
evolutionary forces impinge on the population composition among di;er-31
ent types of organizations (say, because of performance-related di;erences
in survival or through social imitation), the long-run situation that should33
eventually prevail is one where organizations are placed at the edge of
criticality.35

5. Theoretical analysis

The entire simulation results reported in Section 4 refer to the numerical37
scenario given by (8) and (11), which is a particular case of the general
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context deKned by (1) and (2)–(4). Similar regularities (i.e., in particu-1
lar, P1–P3 and C1 and C2) arise in alternative scenarios consistent with
these conditions. Given the vast complexity of the underlying process, it3
would have been very hard to establish those results by other than numerical
methods. However, once established, we are now in a much better posi-5
tion to build partially upon them to aim at understanding their relationship
analytically.7

SpeciKcally, our theoretical approach will start by postulating P1–P3, i.e.
it will assume that the system is critical for a certain parameter range. Then,9
based on this assumption, we shall strive to derive analytically the conclusions
C1 and C2. Overall, this theoretical exercise will improve our understanding11
of the important relationship between criticality and the system’s dynamic
performance.13

Our Krst task is to provide an explicit expression for the performance rate
$: For simplicity, we postulate that, for any given k¿0; the system is either15
in a critical, a supercritical, or a subcritical regime. In practice, of course,
there must be a gradual transition from supercriticality to criticality and then17
subcriticality as k grows in the range (0;∞). For our present analytical pur-
poses, however, that range is assumed partitioned into three subregions by19
thresholds k and Vk. SpeciKcally, the interval (0; k) is taken to deKne the super-
critical subregion, the interval (k; Vk) the critical subregion, and the remaining21
( Vk;∞) the subcritical one.

The determination of $ outside of the critical region is straightforward.23
On the one hand, when the system is supercritical (k¡k); avalanches are
system-wide (i.e. s = n) and hence $ is equal to V� ≡ E(�̃). On the other25
hand, in the subcritical region (k¿ Vk), all avalanches can be taken to be
of (approximately) unit size and therefore the rate $ is again equal to27
V�.

Now, consider the critical region where k¡k¡ Vk: Denoting by P(H) and29
P(s) the corresponding discrete empirical densities, let

VH ≡
∫

HP(H) dH = lim
T→∞

1
T

T∑
t=1

H (t);

Vs≡
∫

sP(s) ds = lim
T→∞

1
T

T∑
t=1

s(t);

deKne the long-run averages of H and s. Within the critical region, these31
densities are well-deKned. Therefore, from (17), we may compute the perfor-
mance rate as follows:33

$ = lim
T→∞

VHT
VsT

=
VH
Vs
: (18)
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Then, we may rely on P1 and P2 to conduct the following (approximate)1
derivations: 11

$ ∼
∫ n

1 s�s−� ds∫ n
1 ss−� ds

which is easily seen to lead to3

$ ∼ 2 − �
�− � + 1

n1+�−� − 1
n2−� − 1

: (19)

Clearly, for large n; the above value for $ is crucially dependent on the
exponents of n (in particular, on whether they are positive or negative). In5
this respect, three di;erent cases may be considered, with respective values
for $ that may be approximated (for large n) as follows: 127
(i) If �¡2,

$ ∼ 2 − �
�− � + 1

n�−1;

(ii) If 2¡�¡� + 1,9

$ ∼ �− 2
�− � + 1

n(�−1)−(�−2);

(iii) If �¿� + 1,

$ ∼ �− 2
�− �− 1

:

By P1–P3, the parameters involved in the above expressions (in particular,11
� and �) can be taken to be independent of n, the population size. Therefore,
for large systems (large n), it follows that the performance rate $(k) will be13
maximized somewhere in the critical region, i.e. for k ∈ (k; Vk). For only in
this region does the performance of the system beneKt from ‘scale e;ects’.15
Outside of it (that is, in either the supercritical or subcritical regions), the
performance rate is (approximately) equal to V�; independently of n.17

The previous considerations provide the basis for understanding C1. To
understand C2, we now rely on P3, i.e. avalanche sizes and the induced19
advances are related through a power law that is not only independent of
n but also holds unchanged for all k (of course, as long as k remains in21
the critical region). This key feature of critical behavior has the following

11 Of course, this computation must be viewed only as an approximation conducted under
the implicit assumption that the support of the conditional distributions P(H | s = Vs) displays a
relatively narrow support—cf. Jensen (1998, p. 38).

12 Close to the borders between the di;erent regimes, limits must be handled with care since
divergencies pertaining to vanishing terms occur and di;erent limit operations do not commute.
These technical issues notwithstanding, a detailed analysis of (19) will convince the reader
that $ displays the properties later required (e.g. given n and �¿1; it induces a well-deKned
decreasing function of �):



UNCORRECTED P
ROOF

DYNCON1416

A. Arenas et al. / Journal of Economic Dynamics & Control 000 (2001) 000–000 25

striking implication: the e;ect of k on $ becomes solely channelled through its1
e;ect on � (i.e. the steepness of the size distribution). Building upon this key
observation, we are now in a position to understand why the maximization3
of $ must indeed be achieved at the lower edge of the critical region.

To this end, restrict attention to the critical region, and conceive $ as a5
function of � and �; that is extended continuously from the interior of the
di;erent subregions (i)–(iii) for given n. Then, for small changes in k; we7
can symbolically write:

[$
[k

=
[$
[�

[�
[k

+
[$
[�

[�
[k

=
[$
[�

[�
[k

since, by P3, we have [�=[k=0 (i.e. � is una;ected by k within the critical9
region). Now, it is easy to check from (19) that [$=[�¡0: Combining this
latter fact with [�=[k¿0 (i.e. the weight of small avalanches grows with k),11
it follows that [$=[k¡0, i.e. $ is a decreasing function of k. Obviously,
this implies that the maximization of $ must occur at the lower boundary13
of the critical region. As desired, therefore, this provides an (approximate)
analytical basis for those features of our numerical simulations which were15
stated in C2.

In a sense, C2 may be interpreted as suggesting that optimal performance17
builds upon a rather delicate compromise between ‘order’ (synchronization
or homogeneity, i.e. supercriticality) and ‘disorder’ (criticality). Heuristically,19
the underlying intuition for why some such balance should be expected to
arise is not di?cult to understand. On the one hand, if all individuals were to21
advance in step because of low incompatibility costs, individual adjustments
would always be relatively small and no steep gradients could ever arise.23
Consequently, the overall pace of advance should be slow, individuals hardly
taking advantage of the ‘scale economies’ that a large system would avail.25
But, on the other hand, if incompatibility costs were large, the scale e;ects
impinging on overall advance that could be potentially a;orded by a large27
system would be, again, not fully taken advantage of. In this second case,
avalanches would typically be too small for any heterogeneity to be proKted29
by its required complement: an e;ective process of di;usion.

The previous considerations provide quite a clear intuition for why opti-31
mal performance should require criticality, i.e. a suitable trade-o; between
homogeneity and heterogeneity in agents’ unfolding behavior. What seems33
substantially more subtle is the additional sharper conclusion that optimal-
ity is to be expected at the lower edge of the critical region. As explained,35
this appears to be intimately associated to the intriguing ‘empirical’ (i.e. nu-
merical) Knding that criticality induces a Kxed power relationship between37
avalanche sizes and the induced advances.
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6. Summary and conclusion1

This paper represents a Krst step in a research project where we plan
to study in detail the relationship among complexity, optimality, and self-3
organization in systems composed by a large number of locally interacting
entities. As suggested above, many social and economic systems may be5
modelled in this fashion. In particular, this approach seems particularly well
suited to study technological evolution when the decisions adopted by the7
di;erent entities (individual agents, Krms, or even sectors) display local com-
plementarities.9

In the context of a simple model with these features, we have seen that
if non-coordination costs exceed a certain threshold (but are not too large),11
the system self-organizes itself into a critical state and the sizes of di;u-
sion waves are distributed according to a power law. In this case, moreover,13
the roughness of the population proKle converges to a well-deKned (average)
magnitude, thus indicating that there is a speciKc degree of long-run popula-15
tion heterogeneity associated to each parameter (cost) conKguration. In fact,
it turns out that this ‘critical’ heterogeneity plays a crucial role in the perfor-17
mance of the system. SpeciKcally, we have seen that, given a natural measure
of performance (that admits an interpretation of either average adoption cost19
or rate of technological advance), the system behaves optimally within the
critical region—or, more precisely, at the lower edge of this region. This sug-21
gests that inter-agent heterogeneity plays a crucial role in the evolution of the
system. In other words, either too ‘orderly’ (synchronized) or too ‘chaotic’23
(non-coordinated) dynamics is detrimental to performance in that it imposes
too frequent (and thus costly) or too rare (and therefore unduly staggered)25
an adjustment on agents’ actions.

In ongoing research, we are studying a number of extensions of the present27
model. One of them concerns higher dimensional setups (speciKcally, a two
-dimensional torus), where each individual has more than two neighbors and29
therefore the di;usion paths may exhibit richer geometries. A second exten-
sion involves studying irregular (but Kxed) 13 networks of the small-world31
variety (see Watts and Strogatz, 1998). In each of these contexts, the same
qualitative conclusions found in the present model are essentially maintained.33
However, in the latter case (small-world networks), one obtains the expected
result that, due to a relatively short expected path between any two agents,35
the parameter range where synchronous behavior tends to arise becomes sig-
niKcantly larger than in regular networks.37

This paper has shown that quite a simple model of social, but local-based,
interaction may produce persistent and wide heterogeneity in the induced39

13 Note that, in order to preserve the key local structure of interaction that underlies our
analysis, the network cannot change in an unrestricted (say, time-independent) fashion.
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population dynamics. It is clear, however, that not all social networks can1
be expected to display such a behavior. For example, complete networks,
which display no local structure, can only exhibit uninteresting ‘waves’ in3
a coordination context analogous to that considered here. In such a context,
Kxed-size avalanches of the order of system size (and only those) would5
occur as the number of updates accumulated since the last avalanche come
to exceed a certain threshold. 147

Naturally, the above point raises the question of what networks might be
conducive to critical behavior and, more importantly, whether such a class9
of criticality-supporting networks could arise endogenously when the social
network is not Kxed but may also co-evolve as dictated by agents’ own de-11
cisions. The issue, in a sense, is analogous to that addressed by the most
recent developments of evolutionary game theory that focus on how the par-13
allel co-evolution of both players’ links (or connections) and their actions
may a;ect the received analysis on equilibrium selection. 15 Indeed, not only15
the concerns but also some of the techniques used in this literature (e.g. those
employed to analyze perturbed Markov processes) would seem quite appli-17
cable to the problem at hand. The study of this important topic is left for
future research.19
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