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Complex networks are characterized by highly heterogeneous distributions of links, often pervading
the presence of key properties such as robustness under node removal. Several correlation measures
have been defined in order to characterize the structure of these nets. Here we show that mutual
information, noise and joint entropies can be properly defined on a static graph. These measures
are computed for a number of real networks and analytically estimated for some simple standard
models. It is shown that real networks are clustered in a well-defined domain of the entropy-
noise space. By using simulated annealing optimization, it is shown that optimally heterogeneous
nets actually cluster around the same narrow domain, suggesting that strong constraints actually
operate on the possible universe of complex networks. The evolutionary implications are discussed.
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I. INTRODUCTION

Many complex systems are to some extent describable by the network of interactions among its
components. Beyond the specific features displayed by each net, it has been shown that a number
of widespread properties are common to most of them. One is the presence of the small-world
phenomenon and the second the observation that in many cases they are highly heterogeneous in
their connectivity patterns (Albert and Barabási, 2002, Bornoldt and Schuster, 2002, Dorogovtsev
and Mendes, 2002, 2003).

Heterogeneity can be easily identified by looking at the so called degree distribution Pk, which
gives the probability of having a node with k links. Most complex networks (both natural and
artificial) can be described by a degree distribution Pk ∼ k−γφ(k/ξ) where φ(k/ξ) introduces a
cut-off at some characteristic scale ξ (Amaral et al, 2000). An example of such scale-free networks
is provided by the architecture of digital electronic circuits (figure 1). It has been shown (Ferrer,
Janssen and Solé, 2001) that these systems exhibit long tail distributions of links, where the
nodes are electronic components and the links are physical wires between units. Most elements
are connected to a few others (for circuits this usually means nearest neighbors) but some are
connected to many others. In figure 2 several examples of the observed distributions for both
analogic (a-b) and digital (c-d) systems are shown. Although analogic systems are closer to an
exponential distribution (i. e. ξ small) digital, large-scale systems1 exhibit scaling behavior, with
γ ∼ 3.

Scale-free nets have been shown to be obtainable through a number of mechanisms, including
preferential attachment (Barabási and Albert, 1999; Dogorovtsev and Mendes, 2002), optimization
(Ferrer and Solé, 2003, Valverde, Ferrer and Solé, 2002), duplication and divergence (Solé et
al, 2002, Vazquez et al. 2003) or fitness-dependent, rich-gets-richer mechanisms (Caldarelli et
al., 2002). Beyond the common qualitative architecture shared by these systems, the dynamical
patterns and their time scales that take place on top of these webs differs from system to system,
although in a way or another deals with information propagation and/or processing. Besides, the
response to node removal differ from system to system. Although genetic and metabolic networks
seem to be fairly robust against perturbations of different types, a totally different situation arises
in electronic circuits. In biological nets failure of highly connected components will tipically end in
system’s failure (for example, at the cellular level). But failure (by mutation or transient change)
of a gene is often buffered by the rest of the system. This is not the case for electronic circuits

1 Similar results have been obtained by looking at VLSI networks, see for example:
http://citeseer.nj.nec.com/450707.html
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FIG. 1 Heterogeneity is a widespread feature of most (but not all) complex networks. An example from
technology graphs are electronic circuits (upper plot) which have been shown to display scale-free distri-
butions of links.

and, to a similar extent, by software networks. Failure of any component typically ens in system’s
failure, no matter how much linked is the given unit.

Several quantitative measures can be used in order to characterize a given network. The first
step is to define an appropriate representation in terms of a graph Ω, defined by a pair Ω = (W,E),
where W = {si}, (i = 1, ..., N) is the set of N nodes (species, proteins, neurons, etc) and E =
{{si, sj}} is the set of edges/connections between nodes. The adjacency matrix ξij indicates that
an interaction exists between two nodes si, sj ∈ Ωp (ξij = 1) or that the interaction is absent
(ξij = 0). Several statistical properties, such as average degree, clustering or diameter can be
defined from the adjacency matrix.

But the universe of possible networks (figure 3), although not arbitrarily diverse, displays a num-
ber of variations that cannot be compressed by the previous average quantities. Real networks are
not only tipically heterogeneous, but they also involve other types of features, such as hierarchical
organization (Ravasz et al., 2002).

In figure 3 we qualitatively summarize the basic types of network organization by using a generic
parameter space. Here heterogeneity, modularity and randomness define three axes. Assuming
that such three parameters can be properly defined, different real and model graphs can be located
at different locations. The current knowledge of network architecture in many different systems
strongly indicates that the domain of random networks with long tailed degree distributions and
some amount of modular structure are rather densely occupied. In spite that the evolutionary
process leading to these different systems are rather diverse, it is interesting to see that there is a
strong convergence towards this type of architectures. Here we will explore this problem by using
information-based statistical measures.

II. MEASURING CORRELATIONS

Beyond the degree distribution and average statistical measures, correlation measures offer con-
siderable insight into the structural properties displayed by complex networks (Newman, 2002).
One particularly interesting is network asortativeness (ref). Some networks show assortative mix-
ing (AM): high degree vertices tend to attach to other high-degree vertices. At the other extreme
there are graphs displaying dissortative mixing (DM), thus involving anticorrelation. The later
are common in most biological nets, whereas the former are common in social and collaboration
networks. It has been suggested that the presence and sign of assortativeness in this nets can have
deep implications to their resilience under node removal or disease propagation.

Following a previous analysis (Newman, 2002) we will be interested here not in the degree
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FIG. 2 Cumulative degree distributions for several examples of analogic (a-b) and digital (c-d). Although
the analogic systems are less heterogeneous, analogic circuits (particularly large systems) display scaling
in their degree distributions.

distribution Pk but instead in the remaining degree: the number of edges leaving the vertex other
than the one we arrived along. This new distribution q(k) is obtained from:

q(k) =
(k + 1)Pk+1

< k >
(1)

where < k >=
∑

k kPk. In a network with no assortative (or disassortative) mixing qc(j, k) takes
the value q(j)q(k). If there is assortative mixing, qc(j, k) will differ from this value and the amount
of assortative mixing can be quantified by the connected degree-degree correlation function

〈jk〉 − 〈j〉 〈k〉 =
∑
jk

jkqc(j, k)−

∑
j

jq(j)

2

(2)

where 〈. . .〉 indicates an average over edges.
The correlation function is zero for no assortative mixing and positive or negative for assortative

or disassortative mixing respectively. In order to compare different networks, normalization is
required. By dividing by its maximal value, which it achieves on a perfectly assortative network,
i.e., one with qc(j, k) = q(k)δjk. This value is equal to the variance σ2

q =
∑

k k2q(k)−
[∑

k kq(k)
]2

of the distribution q(k), and hence the normalized correlation function is

r =
1
σ2

q

∑
jk

jk(qc(j, k)−

∑
j

jq(j)

2
 (3)

As defined from the previous equation, we have −1 < r < 0 for DM and 0 > r > 1 for AM. Both
biological ad technological nets tend to display DM, whereas social webs are clearly assortative.

Correlation functions have been widely used both in statistical physics (Stanley et al., 1996) and
nonlinear dynamics (Abarbanel et al., 1993). A closely related, and more general approach involves
the use of information-based measures (Ash 1965, Adami 1998, Li 1990, 1991). One specially
important quantity is the so called mutual information, which is a general measure of dependence
between two variables (Ash 1965, Li 1991). Correlation functions measure linear relations, whereas
mutual information measures the general dependence and is thus a less biased statistic. The
relevance of this difference is illustrated by the analysis of chaotic dynamical systems: the second
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FIG. 3 A zoo of complex networks. In this qualitative space, three relevant characteristics are included:
randomness, heterogeneity and modularity. The first introduces the amount of randomness involved in the
process of network’s building. The second measures how diverse is the link distribution and the third would
measure how modular is the architecture. The position of different examples are only a visual guide. The
domain of highly heterogeneous, random hierarchical networks appears much more occupied than others.
Scale-free like networks belong to this domain.

allows to determine the independent variables for (re-) constructing phase trajectories (Fraser and
Swinney, 1986). This cannot be done from linear correlation functions. Additionally, the definition
of mutual information within the context of communication channels implies additional statistical
quantities (such as channel entropy and noise) that provide a detailed characterization of system’s
complexity. Here we show how these quantities can be properly defined for complex networks, how
they correlate with other statistical measures and what is their meaning and implications.

III. ENTROPY AND INFORMATION

By using the previous distribution q = (q(1), ..., q(i), ..., q(N)), an entropy measure H(q) can be
defined:

H(q) = −
N∑

k=1

q(k) log(q(k)) (4)

The entropy of a network will be a measure of uncertainty (Ash, 1965). Within the context of
complex nets, it provides an average measure of network’s heterogeneity, since it measures the
diversity of the link distribution. The maximum is Hmax(q) = log N is obtained for q(i) =
1/N(∀i = 1, ..., N) and Hmin(q) = 0 which occurs when q = (1, 0., , , 0). In an information
channel, there is a distinction between source and destination. Given the symmetric character of
our system, no such distinction is made here. In figure 4 we can see the impact of heterogeneity
on entropy. Specifically, we computed the entropy H(q; γ, ξ) for γ ∈ (2, 3) and ξ ∈ (0, 50) for a
distribution Pk ∼ k−γφ(k/ξ) using different scaling exponents γ and cut-offs ξ. The impact of
diversity (long tails) is obvious, increasing the uncertainty. As the scaling exponent increases or
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FIG. 4 Computing correlations in a network. Here two given, connected nodes si, sj are shown, displaying
different degrees ki, kj . Since we are interested in the remaining degrees, a different value needs to be
considered (here indicated as qi, qj).

the cut-off decreases, the network becomes less heterogeneous and as a result a lower entropy is
observed.

Similarly, the joint entropy can be computed by using the previous joint probabilities:

H(q,q′) = −
N∑

k=1

N∑
k=1

qc(k, k′) log qc(k, k′) (5)

Since it considers all possible pairs of events, this entropy provides a measure of the average
uncertainty of the network as a whole. As before, it can be understood in terms of a measure of
the diversity of linked pairs with given remaining degrees.

The information transfer I({qk}) of a given system is defined by means of the difference:

I(q) = H(q)−Hc(q|q′) (6)

where the last term Hc(q|q′) is the conditional entropy that involves a different set of conditional
probabilities π(k|k′) (Ash, 1965). They give the probability of observing a vertex with k edges
leaving it provided that the vertex at the other end of the chosen edge has k′ leaving edges. This
entropy is defined as:

Hc(q|q′) = −
N∑

k=1

N∑
k′=1

q(k)π(k|k′) log π(k|k′) (7)

Since the conditional and joint probabilities are related through:

π(k|k′) =
qc(k, k′)

q(k′)
(8)

the conditional entropy can actually be computed in terms of the two previous distributions:

Hc(q|q′) = −
N∑

k=1

N∑
k′=1

qc(k, k′) log
qc(k, k′)

q(k′)
(9)

we thus have, from the previous expressions,

I(q) = H(q)−Hc(q|q′) (10)

= −
N∑

k=1

N∑
k′=1

qc(k, k′) log q(k) +
N∑

k=1

N∑
k′=1

qc(k, k′) log π(k|k′)

= −
N∑

k=1

N∑
k′=1

qc(k, k′) log
q(k)

π(k|k′)

which gives a final form for the information transfer function 2:

I(q) =
N∑

k=1

N∑
k′=1

qc(k, k′) log
qc(k, k′)
q(k)q(k′)

(11)

2 The previous measures can be extended (with some care) into continuous distributions. In this case, we
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Some limit cases are of interest here. The first corresponds to the maximum information transfer,
which is obtained, for a given {qk}, when Hc(q|q′) = 0, i. e. when the conditional probabilities
are such that π(k|k′) = 1 or 0 for all k, k′ = 1, ..., N . Another is given by π(k|k′) = δk,k′ . This case
corresponds to a deterministic channel in standard information theory (Ash, 1965). This implies
that qc(k, k′) = q(k′)δk,k′ which is precisely the case of perfectly assortative network (Newman
2002).

In analogy with information channels, we can find a maximum value of the information, which
we call the network’s capacity C = max{qk} I(q). There is no general method to compute C for an
arbitrary channel. It can only be computed in some specific cases.

By using the previous functions, we will measure three key quantities: (a) the amount of cor-
relation between nodes in the q-graph, as measured by the information transfer; (b) the noise
level, which will provide a measure of assortativeness and (c) the average diversity associated to
the q(k) distribution. Since the total information involves the two last terms in a linear fashion,
a noise-entropy space will be constructed and the distribution of real nets on this space will be
analysed.

IV. MODEL NETWORKS

In the following sub-sections some simple, limit cases will be considered. Different types of archi-
tectures are represented by some standard networks exhibiting different degrees of heterogeneity
and randomness. The list is far from exhaustive but provides an idea of what are the effects of
each ingredient on information transfer and entropies.
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FIG. 5 Entropy of the remaining degree distribution obtained from a network with degree distribution
Pk ∼ k−γφ(k/ξ). Here H(q) = −

∫
Pk log P (k)dk is shown against the scaling exponent γ and the cut off

ξ. As expected, the entropy becomes larger for smaller γ and decreases as ξ is reduced.

must assume that the continuous counterparts of the previous degree distributions can be defined. The
new distributions are such that the normalization conditions:

∫
q(k)dk = 1 and

∫ ∫
qc(k, k′)dkdk′ = 1

are at work. Provided that the distributions are well behaved, the information transfer is now given by

I(q) =
∫ ∫

qc(k, k′) log

(
qc(k,k′)
q(k)q(k′)

)
dkdk′. Accordingly, entropy and noise would be obtained from: H(q) =

−
∫

q(k) log(q(k))dk and Hc(q|q′) = −
∫ ∫

qc(k, k′) log π(k|k′)dkdk′
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A. Lattices and trees

Lattice-like networks are common in some man-made architectures, particularly parallel com-
puters (Germain-Renaud and Sansonnet 1991, Milutinovic 1988, Hillis 1985). These nets represent
the highest degree of homogeneity and have no randomness. For a lattice, we have Pk = δk,z, where
z is a fixed number of links per node and δij the Kronecker’s delta function. For this ordered graph
ΩL, we have

q(k) = δk,z−1 (12)

qc(k, k′) = δk,z−1δk′,z−1 (13)

and thus

I(q) = H(q) = Hc(q|q′) = 0 (14)

This is a trivial case, since the homogeneous character of the degree distribution implies zero
uncertainty. The same situation arises for a Cayley tree (Bethe lattice), where each node has
exactly the same degree. Tree-like architectures are also common in designed systems, such as
small-sized software graphs (Valverde, Ferrer and Solé, 2002) and communication networks.

B. Erdös-Renyi graphs

Erdös-Renyi graphs ΩN,p are random graphs such that two nodes are joined with some proba-
bility p. These types of graphs have been widely used as the backbone of null models of genetic
(Kauffman 1993, ecological (May 1976) and neural (Amari 1972) networks. It seems also ap-
propriate in describing the topology of species-poor ecosystems (Montoya and Solé, 2003). The
distributions are single-scaled and thus low uncertainty and high randomness are at work. The
average degree will be < k >≈ pN , and it can be easily shown that the probability Pk that a
vertex has a degree k follows a Poisson distribution Pk = e−<k> < k >−k /k!, and thus

q(k) =
(k + 1)e−<k>

< k > (k + 1)!
< k >−(k+1)= Pk (15)

For this random graph, the independence associated to the link assignement implies (for N large)
qc(k, k′) = q(k)q(k′) and thus information transfer is zero.

An interesting extension of the standard ER graph allows to introduce modularity into the
graph structure (Ravasz et al., 2002). In general, the graph Ω is partitioned into m subgraphs
{Ωi}, (i = 1, ...,m) of relative size ηi = |Ωi| such that

W =
m⋃

i=1

Wi (Wj ∩Wk = ∅) (16)

a b c

FIG. 6 Homogeneous networks: here two examples of a lattice (a) and a tree (b) are shown as examples of
deterministic nets. In both cases each node has the same degree and thus both the entropy and the noise
are zero. In (c) a random, Erdös-Renyi graph is shown. Here some amount of heterogeneity is at work,
but the variance equals the mean and both noise and entropy are very close, giving as a result a small
information i. e. no correlations.
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and such that ∑
i

ηi = 1 (17)

All nodes sj ∈ Ωi are connected with probability q and additionally we have a probability p
of connecting two nodes belonging to different modules. The average degree of this system is
< k >= pN/m + (m− 1)Nq/m. Given the random wiring, it is not difficult to show that for large
N information will be tipically very small.

C. Star Graph

Star graphs define another extreme within the universe of complex nets. Although no real
network is likely to be described in terms of a pure star graph, it is certainly a common motif
in many graphs. They are largely responsible for the short distances achieved in SF networks.
Besides, a star graph can be shown to be optimal for low-cost communication (Ferrer and Solé,
2003).

This graph Ω∗ is characterized by a degree distribution:

p(k) =
n− 1

n
δk,1 +

1
n

δk,n−1 (18)

The corresponding distribution q(k) is:

q(k) =
1
2

[δk,0 + δk,N−1] (19)

and the joint probabilities are reduced to:

qc(k, k′) = δk,N−2δk′,0 (20)

The entropy is maximal, given by:

H(q) = −q(0) log q(0)− q(N − 1) log q(N − 1) (21)

which gives H(q) = log 2. The noise term is Hc(q|q′) = 0, since π(k|k′) = δkk′ . The information
is thus maximal, with I(q) = H(q) = log 2. The star graph displays maximum information, as
expected given the deterministic character of the conditional probabilities.

V. REAL NETWORKS

In this section we present some analysis of the information measures as applied to real networks.
A large set of both technological and biological graphs has been studied. Specifically, three groups
of data sets were used in our analysis, all of them known to be highly heterogeneous displaying
scale-free architecture:

1. Metabolic networks: a graph theoretic representation of the biochemical reactions taking
place in a given metabolic network can be easily constructed. In this representation, a
metabolic network is built up of nodes, the substrates, that are connected to one another
through links, which are the actual metabolic reactions (Jeong et al., 2000).

2. Software class diagrams: Nodes are software components and links are relationships be-
tween software components. Class diagrams constitute a well-known example of such graphs
(Valverde et al., 2002; Valverde and Solé, 2003; Myers, 2003).

3. Electronic circuits: they can be viewed as networks in which vertices (or nodes) are electronic
components (e.g. logic gates in digital circuits and resistors, capacitors, diodes and so on in
analogic circuits) and connections (or edges) are wires in a broad sense (Ferrer, Janssen and
Solé, 2001).
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FIG. 7 Information transfer and assortativeness appear to be roughly correlated in a negative way. Here
several systems have been used (all those analysed in this paper) and a linear interpolation has been
displayed. Although the trend is clear, considerable variance can be appreciated, probably due to the
underlying nonlinear mapping between both measures.

In table I we also show a list of selected networks obtained from very different systems and
ordered from the higher to the lower information. The system’s size N , average connectivity
< k >, information measures and the assortative mixing coefficient r are provided. We can see
that most nets are disassortative, as predicted in (Newman, 2002). Actually, information and r
appear to be negatively correlated. This is shown in figure 7, where I(q) is shown against r for
different systems.

It is important to see that, in spite of the roughly negative correlation (a linear interpolation has
been used) a large variance is observable, and a range of r values is associated to each information
transfer. Such a variable plot is likely to be the result of the nonlinear character of the information
transfer, not shared by the (linear) correlation defined by assortative mixing measures.

By displaying noise against entropy, the general picture that emerges is that the set of complex
networks analysed here displays tipically uncorrelated (and hence non-assortative) structure. This
is clear from the strongly linear dependence shown between noise and entropy (figure 8). If two
given, randomly chosen nodes with remaining degrees k, k′ are tipically connected with some
probability, roughly irrespective of their mutual degree (i. e. low assortativeness is present) we
should expect:

qc(k, k′) ≈ q(k)q(k′) (22)

and thus we would have

π(k|k′) ≈ q(k) (23)

in this case, the noise will be given by:

Hc(q|q′) = −
N∑

k=1

N∑
k′=1

q(k, k′) log π(k|k′) (24)

= −
N∑

k=1

N∑
k′=1

q(k, k′) log q(k) = H(q) (25)
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information line, i. e. when entropy equals to noise. An example of a software graph that significantly
deviates from the H = Hc. The network is small and has a rather particular shape, involving a large hub
plus another cluster of connected classes.
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FIG. 9 Noise-entropy plot obtained by exploring the Γ space using a Monte Carlo sampling. Different pairs
of noise and entropy are generated and a simulated annealing search is performed looking for candidate
networks. Here the smoothed probability distribution obtained from this algorithm is shown in (a). The
highest density of observed networks appears to be close to the same domain observed for real networks.
In (b) an example of a small sized network (N = 142, < k >= 2.64).is shown, together with its degree
distribution (c). The cumulative degree distribution follows power law with exponent −1.26 (i. e. γ =
2.26). The graph has been obtained close to the boundary H = Hc (with H(q) = 3.69, H(q|q′) = 3.09.

Statistical independence among node degree thus gives a predicted straight line Hc(q|q′) = H(q)
which seems to be suggested by our data. One first conclusion from this analysis is that network
correlations in real graphs are small, beign the diversity of pairs of linked nodes a direct consequence
of the heterogeneous character of the degree distribution and nothing else. In spite that the cloud
of points deviates from the straight line, these deviations might result from finite-size effects.
Actually, if we plot information measures I(q;N) against system’s size N , it can be shown that
they follow a scaling I(q;N) ∼ N−1.
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TABLE I Information-based measures computed for different real and theoretical systems. For each subset
the list is ordered from higher to lower information transfer.

Network type N < k > I(q) H(q) Hc(q|q′) r

Technological networks

Software 1 168 2.81 1.19 3.04 1.85 -0.39

Software 2 159 4.19 1.03 3.99 2.97 -0.41

Circuit AS97a 3200 3.56 0.50 4.77 4.27 -0.22

Software 3 1993 5.00 0.30 4.82 4.51 -0.08

Circuit TV 320 3.17 0.23 1.37 1.14 0.010

Circuit EC05 899 4.14 0.15 2.98 2.82 -0.15

Software linux 5285 4.29 0.12 4.47 4.35 -0.06

Powergrid 4941 2.67 0.06 3.01 2.95 0.003

Biological networks

Silwood park 154 4.75 0.94 4.09 3.14 -0.31

Ythan estuary 134 8.67 0.53 4.74 4.21 -0.24

p53 subnetwork 139 5.09 0.46 4.00 3.54 -0.24

Metabolic map 1173 4.84 0.39 3.58 3.19 -0.17

Neural net (C.elegans) 297 14.5 0.37 5.12 4.74 -0.16

Metabolic map 821 4.76 0.37 3.46 3.09 -0.18

Romanian syntax 5916 5.65 0.31 5.45 5.14 -0.18

Proteome map 1458 2.67 0.24 3.85 3.61 -0.21

Theoretical systems

Star graph 17 1.88 1.00 1.00 0.00 -1.00

Barabási-Albert 3000 3.98 0.25 4.12 3.85 -0.078

Erdös-Renyi 300 6.82 0.06 3.31 3.25 -0.005

modular E-R 500 10.3 0.04 3.67 3.62 -0.001

Two points clearly deviate from the general pattern displayed by the majority of networks
analysed here. Both are small systems and correspond to software graphs, and one of them is shown
in figure 8b. As we can see this is a rather peculiar system, involving a large hub connected to a
small module. It is thus a small structure dominated by the star graph component together with a
homogeneous component. Such a nonuniform structure is likely to result from an process dealing
with a small structure but unlikely to result from a natural process or from artifical evolution when
some complexity thresholds are reached (Valverde, Ferrer and Solé, 2002).

One possible explanation for the previous result is that correlations simply do not play any
particular role in shaping network architecture. However, it could be also argued that such a
lack of correlation has been either chosen or selected for some underlying reason. But there’s also
another (more likely) scenario: that the observed stuctures are actually the only possible choices,
at least when some complexity threshold is reached.

VI. SIMULATED ANNEALING SEARCH

The spread of real networks close to the zero-information boundary suggests that the possible
structures allowed to occur (with a given heterogeneity and a given correlation) is rather con-
strained. This might be a consequence of the irrelevance of correlations for these systems but it
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would also be the case that some selective pressure is made towards heterogeneous networks with
small correlations (i. e. no assortativeness).

In order to test the previous idea we can perform a Monte Carlo search in network space.
Specifically, we explore the space of possible pairs entropy-noise available to candidate graphs Ω,
i. e. Γ = {H(q),Hc(q|q′)}, which is constrained by two well-defined boundaries:

∂1Γ = {(H(Ω),Hc(Ω)) | Hc(Ω) = 0} (26)

∂2Γ = {(H(Ω),Hc(Ω)) | H(Ω) = Hc(Ω)} (27)

where H(Ω) and Hc(Ω) indicate the entropy and noise associated to a given graph Ω. It is not
difficult to show that only two points occupy the lower boundary, i. e. ∂1Γ = {(0, 0), (log 2, 0)}.
These correspond to purely homogeneous graphs and the star graph. The second boundary has
already been studied.

For every random sample point (H,Hc), an optimizing searching process looks for candidate
networks that minimize the error term or potential function U(Ω):

U(Ω) =
√

(H −H(Ω))2 + (Hc −Hc(Ω))2 (28)

Here, we use the Boltzmann strategy presented in (Schweitzer et al. 1996, Schweitzer, 2002).
The algorithm explores the search space defined by all possible networks of N nodes. We assume
that every possible state visited by the search process can be properly characterized by the scalar
Ui. In the stationary limit (for a large number of searchers) define the occupation probability
pi(t) of certain state i at time t. We require the optimization process to increase the occupation
probability for the state of minimal potential. In general, many local minima exist and the search
could be trapped in one of these states, which is undesirable.

A dynamics that finds the minimum is given by:

dpi(t)
dt

=
∑
i 6=j

Aijpi(t)−Ajipj(t) (29)

where

Aij = A0
ij ∗

{
1

exp (−(Ui − Uj)/T (t))
;Ui < Uj

;Ui ≥ Uj

(30)

is the transition probability for the searcher to move from state i to state j. The term A0
ij is 1 if

and only if the state j can be reached by a little change or mutation and 0 otherwise. Here, the
valid changes involve edge addition, edge removal and edge rewire, which are all equally selected
with the same probability. The number of nodes of the network is allways fixed. Transitions to
lower energy states are allways accepted but local minima is avoided because termal fluctuations
like in simulated annealing . As the search progresses, the temperature T (t) is decreased following
a power law rule:

T (t) =
T0

1 + at
(31)

where T0 is the initial temperature (or starting degree of disorder) and a is the cooling rate. This
allows the optimization process to perform a smooth transition from coarse to detailed search. The
process starts from a random graph of N nodes with a given connectivity < k > and lasts a given
number of simulation steps.

By measuring the final error ε(Ω) = U(Ω) for a large number of Montecarlo samples it is possible
to approximate the likely of a particular candidate network. Here we have used ε = 0.003 and
the optimization parameters are: N = 500, < k >= 3, 350000 steps, T0 = 0.01, a = 0.002. Our
results indicate that the potential is effectively minimized only for a domain of pairs (H,Hc) along
the second boundary ∂2Γ. In figure 10a the (smoothed) probability density P(H,Hc) of optimized
networks is shown (for the upper part of the parameter space, P(H,Hc) = 0). The distribution is
peaked around a domain of Γ that fits very well the range of values satisfied by most real networks



13

FIG. 10 The logic of monsters. Mythological creatures, gargoles and other imaginary creatures define a
parallel universe of structures that are often mixtures of real creatures. Although possible in principle,
they are not observed in nature.

(compare with figure 9). There is also a clearly empty zone outside this domain, indicating that
networks are difficult or simply impossible to find. An example of the optimized graphs is shown in
figure 10b. This particular graph is scale-free, with an exponent γ ≈ 2.26 and a cut-off at ξ ∼ 50.
The other networks in this domain are also SF, with an average scaling exponent < γ >∼ 2.5. By
searching candidate networks that simultaneously fit the two requirements of given entropy and
noise, the only possible solutions to be found are scale-free graphs with small levels of correlations.
Interestingly, software networks deviate from this rule and are to be found along the upper region
of the boundary (H > 4), where potential is not minimum. This might be a signature of frustated
optimization in software design processes (Valverde, Ferrer and Solé, 2002).

VII. DISCUSSION

Complex networks display heterogeneous structures that result from different mechanisms of
evolution (Solé et al., 2002). Some are created through multiplicative processes while others
seem to be well described in terms of optimization mechanisms. Our study indicates that the
possible universe of complex networks is actually rather constrained. Networks display scale-free
architecture but also small assortativeness. The search algorithm, instead of assuming the presence
of a given predefined mechanism of network growth, simply searches for candidate solutions to an
optimization algoritm trying to approach simultaneously some amount of network heterogeneity
and correlations. The result is that indeed networks are scale-free and involve low degree of
correlations, but such situation is constrained to a well-defined domain. This domain is remarkably
similar to the one inhabited by real graphs. Outside this domain, it is not feasible to find graphs
simultaneously satisfying the two requirements.

The impact of SF architecture on biological and artificial networks is clearly different. Although
the first can take advantage of the high homeostasis provided by scaling laws the second are
completely dependent on the correct functioning of all units. Failure of a single diode in a circuit or
of a single component in a software system leads to system collapse. Thus, homeostasis can not be a
general explanation for scaling. We have conjectured that the leading force here is an optimization
process where reliable communication at low cost shapes network architecture in first place (Solé
et al., 2002). The need of a sparse graph can be a consequence of different requirements. In an
electronic circuits, saving wire is a strong constraint. In metabolic or genetic networks, it might
be important in order to reduce the impact of unstable positive feedbacks. This can be satisfied
by means of sparse graphs displaying scale-free architecture. What is the role of correlations? For
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the systems analysed here correlations don’t seem to be of relevance to network performance. But
what is more important: the lack of networks outside the densely populated domain is not due
to some relevant, perhaps adaptive trait. It is actually a consequence of higher-level limitations
imposed to network architecture.

Such a constrained set of possibilities fits very well the view of evolution as strongly dominated by
intrinsic constraints (Jacob, 1976; Alberch, 1989; Kauffman, 1993; Goodwin, 1994; see also Gould,
2003 for a critical discussion). Under this view, the outcome of evolutionary searches would be
not any possible architecture from the set of possible patterns but a choice from a narrow subset
of attainable structures. In this context, in spite of the contingencies intrinsic to evolutionary
dynamics and history, the same basic repertoire of architectural motifs would be observable if the
tape of evolution were rewound and played again (and this includes the evolution of technology).
Although monsters are in principle possible (figure 10) they are unlikely to occur (the software
graph shown in figure 8b would be an example). The surprising convergence of complex networks
towards heterogeneous, scale-free graphs might become a good example of the role of structural
constraints to evolutionary dynamics.
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11. Solé, R.V., Pastor-Satorras, R., Smith, E.D. and Kepler, T. A model of large-scale proteome
evolution. Adv. Complex Systems 5, 43-54 (2002).

12. Vazquez, A., Flammini, A., Maritan, A. and Vespignani, A. Modeling of protein interaction
networks. Complexus, 1, 38-44 (2002).

13. Caldarelli, G., Capocci, A., De Los Rios, P. and Muñoz, M. A. Scale-free networks from
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