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Abstract 

Travel is a prerequisite for activities which maintain social and business connections, building 
the vital social networks which conduct the flow of values, services, and opportunity. This 
paper presents a multi-agent simulation to study linked geographical and social spaces. The 
model simultaneously generates a social network and travel behavior by defining 
social-networking visits as travel activities. Information about space and other agents flows 
only via the social network. Social ties are added/removed depending on co-presence/lack of 
visits, introducing the dynamic feedback to the model. A random utility model (RUM) trades 
off socializing with the cost of travel and the activity attributes to generate probabilities for 
link attachments. The focus on link attachment probabilities allows the model to be verified 
within the analytical framework of random, small-world, and exponential (preferential 
attachment) graphs. New measures are suggested to compare social and geographical space. 
The model response to changes in utility parameters is sometimes unexpected due to the 
feedback. Ensemble results of a base case and sensitivity tests are presented. 
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2 Introduction 

While it has been apparent to travel demand researchers that social contacts can both 
constrain and induce travel (Axhausen, 2006), activity-based tools for understanding and 
modelling travel demand have not systematically incorporated social network approaches. 
This paper presents a microsimulation of social networks in geographic space, in which 
maintaining social contacts is a trip-generating activity. The goal is to develop a system for 
studying the influence of social networks on activity planning, separate from the effects of 
individual characteristics and geography. 

The term social network refers to a collection of acquaintances (nodes or vertices) and their 
relationships (links or edges). Tools for the analysis of social networks have long existed in 
the social sciences (Wasserman and Faust, 1994) in a literature not commonly consulted by 
business, economics, and engineering disciplines. However, a series of accessible publications 
from the field of statistical physics explaining and applying small world and complex 
networks (e.g. Newman, 2003, Watts and Strogatz, 1998, Watts, 1999, Kleinberg, 2000, 
Kleinberg, 2001, Barabasi, 2002) has initiated a proliferation of social network studies and 
studies of complex networks in many disciplines. While the term “social network” will be 
used throughout this paper, a more precise term in view of the hypothesis-oriented 
methodology might be “relational econometric” networks (Bidart and Degenne, 2005). 

A framework for incorporating the social context of activity-based tools is proposed by 
Axhausen (Axhausen, 2006). Friends, family, work colleagues, etc. constitute a social 
network of acquaintances (“alters”). In the short term, these relationships with the decision 
maker (“ego”) conduct information and obligations, which can motivate, constrain, or 
substitute for travel and activities. The social network influences the allocation of time 
between travelling versus planning and participation in activities (see e.g. Miller, 2005). 
Meanwhile, the long-term effectiveness of the upkeep of social contacts determines how 
social influences evolve for the future. Though much social interaction occurs via 
synchronous and asynchronous electronic media, making geography practically moot, 
co-presence is vital to certain social processes and activities and thus relationships (Urry, 
2003). Particularly restrictive definitions of “relationship” are necessarily chosen for social 
network studies because it is infeasible to ascertain personal (ego) or global networks for all 
types of relationships. However neither the topology of the networks that are relevant for 
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influencing travel decisions, nor how they evolve, are well-understood. Indeed, the set and 
strength of relationships that are relevant to transportation demand over different distances 
and time horizons is yet to be defined.  

There are few applications of social networks in transportation planning. Dugundji and 
Walker (2005) derive a mode choice model containing a term for the group average decision 
from the previous decision round, based on applied mean field theory in economics (Blume 
and Durlauf, 2004) and using various static associative social networks that group individuals 
by planning zone, sociodemographics, or other observable econometric statistic (Dugundji 
and Gulyas, 2003). Paez and Scott (2005) present a similar approach to estimate the share of 
telecommuting at a firm in consideration of peer pressure to appear at one’s desk. Marchal 
and Nagel (2006) allow cooperative agents in a microsimulation to share information with 
each other about activity locations and about other agents, in order to optimize trip chains. In 
perhaps the most theoretically advanced work on the topic, Arentze and Timmermans (2006) 
present a framework for a multi-agent microsimulation that produces a dynamic social 
network that evolves together with activity-travel patterns, with promising first results. The 
model includes explicit agent behavior such as mutual consent to initiate a relationship, 
fulfilment of social and information needs, adaptation to the social network mean preferences 
(or else modification of its social network), and values of time along with activity durations. 

While it might improve transportation demand models to have social connections, i.e. ego 
networks, in them at all, there are hard questions to face before we know whether including 
social networks is a cost-effective or valid solution. The global networks, of which ego 
networks are subgraphs, are highly nonlinear structures that could exhibit emergent 
complexity which can cause sudden unexpected results. On one hand, it is a challenge to build 
dynamic ego networks that combine to yield plausible (or desired) global characteristics. On 
the other hand, there is an opportunity to use more of the global network statistics in the 
development and, perhaps, governance of a dynamic model, which may give the modeller 
more control over the emergent social network to make sure the model operates in a range 
that brackets realism. The rich dimensionality of global networks has not been included in the 
work thus far. 

One advantage to using ego networks is the possibility of finding parameter values for the 
models in survey data. For this to work however, the model parameters need to be carefully 
defined such that they are observable. Simulations designed with this in mind from the outset 
could lead to more efficiently focused surveys and faster conclusions on the feasibility of 
combining social networks with activity-travel modelling. 
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Finally, the explicit study of the relationship between travel opportunities and the social 
network is the key to linking social networks with land use and settlement patterns. If social 
networks are significant factors in travel behavior, then this connection must be established in 
order to understand the influence of policy decisions on social contacts. 

The model presented here generates a global set of inter-household relationships based on 
dynamic ego networks that develop with respect to travel opportunities. Agent simulation is 
chosen for two main reasons: first, information about the network context of activity planning 
is lacking, and second, because simulation can be used to build the needed global social 
network from assumptions about the structure and the growth and decay processes of 
egocentric networks. It is conceived as a prelude to a microsimulation approach to generating 
inter-household joint activity plans. Though a specific reason for socializing is not given in 
this model, these trips may be considered to be a fundamental component of maintaining 
social capital (Freeman, 1977) or of putting social capital to work (Axhausen, 2006). 
Statistical measures are also presented to analyze spatially moderated social networks. The 
work is part of a long-term project to better understand the interdependence between activity 
spaces and generalized transportation cost. 
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3 Global social networks and travel behavior 

While many travel activities take place within an exogenously determined framework: fixed 
work hours, daylight, weekends, seasonally varying activities, public holidays, etc., the 
orchestration of schedules across society is in principle emergent, that is, without a central 
planner. Social network influences are instrumental in determining trip destination, frequency, 
mode and scheduling, especially for leisure and “personal” travel. However, the more jobs 
that can be performed with flexible work hours and at distributed workplaces, the more 
self-planning can be expected for work trips, as well. 

People who do not live together either adapt to a given schedule or they must negotiate 
activities in order to meet in person. The determination of meeting point, frequency, 
scheduling, and duration will take into account the travel opportunities of the agents involved: 
route, mode, schedule, etc. These interactions occur with respect to the social connections 
between agents, and with certain exogenous constraints (e.g. institutional norms, weekends, 
etc.). 

In a network with equal or featureless nodes, the topology of the social network alone 
determines the efficiency of the spread of information, the network stability, and the resilience 
of the society to the removal of links or nodes. Furthermore, it would be expected that the 
social network, and the strength of its influence, would be modified as a result of the 
self-organizing collection of actions of all actors. Thus in order to model inter-agent 
negotiations, it is necessary to understand or to posit their context within the detailed topology 
of the social network and to hypothesize the effect of agent interactions on the dynamic 
connectivity of the network. 

The decisive influence of the specific network topology on the global-level outcome of 
micro-level interactions has been highlighted in studies of the navigability of social networks 
(White and Houseman, 2003, Clauset and Moore, 2003), simulations of epidemics with the 
assumptions of a SIR process (Hufnagel, et al, 2004), the endogenous price of goods 
exchange (Wilhite, 2001), the emergent dominant strategy in an iterated prisoner’s dilemma 
game (Axelrod, 1981, Schweitzer et al, 2005), the resilience of spatial networks (airline, roads, 
electric grids) to interruptions (e.g. Barrat et al, 2005, Gastner and Newman, 2004), among 
many other examples. For activity-travel, the network topology is relevant to short and 
medium time frame with regard to an agent’s access to information (mode, route, destination, 
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people) and ability to use that information (constraints, generalized costs of learning or of 
travel) or to find substitutes for travel. For longer term behavior, the dynamic social network 
topologies might be important with regard to resilience of ego networks and adaptation 
following relocation decisions. 

3.1 Empirically identifying the social network in space 

Thus modelling travel behavior based on extra-household social network influences has a first 
hurdle in the identification of a realistic set of social contacts, and if possible, their geographic 
association. Available datasets on the social network structures are not directly helpful in this 
area. Most surveys of “global” networks are understandably constrained to cases of small 
groups with very specific characteristics that are not generalizable (Valente, 2006). Panel 
observations of social network dynamics are a rarer dataset still. The link between 
socialization and geographical location, travel, or relocation behavior has been investigated in 
a few small-sample studies of ego networks (Carrasco et al, 2006, Ohnmacht, 2005) that offer 
preliminary qualitative but incomplete insights, where key quantities such as the attributes of 
alters or the coordinates of the meeting place are generally missing. Liben-Nowell, et al 
(2005) use the hometowns of participants in an online social network of bloggers to derive a 
small world model in which the probability of befriending a person is inversely proportional 
to the number of physically closer people. While blogging is remote from the face-to-face 
social behavior focused on in this work, relating link probability to the rank of the physical 
distance elegantly couples geographic space and social space and this outcome may be a 
hypothesis to test in our model in the future. 

Yet summary statistics of real social networks allow the following conclusions (Jackson and 
Rogers, 2005): Society in general is a “small world”. This means that the global network of 
all people is highly clustered (it is highly likely that friends of an ego are also friends with 
each other), while maintaining a small average path length (the average minimum geodesic 
separation between any two people is very small relative to the total number of people in the 
network). While the latter has been measured repeatedly through a sampling trick (Travers 
and Milgram, 1969), the former is expensive to study and has been assumed to hold based on 
specific studies of small groups. Studies indicate that these network structures are consistently 
present in large associations of scientists, actors, or smaller groups of powerful CEOs 
(summary in Newman, 2003). In addition, many examples of real social networks exhibit a 
tendency for social links to form preferentially around nodes which already are 
well-connected, i.e. popular people become more popular (Barabasi, 2002). In preferentially 
attached networks, linked nodes tend to have positively correlated degree (assortativity). 
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Finally, the highly skewed distribution of degree means that clustering (see section 7.1) of the 
neighbors of high-degree nodes is lower than for neighbors of lower-degree nodes (sometimes 
referred to as a “core-periphery” structure). 
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4 The simulation of social networks 

Given aggregate characteristics of social networks, statistical or econometric methods have 
been used to generate sets of social networks that simulate ties in an artificial society. 
Hypotheses of social behavior have been proposed which attempt to explain what is known 
about social network topology and dynamics (Bidart and Degenne, 2005). Some of the many 
approaches that have been developed to generate social networks are summarized here. While 
some of these models reproduce parts of observed social networks, none include realistic 
modelling of travel or spatial location coupled with social behavior. 

As mentioned above, the social network required for activity-based planning applications 
must serve several time scales and evolve with agent activities. Dynamics involves using the 
generated network or the results of behavior in a time period as information influencing 
network topology in the subsequent time periods. Not all network generation is an attempt at 
simulating network dynamics. In particular, the canonical ensembles generated in statistical 
physics and the exponential random graph models (ERGM) described below are static objects 
of study in themselves and not time simulations of network evolution. The solution for 
activity based planning tools will be a combination of the methods summarized. 

4.1 Strengths, Weaknesses, Opportunities 

ERGMs (Snijders, 2002) assume the observed network is a sample of the class of graphs 
characterized by a posited linear combination of graph sub-structures. A number of graph 
classes are proposed and their coefficients fitted to the observation using Monte Carlo Markov 
Chain draws. Some models even include vertex characteristics in the estimation. The method 
needs a first sample of a global network in order to estimate parameters. Missing data is 
always a problem in networks, and in this case the result would be the wrong classification. 
The method gives the likelihood of the observation belonging to a particular class of graphs, 
but no behavioral explanation for the network topology. 

Analytic graphs have a strong basis in statistical physics and the asymptotic behavior is well 
understood. But translating these models into motivations and actions of people is not 
straightforward. Physical concepts like Brownian motion, entropy, and temperature may not 
have travel behavior equivalents, though these models are applied to artificial societies to 
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successfully construct aspects of self organization and networking (e.g. Schweitzer et al, 2002, 
Gonzalez et al, 2006). Link attachment procedures to construct canonical graphs are 
analytically well-described and possibly useful in the context of the activity-travel problem 
(Dorogovtsev and Mendes, 2003): 

• Erdös/Renyi classical random graph generator: node pairs to link are chosen at 
random, Poisson degree distribution, low to zero clustering (unrealistic for social 
networks), lowest average shortest-path length (order log(N)); 

• Equilibrium random graphs with given degree distribution: degree distribution is 
allowed to depart from Poisson, otherwise similar to classical random graphs. 

• Small World Networks: regular lattice with very few global imperfections (long links 
short-circuiting the lattice) which result in average shortest path lengths nearly as 
short as in random graphs and a Poisson degree distribution, but which retain high 
clustering. Like random graphs, the characteristics of these networks are easily 
destroyed by removing random nodes or links. 

• Preferential attachment graph makes agents with more links attract links with higher 
probability, resulting in correlated degree distributed like a power law (Barabasi 
2002). 

• Barabasi and Bonabeau (2003) also propose another preferential attachment 
algorithm which also creates small-world clustering. The graph characteristics are 
robust to random node or link failures, but susceptible to the loss of specific nodes. 

• Combinations (superpositions) of these graph types. 

Agent interactions based on decision rules, adaptations, game theory, etc. have included 
spatial games and games which result in or function because of a social network (e.g. Wilhite, 
2001, Hollander, 2006 gives an overview for travel behavior). The emergent behavior of the 
aggregate body of agents is not easy to tune and the emergent social network topology is 
difficult to control. Additionally, there are problems of scoring, distribution of reward, 
strategies, turn order, equilibrium, etc. in open-ended models that complicate their use in tools 
which have at least some footing in the world of real data. 

Networks could be generated using behavior tendencies from sociology, as summarized by 
Bidart and Degenne (2005). The hypotheses are not all tested, and parameterizations are not 
easily fitted to data or defined quantitatively. Perhaps the most certain sociological hypotheses 
that might serve as building blocks for the generation of a base social network are 
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“homophily”, which is the tendency for people to associate with people who are like 
themselves or with friends of their friends (McPherson, et al, 2001), “bridging social capital” 
(Putnam, 1999) which are the associations of a person with those who are like himself in only 
one way but different in other ways, and notions that people can only maintain a maximum 
number of relationships, implying a saturation point (Barrett, et al, 2002). In terms of 
dynamics, studies in sociology indicate that the strength of different relationships changes 
with time depending on a number of factors (Burt, 1999, Reagans, 2005), and that 
relationships can dissolve entirely. A static small-world generator using only homophilic 
classifications is described by (Watts, et al, 2002). These models with a basis in empirical 
sociology would seem to reproduce observed social ties, but they have not incorporated space 
in terms of transportation or land use. 

Spatial networks are constrained by the economics of overcoming space, or space-time 
(distance, terrain, weather, wages, fuel, dissipative losses). Previous generators of “spatial 
networks” treat the nodes of the spatial network, airline hubs for instance (e.g. Barrat, et al, 
2005), as agents seeking to minimize the cost of network connections. Clearly such abstract 
entities are themselves models of emergent behavior resulting from decisions by the 
managing bodies of airlines and airports, and though reflective of social networks and social 
behavior, these spatial networks are not links of social contacts. 
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5 Proposed solution 

Two improvements are recommended to combine the existing approaches for generating 
networks to applications in activity-based trip generation: 

• Link attachment (or existence) as a travel behavior (trip generation) model 

• An explicit bridging mechanism between geographic and social space 

In the model described here, the probability of link attachment is based on a random utility 
function familiar in transportation planning. The behavior represented in it is the likelihood of 
making a social trip, considering the costs of overcoming space and of spreading the effort of 
maintaining all social contacts. The simple linear-in-parameters utility function generates 
egocentric networks that link together into a global network (not necessarily a 
single-component network), as a result of agents meeting and sharing information with 
friends about geography and their other friends. The social network evolves as it is generated, 
as agents visit the same place at the same time and make friends with a certain probability. 
Links are removed from the network according to characteristics of the relationship. A 
saturation coefficient is intended to permit more flexible tradeoffs for controlling the resulting 
network degree than a fixed maximum number of relations. The utility functions of 
individuals can be assumed or fitted. 

Geographically and in a transportation behavior sense, the spatial extent of an agent’s social 
network will be moderated by its willingness to bear travel costs to socialize, by its 
knowledge of where other suitable social opportunities are to be found in its activity space (or 
activity repertoire), and by its risk-taking to explore new places. 

Two mechanisms bridge geographical and social space and enable dynamics: agents with a 
social connection share knowledge of space and other agents with each other, and agents are 
able to meet other agents if they visit the same place at the same time. 

The model is used to observe the influence of the transportation network on socializing and to 
test the effect of a range of utility parameters for socializing on the travel behavior of agents. 

 10



6 Description of the base model 

A set of agents is placed on a transportation network on which travelling has a cost. The 
geographic world is a 2 dimensional toroid so that spatial edge effects do not confound the 
interpretations of the results. The agents make trips in their activity space to socialize with 
friends, or they navigate unfamiliar space to meet new agents, according to a RUM that trades 
off socializing utility versus the generalized cost of travel. The social network established is 
nondirected with link strength = 1 or 0. The utility is different for staying home, random 
exploration, visiting friends, or visiting friends of friends, but travel cost is weighted the same 
for all travel. If two unacquainted agents meet, they befriend each other with probability 
pGetToKnow = 0.5. If friends meet, their friendship is renewed by resetting its age to 0. 
Non-renewed links age by 1. Links are removed in the base case as a function of their age. 

6.1 RUM 

Random utility decision models have been used in transportation and land use planning since 
their beginnings (Ben Akiva and Lerman 1985). The logit formulation of discrete choice is 
used here to simulate agent decision making. The multinomial logit probabilities for decision 
maker n regarding alternatives j in set Cn are: 
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where P is the probability of making a choice i and V is the utility. The probability of 
choosing an alternative relative to another in a Logit model is independent of the alternatives 
that have been left out of the choice set, and this does not change as the agent learns about 
new alternatives, which might not be realistic. 

6.2 Object oriented program 

The model is programmed in Java in the RePast environment and uses the JUNG graph 
library to manipulate and analyze the social network. It runs in batch or interactive mode. In 
interactive mode, a number of graph statistics are plotted, and the evolving social network is 
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drawn in geographic space. It consists of three key objects: Zone, Agent, and Activity (Figure 
1) These are linked by the elements of geography (transportation network) and by the utility 
function. 

 

Activity
Ego agent (Planner of Activity)
Zone
Type of activity
List of other agents at zone
Distance to ego’s reference zone
Duration (fixed at 1)
StartTime (fixed at t + 1)

Zone
ID number
X
Y
Agent density at radius 0, 1, 2, 3
Vertex on transportation network
Land use types
% land use type

Agent
ID number
Reference zone
Utility β[ ]
Activity space radius
Clustering coefficient
List of known places
List of friends
List of activities (activity plan)
Characteristics[ ]

Transportation Network
Vertices

X, Y
Links

Generalized Cost

GeographySocial behavior

Activity
Ego agent (Planner of Activity)
Zone
Type of activity
List of other agents at zone
Distance to ego’s reference zone
Duration (fixed at 1)
StartTime (fixed at t + 1)

Zone
ID number
X
Y
Agent density at radius 0, 1, 2, 3
Vertex on transportation network
Land use types
% land use type

Agent
ID number
Reference zone
Utility β[ ]
Activity space radius
Clustering coefficient
List of known places
List of friends
List of activities (activity plan)
Characteristics[ ]

Transportation Network
Vertices

X, Y
Links

Generalized Cost

GeographySocial behavior

 

The text in grey lists variables that are initialized but not used at this point. 

Figure 1 The objects combined in the java model. 

6.3 Setup 

The transportation network used is a lattice of period 10 on the toroidal surface. The 100 grid 
intersections are each identified with the midpoint of a zone (though in general, any number 
of zones may be defined in any desired configuration on the transportation network). The 
travel cost is homogeneously set to 1.0 between adjacent gridpoints. In this case, zones are 
size 1.0, so travel between adjacent zones costs 1.0 and travel within a zone is costless. The 

 12



runs presented here use 65 agents. The agents have identical attributes except for their 
position on the geographic surface, and their utility functions are also identical. The 
population is distributed randomly to reference zones which represent the home base of the 
agent, and the same spatial constellation of agents is used for each run of each ensemble to 
enable comparability of runs. More than one agent is permitted “live” in each zone. Figure 2 
represents the setup schematically. 

 

 

Roads are black, traffic zones are blue (shades indicate the travel distance from the ego’s zone). 
The circle is a single-parameter representation of the extent of the ego’s activity space (average 

distance to all friends). 

Figure 2 Geographical layout of the model with social network centered on an ego. 

6.4 The turn structure 

The initialization permits different assumptions about the existing social network topology. 
One can begin with random or lattice networks, with full or partial connectivity. The base case 
begins with no relationships and agents have no knowledge of space. As agents visit each 
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other, randomly at first, but then influenced by their friends, links are added and removed 
until the average clustering coefficient (section 7) relative to that of an Erdös/Renyi random 
graph stops varying, which is taken here as an indication that the network is not 
fundamentally changing any more in character. 

6.4.1 Constructing the activity choice set 

Each time step, a choice set of activities is generated for each agent, from which the agent 
constructs an activity plan of na activities to carry out during the turn using the RUM decision 
model (na = 1 for now). The choice set is constructed for each agent by associating each of 
four activity types with the locations that the agent knows about, in which it is possible to 
perform the activity. For simplicity at this point, all the other agents who reside at the location 
are included in the activity as participants. 

6.4.2 Utility function 

The utility of each possible activity is calculated for each agent in the “play” phase given the 
choice set. The utility function has the form in Table 1. The transportation network distance 
the agent must travel to get to the activity is modelled as a cost. There is additional utility for 
each friend or friend of friend that is participating in the activity. A saturation cost for making 
and maintaining an additional new friend is also in the utility. The type of activity has intrinsic 
value in itself. 

An agent living at location i can choose from four activities at locations i or j: 

• Visit Friend at j: 
The agent knows how many of its friends are at location j and it calculates the utility 
of making a visit based on this total number. The friendships are all renewed, and 
new friendships will be made with each of the other as-yet unmet agents living at that 
location with probability pGetToKnow. β2 represents the value of meeting with each 
friend. 

• Visit Friend of Friend at j: 
The agent has been told by its friends how many of their friends are at j. The utility is 
based on this total number. New friendships will be made after the visit with each of 
the other agents living at that location with probability pGetToKnow. β3 is smaller 
than β2 to reflect the possibility that the agent only sees the potential for making a 
valuable acquaintance, but that there is a risk that the friend of a friend is not as 
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pleasant as the referring friend. β4 < 0 and represents the cost of maintaining an 
additional friendship. 

• Explore j: 
The activity choice set contains a list of places unknown to the agent. ne (=1) 
alternatives are random zones and the others are zones known by the agent’s friends. 
The desire to explore is innate and gives positive utility. This utility is equal to β5 if 
the zone is anywhere within the agent’s geographical activity space, and it 
diminishes with the area subtended by a circle of radius equal to the distance to the 
zone center, if the location is outside the activity space (Figure 2). This is meant to 
represent the agent’s perception that the world beyond his experience horizon is 
foreign and less attractive than things that are closer to home. It is not a measure of 
sensitivity to travel cost however, since β5 > 0. 

• Stay Home Alone at i: 
The agent does not make a physical (or other) move to reinforce friendships, explore 
new places, or meet with friends of friends. Others can visit the agent at home within 
the same time step, on their turn. 
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Table 1 The utility function of a trip to location j 

Activity Home Travel 
Cost 

Friends Friends of 
Friends 

Saturation Exploration 

Stay Home Alone β0      

Visit Friend at j  β1*dist β2*Nfriends at j    

Visit Friend of 
Friend at j 

 β1*dist  β3*NFoF at j β4*degree  

Explore j  β1*dist    β5 (dist <= ra); 
else 
β5*(ra/dist)2

ra = radius of activity space (average distance to all friends) 

Base Case: β = {1.0, -0.5, 3.0, 2.0, -0.5, 0.1} 

6.4.3 Turn end 

After the na activities are chosen in the RUM and added to the activity plan of each agent, 
these activities are carried out for each agent in turn. The appropriate social links are renewed 
or established and the new locations that were visited and resulted in a social contact are 
remembered by each agent. Other locations are forgotten. Then, depending on the model 
settings, links are removed based on the link attributes. In the base case, the links are removed 
with a sigmoid function which removes links with increasing probability with link age: 
pRemove = 1. / (1. + 500000000 * e-(linkAge)) 

The function gives 50% probability if a link is 20 steps old, which is the time it would take to 
visit roughly 1/3 of the agents one time each). A link with age 25 is practically certain to be 
removed . Other algorithms for link strength or removal are plausible (Burt, 2000). 

Finally, the turn results are written into four output files: Zones (the geographic context of the 
run), Agents, Edges (relationships), and Graph (aggregate statistics on the social network). 
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6.5 Discussion of the model 

While the model uses random utility to generate “social trips”, the state of the algorithm at 
this point is that of a network link generator and not a social simulation. The 65 agents are 
given, and their task is to interact in pairs to generate friendships that depend in part on 
physical geography. One agent establishes a link to another agent by meeting it at its “home”. 
There is no consideration of meeting at an intermediate location, and no concern at this stage 
about agents coordinating their intentions in time or with several agents. Thus, an agent is 
always home when another one comes to visit. The resulting social network is therefore a 
cumulative map through time of the agent’s travel decisions in physical and social space. The 
model is a map of the recent movements of the agents, as well as their reaction to the loss of 
old connections. 

More realistic scenarios like heterogeneous preferences, that more than two agents would 
coordinate an activity, time conflicts, or that there are supply constraints for activities at 
certain locations, are possible to build into this structure in the future through interagent 
games. 

The choice set is a crucial consideration in utility maximization, and is conditioned in this 
case on the topology of the social network. Agents can only know about their world through 
random exploration of space or by learning about their surroundings through their friends. 
This constrained awareness of opportunities and its feedback into the subsequent choice is a 
departure from earlier link attachment models of network generation which combined the 
social network topology with a kind of geographic separation over a lattice distance. In those 
models, the choice set remained the set of all other agents, which was not conditioned by 
geographic knowledge. 

For an agent with no social links, the first activity choice is between staying home or making 
a random exploration in space, where social search is incidental. A visit to a random zone may 
or may not turn up other agents. But, there may be one or even several agents “residing” there 
who might be willing to befriend the ego. For each other agent present, friendships with the 
ego are made with a certain probability (pGetToKnow = 0.5 in the base model). This 
parameter is similar to the “beta” value in the Watts (1999) small world generator, although 
the choice of nodes to connect with in the model has been conditioned in this case by the 
geographic distribution of the agents. In the subsequent time steps, once an alter has been 
befriended and social links exist, the geographic and social information each friend stores is 
available for the ego to use in planning its next activity, further correlating geography with the 
social network. 
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7 Model results 

The base case results are presented and the single-dimension sensitivity to individual 
parameter values is tested. The graph degree and clustering ratio (relative to a random graph) 
change slowly by time step 80. Runs therefore use 100 time steps and an ensemble set of 20 
random number seeds. Analyses are carried out on the last 21 time steps, assuming that this is 
a dynamic equilibrium; i.e. that differences exist in the network topology from one time step 
to the next, but that the state of the social network at of these time steps is a sample of the 
“true” evolving social network. Hypotheses about the relationship between the assumed 
behavior (utility function) and the emergent social network are discussed in the summary. 

Studies of different initializations of links (e.g. a lattice or random graph substrate) and a 
detailed study of agent and edge statistics are yet to be made (local population density, etc.). 
Only brief results will be shown of these analyses. 

7.1 Measures of comparison 

Two graph-average parameters are used to coarsely compare the resulting social networks, or 
graphs with number of nodes Nn, number of edges Ne: 

Average Degree: z* = 2Ne/Nn; 

Average Clustering Coefficient Ratio: The clustering coefficient Ci of a node vi is the ratio of 
the number of realized links between the nodes connected to vi to the number of possible links 
between those nodes. The graph average clustering coefficient proposed by Watts and 

Strogatz 1998 is straightforward: ∑
=

=
i

i
n

C
N

C
1

1 nN

. The average clustering coefficient ratio 

referred to in this paper divides this average by the large-graph expected clustering ratio for 
Erdös/Renyi random graphs, z*/Nn. This ratio will approach 1 for graphs with near-random 
clustering. 

Further, edge statistics are used to study distance distributions, and agent statistics yield trip 
purpose distributions and information about activity spaces. 
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7.2 General observations 

The same trends in the growth and stabilization of the social network with time are seen in all 
runs. The empty initial graph has zero average clustering and degree. The first links cause 
high average clustering values as dyads (clustering = 1.0) form between agent pairs. The 
clustering falls again immediately as soon as the first agents acquire two unacquainted friends. 
This forms “forbidden triads” (Granovetter 1973), or groups of three agents with only two 
links between them. Many of these soon fill with links to make triangles that raise the 
clustering coefficient, but the spatial exploration of the agents also results in bridges between 
clusters that lowers overall clustering again. The main difference between the runs compared 
here is the rate at which triangles versus bridging links form. This depends on the shares of 
the activity choices, which are determined by relative magnitudes of the utility parameters 
(Figure 4). 

7.3 Base Case and Link Cost 

The base case utility parameters are as in Table 1. This model is run with the standard link 
removal algorithm and pGetToKnow = 0.5. The base case results are presented together with 
results of runs with travel cost parameters -1.0 and 0.0 (costless travel) for comparison. 

Hypotheses 

The description of the model output can at the same time support or modify hypotheses of 
agent behavior, expressed here more in terms of the expected model output. The emergent 
social network should exhibit more clustering than a random graph due to the preference to 
visit friends and friends of friends, which will close triads to make triangle structures. The fact 
that the knowledge of space is gathered through friends and only to a small extent through 
random travel will focus the ego networks spatially. Travel will be farther if agents are less 
sensitive to travelling, and the number of friends will increase (with the space known to the 
agent). The average degree of the graphs (average number of friends) will climb with 
decreasing rate due to the combination of link removal and degree saturation. 

The average degree of the resulting graphs increases with decreasing sensitivity to cost. 
Looking at the time steps from 80-100 of the 20 ensembles, the average graph degree is 
1.4(0.3), 3.7(0.7) and 18.5(3.0) for cost parameters -1.0, -0.5, and 0. The distribution is 
positive-skewed at cost = -0.5, indicating that the probability of generating higher degree 
graphs for intermediate cost parameters is higher than for a normal distribution. The 
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clustering ratio (relative to a random graph) has the opposite trend: high travel cost increases 
clustering: 25.7(4.4), 13.6(2.9) and 2.1(0.8) for the costs -1.0, -0.5, and 0. Outcomes when 
agents have low tolerance for travel cost are distributed with positive skew for higher travel 
cost parameters, indicating highly clustered, low-degree communities (Caveman societies, 
Watts 1999). 

Figure 3 shows model output of neighborhoods in geographic and social space for two values 
of travel cost parameter. Note that the larger clusters are not connected by bridges. In this 
model, bridges are short-lived, as bridges quickly lead to friend of friend attachments which 
yield a new large cluster. Isolates have either not travelled much to meet others, have not been 
visited by others, or had bad luck making friends upon meeting others. They are more likely 
to be located at the spatial edge of clusters, rather than within spatial clusters. With no social 
links, searching the spatial grid is inefficient a difficulty that all agents share initially. Agents 
in far removed, thinly populated regions will stay isolated for longer because, since travel cost 
is weighed in their decision to explore versus staying at home, they are not searching a large 
enough space regularly enough to find other agents. At the same time, the likelihood that 
these agents will be visited by an agent with friends is low, since an agent with friends is more 
likely to visit its friends, friends of friends, or to explore within its familiar surroundings than 
to randomly explore outside its activity space. 
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Figure 3 Sample dynamically stable social networks for base case and βtCost = -0.5 (l) and 
-1.0 (r) after 100 steps. Top: spatial, Bottom: nonspatial representation. 

The expectations of longer travel distances with lower sensitivity to travel cost are also 
reflected in the geographic distance between agents who get to know each other. The average 
distance (and standard deviation) between reference locations (home) of all the alters of an 
ego for travel cost parameter -1.0, -0.5 and 0.0 are: 1.2(1.1), 2.8(1.8) and 4.9(2.2). The agents 
travel farther to meet more alters if they are less travel cost-sensitive. The variance is caused 
by the non-homogeneous distribution of agents in space and the competing utility of existing 
friendship competes versus the cost to travel.  
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The mean distance between friends for the zero-cost world is the shortest distance halfway 
across the toroidal surface: 5 steps straight in either direction (north or south, east or west) 
will arrive at the adjacent geographic points (diagonal travel costs more on a 2D lattice). This 
suggests that the agent who is freed from the burden of travel costs will travel as far as 
possible to find and maintain higher utility acquaintances. The no-cost run is roughly 
comparable to a relational small world network generation algorithm except for the following:  
in exploration, unfamiliar territory is weighted less than familiar territory, thus spatially 
concentrating the initial learning; the choice set is not random but contains places known via 
the social network; the probability of visiting friends rather than establishing new 
relationships is not a constant ratio. In short, geography influences link attachment even if 
cost is not a factor. 

Figure 4 shows the ensemble average share of activity purpose through time for the three 
values of cost parameter. All trip purposes are affected by the travel cost parameter, and the 
response is not linear, i.e. the effect of reducing travel cost depends on the travel cost itself. A 
small proportion of exploration initially (~10%) initiates a boom in visiting friends and 
friends of friends, which reduce the instance of staying home alone. Exploration grows again 
as information is exchanged between friends, especially in the no cost case, where exploration 
and visiting friends are practically the only activities chosen. The marginal rates of change of 
each activity share decrease until the model appears to reach an equilibrium. 
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βtcost = -1.0 (top), base case  βtcost = -0.5 (middle), and βtcost = 0.0 (bottom) 

Figure 4 Share of activity purpose with time for three values of travel cost parameter 

Table 2 summarizes the activity choice for time steps 80-100. Approximately 7% of trips in 
the base case are first-time visits to unexplored locations, which is a realistic rate of 
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exploration (Schlich, et al, 2004). It is intuitive that agents stay home alone less frequently if 
travelling is easy. The increase in visitation of friends and of exploration can be explained by 
noting that many more friends are made by highly mobile agents. This leads to three 
phenomena that are illustrated in the dynamics shown in Figure 4. First, more friends means 
that more information is exchanged about space, and the choice set of activities contains more 
unknown locations, some of which are combined with the presence of “friends of friends”. 
Thus there is high utility for expanding the activity space initially. Second, as more locations 
fall within the bigger activity spaces, unvisited locations are no longer as intimidating, and the 
utility rises for exploration. Meanwhile, as the agents become saturated with enough friends, 
they have less utility to meet friends of friends to possibly strike up a new friendship. 

 

Table 2 Percent of trip purposes by generalized link travel cost 

βtCost Friend of Friend Explore Friend Stay Home 

-1 18 4 29 49 

-0.5 22 7 47 23 

0 4 32 63 1 

Trends in visitation frequency versus the sensitivity to travel cost were sought graphically. 
The likelihood that a visit would occur between two particular agents in a particular turn was 
analyzed for the steady state (time steps 80-100) over the 20 ensemble runs. The number of 
times an agent – agent link was established or renewed in the 21 time steps is divided by 21 to 
establish the time rate of visitation, and the result for each link is averaged over the 20 runs in 
the ensemble. The fraction of relations (social links) versus likelihood of a visit per turn are 
plotted in Figure 5. The links on which visits were never observed in the 20 time steps are 
included as Y-intercepts. The results are normalized to 65 x 64 (the number of edges in the 
complete graph of 65, times two for mutual visits). 
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Figure 5 Likelihood of a visit per relation, average over 21 time steps and 20-run 
ensemble, base case in 20 time steps, base case 

Higher sensitivity to travel cost means that very many links will never be visited, while, with 
the exception of very few links, every agent will visit every other agent in a no-cost world. 
With no travel cost, some 30% of the social links have a ~2% chance of being either 
established or renewed. This peak value corresponds roughly to the link removal probability 
(see below), indicating that the agent in a costless travelling environment might be replacing 
lower value links. Also, there are no agent pairs with extremely high visitation frequency if 
travel cost is not important. 

The lower the tolerance for travel, the more the distribution attains a log-normal shape with a 
long right hand tail. As the disutility of travel rises, it is more likely that particular pairs of 
agents are visited at much higher rates than if travel is costless. A slightly higher proportion of 
links get visited at a rate of 0.05. Sensitivity to travel cost focuses the intensity of visitation on 
fewer, presumably closer, agents. The effect of the geographic locations of the agents, and of 
geographically inhomogeneous travel costs, were not tested, but the particular distributions 
seen here are likely a result of the agents’ locations, and would respectively be affected by 
travel networks with spatially differential quality. 
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The distribution of the distance of friendships is plotted in Figure 6, which shows the number 
of social relations by categories of geographic distance between the agents during an 
“average” turn (average over the same 21 stable time steps and a 20 run ensemble). It is 
neither the visitation rate nor the activity space radius, but a snapshot of the distribution of the 
distances to friends over the whole society. The area under the each curve is the total expected 
number of social links that would exist in the turn. The plot is not normalized, in order to 
illustrate the higher number of relations that develop when the travel cost parameter is 
reduced in magnitude. The triangle (normal) distribution of distance with no travel cost means 
that there is a preferred distance of 5, and that just as many spatially close agents are 
maintained as friends as far away ones. As expected, the preferred distance falls as the travel 
cost parameter rises (as does the number of relationships).  
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Average over 21 time steps and 20-run ensemble, base case 

Figure 6 Number of relations (and standard deviation) in the social network by classes of 
geographic distance between agents 

The qualitative differences in the resulting aggregate network statistics are as expected for the 
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different tolerances of travel cost. Higher-cost geographies or lower tolerance for travelling 
stifle exploration in the first place, and the upkeep of long-distance friendships is additionally 
more difficult. In this case of expensive travel, a world is sustained with interactions between 
low numbers of acquaintances, and agents in fact stay home alone more frequently. This 
situation might be compared with the mobility challenges that have been associated with 
socially excluded groups. 

Zero-cost geographies do not force the selectiveness of friendships seen in the case where 
agents have a strong aversion to travelling. However, the aggregate statistics are also not the 
same as for a random graph; the clustering ratio remains higher than 1.0. The inclusion of 
positive utility for friends and friends of friends results in agents visiting friends more 
frequently than the link removal rate (20 time steps). This behavior leads to more clustering 
than in a random association, and is not a result of spatial weights. 

7.4 Sensitivity to the probability of making friends 

7.4.1 Shy versus outgoing societies 

When unacquainted agents encounter each other, the probability that the meeting results in a 
new friendship is represented by a single parameter pGetToKnow. The base case with 
probability of making friends = 0.5 is compared to a case run with three different parameter 
settings: 0.33, 0.67, and 1.0. 

Hypothesis 

A higher tendency for agents to befriend one another upon meeting will lead to more friends 
(higher degree) and larger activity spaces (more exploration). The chances to meet friends of 
friends versus random agents do not change, so clustering should not change. 

The social network changes qualitatively as expected with the probability of making friends. 
Both average degree and average clustering bracket the base case with the parameters values 
selected here. Slightly higher mean average degree is obtained in more friendly societies, and 
the distribution of average degree is more positive-skewed the higher the friendmaking 
probability (2.6, 4.8, 6.1 vs. 3.7). The average graph clustering ratio has the opposite trend: it 
is higher and more positive-skewed for lower probabilities of making friends (17.7, 10.6, 8.5 
vs. 13.6). This was not expected and is the result of feedbacks explained below in the context 
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of travel purpose. 

The trip purpose distribution shows a nonlinear response to the rate at which friendships are 
made. As the society becomes more friendly, visits to friends of friends and the rate of 
exploration increase slightly and then remain roughly constant until friendships become a 
certainty. The bigger change occurs between visiting friends, which increases half again as 
fast as the rate of making friends, and staying home, which decreases to a similar extent. 

 

Table 3 Percent of trip purposes by friendliness 

pGetToKnow Friend of Friend Explore Friend Stay Home 

0.33 20 7 45 29 

0.5 22 7 47 23 

0.67 17 12 55 17 

1 17 11 61 11 

The fact that higher friendliness results in the agent staying home less is intuitive. That visits 
to friends of friends declines in favor of exploring or visiting existing friends is not. The 
increase in visiting friends is explained by the higher number of friends made. As the 
probability of making friends increases from 0.33 to 1.0, the graph average degree increases 
2.3 times, while the rate of visiting friends increases only 1.4 times. This indicates that the 
agents are visiting more friends, each one less frequently than if they had fewer friends. The 
utility function forces them to spend a lot of effort maintaining existing friendships. The rate 
of exploration is addressed below. 

The agents travel farther on average to make friends if the world is friendlier. The longest 
trips are clearly random explorations of space. But the average distance to friends and to 
friends of friends is indistinguishable given a fixed friendliness parameter. 
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Table 4 Average travel distance (and standard deviation) between friends, by 
friendliness parameter 

pGetToKnow Friend of Friend Explore Friend 

0.33 2.3(0.5) 2.8(0.9) 2.4(0.3) 

0.67 3.0(0.5) 3.5(0.6) 2.7(0.2) 

1 3.2(0.5) 4.0(0.4) 2.9(0.2) 

It is intuitive that agents would risk more if the reward for doing so might be higher. This 
behavior is built passively into this model as feedback through the reinforcement of choices 
by the link removal algorithm and by the choice set obtained through the social network. The 
probability of making friends does not enter the utility function at all, and can only change 
agent choices by feedback into the next time step. If the probability of making friends is 
higher, and the social network better, then the choice was “good” (even if random) and the 
activity choice set of the agent is expanded for the next decision. Thus a plausible explanation 
for the increase in exploration is that trips to explore space occur regardless of the friendliness 
parameter, but these trips come out to be fruitful more often in a friendly world. This would 
make the activity spaces bigger, increasing the utility of random spatial exploration and 
raising the proportion of this activity choice. 

7.5 The effect of degree saturation 

7.5.1 The intrinsic cost of maintaining relationships 

The agents are assumed to have a limited ability or desire to maintain relationships, 
independent of the distance between friends. Thus each additional relationship carries a cost 
that simulates the effort required to maintain it. This is modelled as a negative linear marginal 
utility. 

Hypothesis 

Without saturation (or removal), a graph generation algorithm would tend toward a 
completely connected graph. With saturation, it is more likely that a graph settles to an 
equilibrium average degree and that agents begin to repeat the patterns of visiting that were 
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most useful to them in the past. High values of saturation parameter result in fewer new 
friends and lower average degree, but more intense visitation of existing friends. 

Four values of saturation coefficient were used, in addition to the base case value of -0.5: 
{-1.0, -0.67, -0.33, 0.0}. There is no discernable statistical or visual difference in graph 
average degree, clustering ratio, or average distance between befriended agents between the 
runs. At least within this set of parameter values, the social network does not appear to be 
sensitive to the saturation coefficient. 

The table of trip purpose shows high sensitivity however. The shares of activity type reflect 
the utility function, from which it is seen that saturation only affects the choice to visit a 
friend of a friend, where an agent faces a rather high probability of making yet another new 
friend. As the agent finds it more difficult to manage its friends, it chooses to stay home or 
visit existing friends more. Exploring a new location is not affected by the saturation 
component of utility because it is assumed that, by exploring, the agent only makes new 
friends incidentally and not as the aim of the trip. Visiting an existing friend is also not 
affected by the saturation parameter. 

 

Table 5 Percent of trip purposes by degree saturation coefficient 

βSaturation Friend of Friend Explore Friend Stay Home 

-1 9 10 57 24 

-0.67 16 8 52 25 

-0.5 22 7 47 23 

-0.33 30 8 42 20 

0 63 4 21 12 

This finding illustrates several important things. First, the graph aggregate statistics show very 
little about what is going on in the agent behavior. Many kinds of agent behavior can yield 
similar social networks. Second, the saturation parameter for the number of relationships an 
agent has does not affect the graph average degree as expected. Higher saturation costs would 
be expected to lead to lower graph average degree, but instead, no difference in graph degree 
is discernable. This saturation parameter is not an effective mechanism for tuning the average 
degree or clustering of the social network, but its value plays an important role influencing 
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trip purpose. Finally, as will be seen, the effects of degree saturation are not the same as link 
removal. 

7.6 Link removal 

7.6.1 Logistic removal versus no removal 

The base case is run with cost parameters as before and 1) normal link removal algorithm, 2) 
no link removal, 3) random link removal independent of link age. 

Hypothesis 

It is expected that spatially longer social links would be used less frequently and removed 
more often. Clustering in social and geographic space would increase, and the average 
distance between friends would be shorter, than if links were not removed. Random link 
removal that does not regard link characteristics might be expected to perturb the social 
network structure by breaking up clusters and would lead to a graph with characteristics more 
typical of a random graph. 

If travel is costless, the average graph degree is roughly 50% higher if links are not removed 
(25.9(6.6) versus 18.5(3.0)). The average graph degree does not change appreciably relative to 
the base case for travel cost parameters -1.0 (1.4(0.3) versus 1.4) and -0.5 (4.1(1.0) versus 
3.7). 

The distribution of average clustering ratio is no different from the base case for the three 
travel costs if links are removed: 24.9(4.7), 13.0(3.5), 2.0(0.7) for the travel costs -1.0, -0.5, 
and 0.0. 

The share of each trip purpose is within very few percent of that of the base case (Table 2), for 
all three values of travel cost parameter. 
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Table 6 Percent of trip purposes by link travel cost (no link removal) 

βtCost Friend of Friend Explore Friend Stay Home 

-1 18 3 28 50 

-0.5 20 9 49 23 

0 2 35 62 1 

The average distance between befriended agents when links are not removed is very slightly 
higher in the mean than when there is normal link removal, but this is not statistically 
significant, indicating that the radius of the activity space is more strongly dependent on 
travel cost and geography than on link removal. 

A behavioral pattern emerges over a run of 100 time steps, in which agents accept travel costs 
to regularly return to the same visited zones. The age-sensitive link removal does not change 
the aggregate network statistics unless the agents bear no travel cost and thus attempt to 
spread their contacts over a wide range of space. The base case results show that the 
exploration of the world and the maintenance of friends already takes place in a much more 
restricted space when agents bear travel cost than if they do not. Correspondingly, the effects 
of removing seldom-used links is most pronounced in the case of no travel cost, where 
connections have been distributed throughout space over a large number of alters and are 
visited/used infrequently. 

Though the graph average clustering coefficient does not differ between runs with and 
without link removal, the aggregation obscures fine details of the social structure. As 
friendships dissolve and friend-of-friend ties are lost with them, the information flow about 
space and other agents is interrupted, altering an agent’s choice set. This refocuses socializing 
and alters the clustering distribution. 
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This postprocessed data is displayed with Pajek (Batagelj et al, 2006), Kamada-Kawai layout 
with the unconnected subgraphs separated manually. 

Figure 7 The social networks after 100 time steps in the base case (l) and the base case with 
no link removal (r). 

Figure 7 illustrates that the outcome after removing links can be counterintuitive in a single 
run. In this case, the run with link removal has both a higher average degree and fewer 
separate graph components, whereas the graph in which links were not removed has more, 
smaller components and many more agents with no relations at all (“isolates”). This means 
that, when links were not removed, agents preferred re-visiting established friends over other 
activities that would have spread and connected their networks. 

Since visit frequency depends on travel cost, longer-distance links stand a higher chance of 
begin removed, and it might be expected that clustering would be more concentrated spatially 
with the link removal algorithm of the base case. However, the size of the activity spaces has 
not yet been analyzed for the case of no link removal. 

7.6.2 Random removal versus age-linked removal 

Jin, Girvan and Newman (2001) introduce a model with random link removal as a simplified 
representation of the decay of social ties in order to accomodate an analytical analysis of their 
network generation algorithm. Comparing to the age-decay removal probability, they find 
similar global network statistics and concluded that this method of link removal would be a 
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desirable substitute for more complicated algorithms due to its simpler analytical attributes. 
This experiment was repeated with our model by removing links with a 0.025 probability. 

Each edge is tested for removal twice (once for each attached agent) per time step. The value 
0.025 gives the likelihood that a link would be removed every 20 time steps, for comparison 
with the base case link removal algorithm. The resulting graph average degree is the same as 
that of the model with the age-dependent link removal algorithm (3.7(0.9)). The model 
clustered the same as the base case, 13.8(3.4) compared to 13.6(2.8), and the average distance 
between befriended agents is also statistically indistinguishable from that of the base case. 
The distribution of trip purpose is insensitive to the probability of random link removal. The 
analysis of the aggregate graph statistics would corroborate the findings of Jin, et al., that 
random link removal might readily substitute for behaviorally-correlated link removal in a 
complex model without losing the general graph characteristics. However, the trip purpose 
“exploration” rises as “stay at home” declines (summarized in Figure 8). Other finer 
structures of the emergent social network must be investigate, since implementing a simple 
random removal might speed up the algorithm and ease the comparison to analytic results. 

7.7 Sensitivity to exploration coefficient 

7.7.1 The adventurousness of the traveller 

The utility function has a positive reward for going to a previously unknown geographic 
location, without knowing what is to be found there. Each turn, the agent’s choice set contains 
ne (=1) unknown locations (zones) randomly selected from the geographic grid, plus all the 
locations known by the friends of the ego. These locations may be repeated in the choice set 
to reflect the number of recommendations the agent receives to go there. 

The reward to investigate the new location is an incentive to try a new location, and imitates 
findings about exploration in empirical research. The reward diminishes the farther away the 
agent has to go outside the average radius of his activity space (section 6.4.2). 

Hypothesis 

The probability of randomly finding a high-value acquaintance rises with the broader pool of 
locations discovered through higher exploration, and positive feedback causing an expansion 
of the activity spaces is possible. 
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The base case uses an exploration parameter = 0.1. A value of 0 would not drive any chance 
exploration of space and the only way an agent would discover space would be through trips 
to get to know friends of friends. The base case is compared to runs with the exploration 
parameter set to {0.33, 0.67, and 1.0}. 

The exploration parameter plus generalized travel cost was kept below that of staying home or 
visiting friends since people in the real world are also more likely to do either of these 
activities than to randomly visit an unknown place. The parameter value 0.1 results in a 
realistic 7% of trip purposes for random exploration in the base case model. Therefore, raising 
the parameter above that of staying home (β0 = 1) would not seem realistic. 

The graph average degree distribution for time steps 80-100 is the same for all the values of 
exploration rate tested and also the same as the base case (3.7(0.7)): 4.0(0.7), 4.1 (1.0) and 
4.1(1.0). The resulting graphs tend to be less clustered, but this is not statistically significant: 
12.2(2.8), 12.3(3.1) and 12.8(3.6) vs. 13.6(2.9). 

The values of the exploration parameter tested do not differentially affect the graph average 
statistics, and they do not affect the graph average statistics relative to the base case. 

The distribution of trip purpose is moderately sensitive to the exploration parameter. The 
elasticity of the proportion of the activity versus the parameter value of exploration for the 
purpose “visiting friend of friend” is between -0.2 and -0.3, “exploration” is between 0.5 and 
0.7, and for “staying home” it is between -0.1 and -0.2. The proportion visiting friends is 
insensitive to the exploration parameter. 

The average distance between befriended agents is nearly identical over the three values of 
exploration parameter, and is the same as for the base case. 

7.8 The effect of the utility of friend of friend 

Including friends of friends in the utility function represents the way the ego differentiates 
individuals in the world by familiarity. In real life, friends of friends are more likely to be 
introduced and more likely to share common interests and characteristics with the ego than 
randomly chosen individuals. Social networks are characterized by closed triangles (triads) 
between friends of friends that give higher clustering coefficients than random networks. 

The home location of friends of friends are included in the choice set of the model, and 
positive utility is associated with making a trip to meet these individuals that are 
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recommended by friends. The notion of making a trip to meet a friend of a friend in absence 
of the common friend is not realistic in a sense of personal relationships, but it might 
realistically represent referrals in business relations, legal advice, medical treatment, etc. The 
formulation of this alternative is primarily a placeholder for future work on multi-agent 
negotiation of plans between friends and friends of friends. The strength of the attractiveness 
of meeting a friend of a friend is tested to see what effect it is having on the outcomes. 

The base case is run with the utility parameter for meeting friends of friends set to 2.0. The 
comparison runs use 0.0 and 1.0. With the RUM, visits to friends of friends are not impossible 
with a parameter equal to 0 (see Table 1). 

Hypothesis 

Higher friend of friend utility results in higher clustering and relatively more visits to friends 
of friends. 

There is no difference in the graph average degree, average clustering ratio, or average 
distance between befriended agents for either case versus the base case. 

The distribution of activity purpose is however different. Table 7 shows that, with a higher 
friend of friend utility parameter, visits to friends of friends occur more frequently (elasticity 
0.6), which is the intuitive result. The rates of visits to friends and of exploration decline 
(elasticity between 0. and -0.2, and -0.1 and -0.5, respectively), and staying at home does not 
change. Only staying home does not involve geographic cost, indicating that the friend of 
friend parameter conditionally reallocates the time spent travelling, i.e. that feedback of the 
outcome into the next time step does not strongly influence the decision to travel or stay home. 
If changing the parameter only results in redistributing the probabilities of travel purpose, 
then the reductions in exploration and visits to friends in proportion to their utility parameters 
are expected (a property of the logit model). 
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Table 7 Percent of trip purposes by utility of friends of friends 

βFOF Friend of Friend Explore Friend Stay Home 

0 4 11 61 24 

1 10 11 58 21 

2 22 7 47 23 
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8 Summary of model results 

The model shows a varied response to the values of the utility parameters when altered one at 
a time. Figure 8 summarizes the findings of the univariate tests. The most sensitive responses 
are due to the disutility of travelling, the probability of making friends, and the link removal 
algorithm. The probability of making friends is analogous to earlier random graph generators 
(Newman, 2003) and this result is not surprising. Random versus link attribute-related 
removal processes have been studied elsewhere, with similar conclusions (Jin, et al, 2001). 
The characteristics of the emergent system depend on the removal rate. However, there is no 
marked difference between random and targeted link removal, as long as the average removal 
rate is the same, since high-valued links will be replaced first. The travel cost enters the 
dynamics by limiting the likelihood for an agent to travel to get to know new places, and 
because all agents are equally provincial, limiting the exchange of information about new 
places. 

Despite the other utility parameters changing the frequency of different trip purposes, often no 
differences can be detected in the graph average statistics. Travel cost and average dyad 
distance are the only geographic parameters used here to compare social and spatial 
phenomena. In order to understand the processes at work, further edge- or agent-level 
analyses will be necessary, like comparisons with spatial settlement density, etc. The analysis 
of the social network in geographic versus social space has only begun for the base case, and 
descriptive statistical measures are still not finalized. 
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Figure 8 Sensitivity of model output to changes in the link generation function. 
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9 Conclusions 

Geographically coupled, dynamic social networks can be generated with a RUM for trip 
generation that is familiar in transportation planning. The utility parameters influence the 
social network topology and spatial exploration through the activity choices of the agents. The 
dynamics of meeting, learning about space, and therefore the dynamics of the social network 
are simulated by the feedback through the activity choice set, which is reinforced by the 
removal of links that are not re-visited and by gradual saturation of agents with friends. The 
model form provides a basis for fitting to appropriate sample of activity-based travel behavior 
data.  

In this case, indistinguishable agents, except for home address, interact with identical utility 
functions across a periodic space with homogeneously expensive travel cost to generate social 
connections with each other. The response of the model in social and geographic space to the 
travel cost parameter show intuitive as well as nonlinear sensitivity that makes the simulation 
a rich experimental testbed. An orthogonal experimental design which optimally varies 
multiple parameters at once has been defined and will be run to describe the multivariate 
response surface. The response to different agent distributions in space, and to spatially 
inhomogeneous travel costs and different transportation network topologies, will also be 
investigated. 

The framework is compatible with other notions of representing observable social networks, 
like associative networks (e.g. social clubs and the workplace), or homophilic networks with 
heterogeneous agents, by using the known activities or agent attributes in the utility function 
in a more developed model. Populating a realistic network with plausibly associated agents 
would depend on the availability of simulated or observed distributions of agents’ jobs, 
attributes, residential locations, etc. 

With the building blocks in place for generating the network and analyzing it in view of the 
geographical constraints, the model can be expanded to include a realistic set of activity 
purposes, negotiations between multiple participants per activity, agent heterogeneity, and a 
set of locations that are not constrained to the residences of the agents. Once these basic 
cornerstones of realism are in place, attempts can be made to estimate the utility parameters 
using activity-based travel diaries. 
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