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Abstract. We present some of the results obtained during the last & ydsut complex networks.
Starting with the collection of data in the form of networksgyoaphs, we proceed on the character-
ization at different scales: microscopic, macroscopid, mesoscopic. We introduce also the basic
models incorporating complexity in the pattern of connatigis. Finally we review some results on
dynamical features on complex networks.
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1. INTRODUCTION

Complex systems show emergent properties that cannot berstodd as a simple
superposition of the dynamical behavior of the single utfist form it. Emergent
properties arise as a collective effect from the interacbetween units. For most of
the complex systems we can find in nature or in society theaoten patterns of the
units are far from being regular or from being completelyd@m. These two extreme
patterns of connectivity between units had been the subjeahalysis during the last
decades, but since the pioneering work of Watts and Str¢ijend Barabasi and Albert
[2] most of the interest turned to non-trivial patterns denaction.

Access to large datasets and the power of the new generdtioongputers have
enabled to generate networks from the data and to scrutiméze, finding the relevant
statistical properties and the common features shared by raathem. And such
common features are not the subject of particular disaglithis new framework has
received a really interdisciplinar support involving diimes such diverse as economy,
social sciences, medicine, engineering, physics, chgmlsiblogy, just to mention a
few (see [3, 4, 5, 6, 7] for reviews, and [8, 9] for contribues$ays on various topics by
leading researchers).

Although in principle the interest relied on the structypedperties, i.e. the topology
of the interactions, in the last years a great deal of atiaritas turned to the dynamical
properties. This dynamical properties can involve the ginogf the network (in terms
of nodes or links or both), the regeneration of links betw#ennodes, and even the
dynamics of the nodes properties.

In this paper we will cover the different aspects of completworks. Starting with an
overview of networks that are found in our environment, thwenfollow with the char-
acterization of the networks at different scales (micrtesgaacroscale, and mesoscale)
and introducing some simple network models that describeédpological features. Fi-
nally we describe some dynamical models on networks.



2. NETWORKS EVERYWHERE

We can currently find structures among data that can be fiabsais networks in many
unrelated fields. The only thing that is needed is some saglafion between the data.
Networks or graphs are formed by nodes that are connectedKksydr edges. What is a
node and a link will a characteristic of the data. For inséeincsocial networks nodes can
be individuals and links could be any kind of relation: faship, coauthoring, trust, ....
In technological networks, as for example the Internetgtihges correspond to physical
wiring between computers or routers. Or in biology, metaboétworks are formed by
metabolites as nodes and the links represent the biochleraaaions. Those are just
a few examples of the type of data that can be represented etsvark. A very large
number of publicly available repositories of huge database at our fingertips.

2.1. Classification

Here we present a list of examples, mainly from papers plodadisn Physics journals,
of data that has been collected in the form of network. Theyroaghly be classified
into four categories (following [6]):

« Social networks
Actor collaborations [10, 1]

Boards of directors [11, 12]

Physics and biology coauthorships [13, 14, 15]
Email messages [16, 17, 18]

Sexual contacts [19, 20]

Jazz bands and musicians [21]

Pretty Good Privacy trust network [22]

« Information networks
World Wide Web [23, 2]

Citation networks [24]
Word co-occurrence [25, 26]

+ Technological and transport networks
Internet [27]

Power grid [1]

Software packages [28]
Software routine calls [29]
Electronic circuits [30]
Airport network [31, 32]
Railroad network [33]

« Biological networks
Metabolic networks [34, 35, 36, 37, 38]

Protein interactions [39, 40, 41, 42, 43]



Food webs [44, 45]

Neural networks [1, 46, 47, 48]
Genetic regulatory networks [49, 50]
Signaling networks [51]

This is by no means a complete list. Nevertheless, it attemadbe a cross section of
the various lines of investigation where network analysis been useful.

2.2. How are networks constructed from data

It is then clear that every dataset will give rise to a netwirkvhich nodes and
links have very different meanings: social agents and soelationships, computers
and cables, species and predator-prey relationshipsome@nd synapses, web pages
and hyperlinks, and so on.

The link can be directed or undirected, depending on therecity of the relation.
An example of directed network, in which some links can bed#d, is presented in
Fig. 1(top-left). Links with an arrow pointing from one notteanother one are directed,
whereas the links without any arrow are undirected or batioeal, because the relation
holds in the two directions.

Some of the networks that are constructed are called hipattiose are graphs that
contain nodes of two different types, with links only betwemlike types. This is what
happens for instance in the actors movie database withsaatwt movies, or with the
coauthor-ship databases. In this case networks are cotestray linking those actors
that appear in the same movie or those authors that patecipdahe same paper. An
example of such network is presented in Fig. 1(bottom)[Ibis is the network obtained
from the coauthorship of presentations in the Spanishs$tal Physics meetings; it has
been obtained by accumulating the collaborations alontheleditions of the meeting.
There are a few nodes that are identified because they comgsp members of the
different scientific committees; the role played by theserners will be discussed later,
in the community identification discussion section.

Another fact that has become very important in the last yeatee weight of the
edges. If one is just interested in the existence of theioslahen we talk about
unweighted networks. If, on the contrary, there is some orea®r the strength of
the relation, as for instance the number of flights or the remalb passengers between
airports, or the band-width between Internet routers, sangight is associated to the
link, and in this case the networks are called weighted [62]Fig. 1(top-right) we
present a network obtained from the email exchange of thedusitat Rovira i Virgili.
We take each node in the original network and measure the ewaflsteps across the
e-mail network needed to reach any other node. Then we averegy all the nodes
in the same center and obtain average distances betweamnscértis average distance
between the centers accounts for the weight of the link. Torsarize this information
in a new network of centers, we proceed as follows. First, aleutate the distance from
one center A to all other centerdyg, dac, and so on. Then we compute the average
distance from A to the other centedy). Finally, node A (that now represents a center,



not an individual) is linked to another node Bdifg < (da). In this case, the network is
directed because, in generdig < (da) does not implydga = dag < (dg). [53]

3. CHARACTERIZING NETWORKS

3.1. Microscale

From a microscopical point of view, the interest would lietbe role played by the
nodes in the overall context of the whole network. This hasnbie main issue for
decades from the social sciences viewpoint [54]. Severalsomes of centrality were
introduced and the special roles played by the nodes disduBsr instance, the degree
of a node corresponds to its number of links or the mean dist@a measure of the
average distance, measured as the shortest number of éokssary to reach one node
from another, from a node to the rest of the population. Aeogixample is the clustering
coefficient of a node, which measures the fraction of linksvieen neighbors of a given
node. Finally, another interesting measure is what is dalie betweenness, of a node,
which corresponds to the number of shortest paths betwesnpr of nodes in the
network that go through the reference node. In many probtemaged to flow or traffic
in the network the betweenness is a good measure for the fahd node [55, 56].

3.2. Macroscale

On the other hand, when dealing with very large networks rdthes played by the
individual nodes has not meaning at all and the interest risetli to the statistical
characterization of the network at the global or macroscepale. Now one studies
average quantities like the mean degree, the mean distatwedn nodes, the average
clustering coefficient, the diameter of the network (meedwas the maximum distance
between nodes). Another statistical characterizatiomefrietwork comes in terms of
the distributions of degree, of load, or on the correlations

It was the initial study of these statistical charactermad of the networks that started
the big interest from the Statistical Physics communityanticular, as we will explain
shortly, there were two crucial facts that could not be exjld by means of known
graph models: the small-world effect and the observatianttie distribution of degrees
followed a power law indicating that there are no charastierscales in this distribution
and hence those networks were called "scale-free" netwhbrlksg. 2(right) we plot the
in- and out-degree cumulative distributiohén the PGP web of trust of Ref. [22], as
an example of power-law distribution; in this case, as adtid@ network, the in- and
out-degrees distributions do not need to be identical.

1 The cumulative distributio®(k) is simply related to the probability density functiguix) by P(k) =
f'foodxp(x). In particular, if p(x) is a power lawp(x) ~ x~ 9, thenP(k) ~ k=~1, and if p(x) is an
exponentiap(x) ~ exp(—x/k*), thenP(k) ~ exp(—k/k*).



FIGURE 1. Examples of generated networks from data. Top-Left: Da@ctetwork. Nodes are colored
blue. Bidirectional links are colored brown whereas urmdiional links are colored orange. The shadowed
areas correspond to the robust areas of the network, iy kiep connected when the central node is
eliminated. Top-Right: Directed and weighted network. Wk obtained from the email network at
Universitat Rovira i Virgili. The nodes correspond to thetes and the links are related to the distance
between centers (see text). Since the distance can takeaealegative values the link, and hence the
network, are weighted. Bottom: Collaboration network. Quetive network of collaborations during
Spanish Statistical Physics meetings. Green nodes comdgp members of the scientific committee

[15].



Later on, different characterizations of the networks hlagen introduced; for in-
stance in weighted networks, the distribution of weightslso a scale-free [52]. Also,
other characterization in the large scale have appearedngtance, the degree-degree
correlationP(K |k) is the conditional probability that a link of a node with degk is
linked to a node with degrédé; if this probability depends ok we say that the node is
correlated, or uncorrelated in the opposite case. In tefrttéconditional probability,
it is more useful to define the average degree of the nearegtbws of nodes with

degreek
knn(k) = ZKP(KIK)- 1)

If knn(k) is a decreasing function &fthen we say that the network is disassortative, as
happens in technological or biological networks, wheréissia increasing function we
call it assortative, as happens in many of the social netsyavkere clearly the meaning
is that most connected nodes tend to be connected betwemnatiek less with poorly
connected nodes.

4. MODELS OF NETWORKS

4.1. The random graph model of Erdds and Renyi

This is the most simple model of graph[57]. Let us consideetao§ N nodes and
the probability that every two nodes are connected (formilagraa link) is p (see Fig.
3(left)). Then the expected value of the connectivity isgym

k=p(N—1). (2)

When considering very large networks and keeping the aeevatye fixed, the distri-
bution of connectivities approaches a Poisson distributith meanA

_ Akek

P(K) K

3)

which is sharply peaked &t, as can be seen in Fig. 2(left).

4.2. The small-world model of Watts and Strogatz

In the paper by Watts and Strogatz [1] they realized that nratworks in nature
had a statistical behavior that could not be fitted to thahefknown results up to that
time: regular lattices or random graphs. On the one handaefgitices have very large
average distance between nodes, this the so called "srodtF\effect, and high average
clustering coefficient, due to the high interconnectioaein neighbors. On the other
hand, random graphs have very short average distances thesexistence of short-cuts
and very low clustering due to the random uncorrelated patfithe connections. And
the conclusion that the authors got from the analysis of giteorks was that they had
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FIGURE 2. Two exemples of distribution of connectivities. Left: Psma distribution with average 50
in a linear-linear scale. Right: Power-law cumulative rligttion of in- and out-degrees (incoming and
outgoing connections) in the PGP web of trust of Ref. [22fiddothat in this case the scale is log-log.

FIGURE 3. Two networks of approximately the same number (100) of naaeklinks (130). Left:
Erdds-Renyi Random graph. Right: Barabasi-Albert scae fretwork.

very short distances, like in random networks, and hightehirsy, like random graphs.
This observation opened a completely new field of researdesiew models that could
explain this simultaneous, and in principle opposite, b&ita were needed.

In particular, they already proposed a model, nowadays knas/the Watts and
Strogatz "small-world" model. To construct the network sterts with a regular one-
dimensional lattice (a ring) in which all nodes are linkedheir m neighbors in each
direction (see Fig. 4(leftmost)); in this case the degresritbution is a delta function
o(k—2m). Then one proceeds by removing the short range links andisuig them
by long-range links between two randomly chosen nodes wibhability p. As can
be seen in Fig. 4 by increasingthe graph loses the lattice character and resembles
every time more to a random graph. Actually, with a relagveiall value ofp the
graph acquires a short average distance between nodesutéhpreciably changing
the clustering. In this way the observation of the simultargeshort distance and high
clustering is explained by means of a very simple model.



FIGURE 4. Small world model of Watts and Strogatz. Links to neighboithe original ring are rewired
with a probability 0.00, 0.05, 0.10, 0.15 (from left to right

4.3. The scale-free model of Barabasi and Albert

Although the model introduced by Watts and Strogatz couslke the apparent
dichotomy in the observation of some regular and some raraf@racteristics in many
networks in nature, it did not change appreciably the distron of connectivities.
Starting from a delta function it rapidly evolves to a Poisslistribution for low values
of p, thus the distribution of connectivities resembles thathef Erdos-Renyi model.
But, just a few months later than this paper appeared, Barabd Albert [2] published
their work in which they noticed that again many of the largéworks that could be
already analyzed at that time (including the Internet or\Web) showed distributions
of connectivities that should be fitted to a power-law, ingt®f a Poisson-like as an
Erdos-Renyi random graph.

In order to explain this behavior they also introduced a rmaa®svadays known as
Barabasi-Albert model, in which there were two essentigiedients: growth and pref-
erential attachment (this kind of attachment also givesatae to the model sometimes).
On the one hand, networks are not static but are the resulpicess of growing, start-
ing from a set of a small number of completely connected no@esthe other hand,
the growth proceeds in such a way that the arriving nodesirgked preferentially to
those nodes which already have more connections, as is atibally visualized in Fig.
5 (see also Fig. 3(right) for an example of such network withuad 100 nodes). As
can be easily interpreted from this simple rule, and alsmftbe kind of distribution
showed in Fig. 2(right), one of the main implications of tmedel is the existence of
small fraction of highly connected nodes, named as hubsteslsehe vast majority of
nodes have a very low connectivity. These hubs play a crea@in many aspects of the
network; for instance, the network is very sensitive tomtitenal attacks if the targets are
the hubs, but is very robust under random attacks (or fa)urethe case that the target
is chosen at random [58, 59]. They are also important in theesjing of information or
in the dynamics of synchronization, as we will see in nextieas.

The finding that networks in natural or technological or abeinvironments were
scale free, showing some remarkable similarities of mamgrophenomena studied
in the physical sciences, like critical phenomena or flactagether with the "small-
world" concept introduced by Watts and Strogatz, startedniéw theory of complex
networks with contributions in many different fields, butkva major contribution from



FIGURES5. Preferential attachment rule of the Barabasi-Albert motie¢ arriving node is more likely
to be connected to those nodes which already have morergxistnnections, and hence the new links
correspond to the dotted lines.

the Statistical Physics community.

5. DESCRIBING THE MESOSCALE: COMMUNITIES

Clearly, in the previous sections we characterize the nddisveither from the micro-
scopic or from the macroscopic point of view, but many neksoshow structures
that are important in the intermediate scales, the mesas€hbse structure can have
different meanings depending on the origin of the netwodmmunities in social
networks[54], functional groups in biology[60], regiommbups in geographically based
networks, thematic clusters in the web [61, 62], and so omyMimnes theses structures
have an important role in their own and they have not beentagried by chance but by
an ordered process of growth. For this reason identifyiegctmmunities in a network
is a process from which we can gain a lot of useful informatkurthermore, dynam-
ics is also affected by this community structure since dyinans tightly related to the
underlying topology of the network. The readers are poitdeRlefs. [63, 64] for recent
reviews on the subject of communities in complex networks.

Distinct modules or communities within networks can logdst defined as subsets
of nodes which are more densely linked, when compared taesteof the network. But
this is a very simple definition that cannot assure the cordeatification of the groups
that form the complex network.

The problem of community detection is quite challenging &ad been the subject
of discussion in various disciplines. A simpler version leistproblem, the graph bi-
partitioning problem has been the topic of study in the reafrmomputer science for
decades. In real complex networks we often have no idea haw m@mmunities we
wish to discover, but in general it is more than two. This nsake process all the more
costly. What is more, communities may also be hierarchtbalf is communities may
be further divided into sub-communities and so on [16, 21 655.

Nevertheless, many attempts to tackle these problems resre firoposed recently.
The proposed methods vary considerably in terms of appraadhapplication, which
makes them difficult to compare. Community identificatiorp@entially very useful



and researchers from a number of fields may be interestediig ase or several of the
methods for their own purposes. In [66] we review all thes¢hm@s comparing their
performance and their computational cost.

But community identification is not merely a qualitative plem; actually, the per-
formed comparison between the different algorithms is dorterms of a quantity that
measures how good a given patrtition is. Since communitees@metimes not perfectly
defined with clear border-line separation among them, miffealgorithms to detect
communities can give rise to slightly different partitiodif©iem a measure that quanti-
fies the accuracy of the partition is welcome. A simple apgindhat has become widely
accepted was proposed in [67]. It is based on the intuitiga ithat random networks do
not exhibit community structure. Let us imagine that we hawerbitrary network and
an arbitrary partition of that network intg. communities. It is then possible to define a
Nc X N¢ Size matrixe where the elementg; represent the fraction of total links starting
at a node in partitiomand ending at a node in partitignThen, the sum of any row (or
column) ofe, g =y ; &; corresponds to the fraction of links connected.to

If the network does not exhibit community structure, or i fartitions are allocated
without any regard to the underlying structure, the expgkeue of the fraction of
links within partitions can be estimated. It is simply the@lpability that a link begins
at a node in, g, multiplied by the fraction of links that end at a nodeijrg;. So the
expected number of intra-community links is jasd;. On the other hand we know that
thereal fraction of links exclusively within a partition ig;. So, we can compare the two
directly and sum over all the partitions in the graph.

Q=3 (ei—af) (4)

This is the measure known a®dularity, that for a very good partition approaches 1.
It is important to say that the network can have a very clearrnanity separation and
then a good partition can attain a large value of the modylari

But sometimes, we are not only interested in the best partiiut in the hierarchical
organization of the network in nested communities. One efaarly methods of com-
munity detection, proposed by Girvan and Newman [68], &iasn splitting the net-
works by cutting the links with the highest betweeness. is thse this procedure can
be iterated up to the level of individual nodes giving riserthio a hierarchy of nested
communities. The application of this procedure is very ulsklr the understanding on
the different levels of organization in a network. We havplega this procedure to the
email network of the Universitat Rovira i Virgili [16] findmthat the hiercahical organi-
zation of the community structure maintains many treate@fsupposed formal chart of
the organization; but, at the same time, we could obsentestimae nodes are not placed
in the supposed community. This is of course very valuabétasl for the management
of a organization [53]. Also as a tool of identifying the worg communities and the
respective leaders we applied the procedure to the Stalisthysics meetings network
shown in Fig. 1. The network in Fig. 6 is the result of such camity partition, where
we can see that the green nodes, identified as the membeis sfiémtific committees
are equally distributed between the different branchesagetar mainly at their tips.
The former means that members have been chosen in a homogemayp between the



FIGURE 6. Community structure of the collaboration network in the iiph Statistical Physics meet-
ings. The small branches correspond to the research grbapare grouped into Universities that, at the
same time, are closely grouped according to geographicaimity. The green nodes, that correspond
to the members of the scientific committees appear mainheatips of the branches, showing their
leadership in the respective groups. The homogeneougbdistn of green nodes also shows that they
have been chosen uniformly among the different groups.

different groups that form the Statistical Physics comrtyuaind that these members are
the leaders of the respective teams.

Another fact that has been obtained from this hierarchicahraunity structure is
that in many networks the distribution of community sizesoathows a power-law,
indicating an underlying mechanism of auto-organizatiothe network and the absence
of characteristic community sizes. In this way anotheriagabf magnitudes within
communities can be analyzed and hence, in a language veiliafaio physicists,
networks can be classified in different universality clad4é, 15].

6. DYNAMICS ON THE NETWORK

Complex networks have become such widespread analyzednhobecause of their
universal topological properties, but also because thexetf the topology on the dy-
namics. Dynamical systems had been largely studied mamtyree different play-
grounds: regular lattices, random graphs, and completgipected networks. Thus the
evidence of the existence in nature and society of compl&rnpe of interaction again



offered a large number of new possibilities to those stuglyfie dynamical properties of
complex systems. And hence, many different types of dynauméave been studied ac-
cording to different patterns of connectivity. Just to ni@mia few in different contexts:

flow of physical magnitudes or information in communicati@tworks [56], spreading

of epidemics [69, 20, 19] or rumors[70], synchronizationdghamical units (mainly

oscillators) [71, 7], opinion formation [72], cultural dsmination [73], technological
innovations [74], strategic games [75], Boolean dynammaganetic networks [51], neu-
ral networks [1, 76, 77, 48].

Just to present a comprehensive view of these phenomenalixghaiv results on
two different types of dynamics: search and congestion asxample of transport in
networks, and the dynamics of oscillators towards syndbhation since it is a good
example on how dynamics can help in elucidating some dethbilse topology.

6.1. Search and congestion

Concerning transport, the flow of information has been ontgh@fmainly discussed
issues. Information, in this case, can be understood asfsatka computer network
[78], problems in a company that need to be solved [55], pagEss in a transportation
network [79]. As an example of information flow in [55] we peeged a formalism
that is able to cope with search and congestion simultafgouany type of network,
allowing the determination of optimal topologies. Thisrf@lism avoids the problem of
simulating the dynamics of the communication process aadiges a general scenario
applicable to any communication process.

Let us focus on a single information packet at noddose destination is node The
probability for the packet to go fromto a new nodg in its next movement isp}‘j. In

particular,pﬁj = 0V]j so that the packet imoved as soon as it arrives to its destination.

This formulation is completely general, and the precisenfof p}‘j will depend on the

search algorithm and on the connectivity matrix of the nekwtn particular, when the

search is Markovianp}‘- does not depend on previous positions of the packet. In this

case, the probability o* going froiro j in n steps is given by

R =S el Pl (5)

|l7|27---7|n—l

This definition allows us to compute the average number oé$i,rd‘j, that a packet
generated atand with destination d passes through

=y P =y ()" =0 itk ©
n=1 n=1

and the effective betweenness of nqd8;, is then defined as the sum over all possible
origins and destinations of the packets,

szgbrj. (7)



When the search algorithm is able to find the minimum pathsvéet nodes, the
effective betweenness will coincide with the topologicahvbeennessf3j, as usually
defined in the previous sections [80, 81].

Once these quantities have been defined, we focus on the fidlael network,N(t),
which is the number of floating packets. These floating pac#ed stored in the nodes
that act as queues. In a general scenario where packets reestpel at random and
independently at each node with a probabiftythe arrival of packets to a given nogle
is a Poisson process. In this simple picture, the queues#esl d/M/1 in the computer
science literature and the average load of the network i8R

ko)
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There are two interesting limiting cases of equation (8).ewp is very small, taking
into account that the sum of betweennesses is proportioriktaverage distance, one
obtains that the load is proportional to the average effeatistance. On the other hand,
whenp approachep; most of the load of the network comes from the most congested
node, and therefore L

N~ 1_p5 P — Pc; 9)

S1

whereB* is the effective betweenness of the most central node. Biedaults suggest
the following interesting problem: to minimize the load ohatwork it is necessary
to minimize the effective distance between nodes if the arhofi packets is small,
but it is necessary to minimize the largest effective betwess of the network if the
amount of packets is large. The first is accomplished Istaalike network, that is, a
network with one central node and all the others connectédTiibe second, however, is
accomplished by a very decentralized network in which alribdes support a similar
load. This behavior is similar to any system of queues pexithat the communication
depends only on the sender.

It is worth noting that there are only two assumptions in taé&wulations above.
The first one has already been mentioned: the movement ofatikefs needs to be
Markovian to define the jump probability matricg&. Although this is not strictly
true in real communication networks—where packets are satlly allowed to go
through a given node more than once—it can be seen as a firsbd@mation [78, 83,
84]. The second assumption is that the jump probabilip'ﬁsﬁo not depend on the
congestion state of the network, although communicatiatogols sometimes try to
avoid congested regions, and thgn= B;(p). However, all the derivations above will
still be true in a number of general situations, includinmiaions in which the paths
that the packets follow are unique, in which the routingealdre fixed, or situations in
which the structure of the network is very homogeneous ausl tie congestion of all
the nodes is similar. Compared to situations in which packeoid congested regions,
it corresponds to the worst case scenario and thus providadsoto more realistic
scenarios in which the search algorithm interactively ds@ongestion.

Equation (8) relates a dynamical variable, the load, with tthpological properties
of the network and the properties of the algorithm. So we ltareverted a dynamical
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FIGURE 7. Optimal topologies for networks witG = 32 nodes|. = 32 links.

communication problem into a topological problem. Henkhe,dynamical optimization
procedure of finding the structure that gives the minimundlsareduced to a topo-
logical optimization procedure where the network is chimamed completely by its ef-
fective betweenness distribution. In [55] we consideredtoblem of finding optimal
structures for a purely local search, using a generalizadlated annealing procedure,
as described in [85]. On the one side, we have found (see Jiga¥forp — 0 the op-
timal network has a star-like centralized structure as etguk which corresponds to the
minimization of the average effective distance betweereso@n the other extreme, for
high values op, the optimal structure has to minimize the maximum betwessawnf the
network; this is accomplished by creating a homogeneouwsanktwhere all the nodes
have essentially the same degree, betweenness, etc. Adesgpact that the transition
centralized-decentralized occurs progressively. Ssirgly, the results of the optimiza-
tion process reveal a completely different scenario. Adicgy to simulations, star-like
configurations are optimal fgp < p*; at this point, the homogeneous networks that
minimize B* become optimal. Therefore there are only two type of stnestthat can
be optimal for a local search process: star-like networkgfe: p* and homogeneous
networks forp > p*.

Beyond the existence of both centralized and decentrabptitnal networks, it is
significant that the transition from one sort of networkshe btther is abrupt, mean-
ing that there are no intermediate optimal structures batwetal centralization and
total decentralization. Our explanation of this fact is tbkkowing. Since we are con-
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FIGURE 8. Optimal topologies for networks witB= 32 nodesL = 32 links and global knowledge.
(a)p =0.010. (b)p =0.020. (c)p = 0.050. (d)p = 0.080. In this case of global knowledge, the transition
from centralization to decentralization seems smooth.

sidering local knowledge of the network topology, centestad-like configurations are
extremely efficient in searching destinations and thusmiizing the effective distance
between nodes. This explains that stars are optimal for a veidge of values gd, until
the central node (or nodes) becomes congested. At this, gtinttures similar to stars
will have the same problem and will be much worse regardiagcée at this point, the
only alternative is something completely decentralizelsgre the absence of congestion
can compensate the dramatic increase in the effectivendistaetween nodes. If this ex-
planation is correct, one should be able to obtain a smoaiisition from centralization
to decentralization by considering global knowledge ofrieevork, in such a way that
the average effective distance (that in this case coincidigsthe average path length)
is not much larger in an arbitrary network than in the stathéligh we do not have
extensive simulations in this case, Fig. 8 shows that tlseeseme evidence to think that
this is indeed the case.

6.2. Dynamics towards synchronization

Physicists have largely studied the dynamics of complexobioal systems, and
in particular the paradigmatic analysis of large populaiof coupled oscillators [86,
87, 88]. The connection between the study of synchroniggirocesses and complex



networks is interesting by itself. This synchronizatiorepbmena as many others e.g.
asian fireflies flashing at unison, pacemaker cells in thet lesaillating in harmony,
etc. have been mainly described under the mean field hypsttied assumes that all
oscillators behave identically and interact with the rdghe population. Recently, the
emergence of synchronization phenomena in complex nesaltak been shown to be
closely related to the underlying topology of interacti¢®d] beyond the macroscopic
description.

One of the most successful attempts to understand syncatmm phenomena was
due to Kuramoto [88], who analyzed a model of phase oscilatoupled through the
sine of their phase differences. The model is rich enoughdplal a large variety of
synchronization patterns and sufficiently flexible to bepaed to many different con-
texts [90]. The Kuramoto model consists of a populatioNaoupled phase oscillators
where the phase of thieh unit, denoted by (t). Here we consider a simplified dynam-
ics in which all units have the same frequency, that can béosetro without loss of
generality. Thus we have

?:ZKijsin(Qj—G.) i=1,..,N (10)
J

whereK;|;j describes the coupling between units. In absence of noésertly attractor of
the dynamics is the complete synchronizati@ns 0, Vi.

Originally, this model had been studied in networks whial @mplete, but recently
these studies have been extended to systems where thenpatt@onnections is local
but non-trivial [7]. In this context the interest concerrd the final synchronized state
in itself but the route to the attractor. In particular, itshleen shown [7] that high
densely interconnected sets of oscillators (motifs) syortize more easily that those
with sparse connections. This scenario suggests that fangplex network with a
non-trivial connectivity pattern, starting from randomitia conditions, those highly
interconnected units forming local clusters will syncheafirst and then, in a sequential
process, larger and larger spatial structures also willtdgito the final state where
the whole population should have the same phase. This mrammsurs at different
time scales if a clear community structure exists. Thus,dyramical route towards
the global attractor reveals different topological stames, presumably those which
represent communities. Therefore, it is the complete dycalnprocess what unveils
the whole organization at all scales, from the microscake\ary early stages up to the
macroscale at the end of the time evolution. On the contthoge systems endowed
with a regular topological structure displays a trivial dymics with a single time scale
for synchronization.

We have analyzed the dynamics towards synchronization mpoter-generated
graphs with community structure. For this reason, we defilgcal order parameter
measuring the average of the correlation between pairsodfaiers

pij(t) =< cos(6i(t) — 6;(t)) > (11)

where the brackets stand for the average over initial rangolmeses. The main advantage
of this approach is that it allows to trace the time evolutdrpairs of oscillators and
therefore to identify compact clusters reminiscent of tkistence of communities.



The paradigmatic model of network with a well defined commustructure that
has been used as a benchmark for different community deteakyorithms [66], was
proposed by Girvan and Newman [68]. In that model the autbonstruct a network
of 128 nodes as a set of 4 communities, each one formed by 3&nbtking the mean
number of links per node at a value of 16, the parameter desgrine sharpness of the
community distribution ig,, the average number of links within the community. In Fig.
9 we show the time evolution of one of these networks+ 15 and hence a very clearly
defined community structure, averaging over random intieses.

Dealing only with topological information we can, from thenmectivity matrix, con-
struct the Laplacian matrix and compute their eigenval@espm. This spectrum gives
information on the time scales involved in the dynamicakess. We plot the eigenval-
ues spectrum of this matrix in the following way: in the horiztal axis we represent the
inverse of the eigenvalue, which in a dynamical processiadsdor the time, and in
the vertical axis we represent the index of the eigenvaluewdiccounts for the number
of groups along the dynamics. This picture is useful bec#@usen be compared with
the way groups (clusters or communities) are formed aloagyinchronization process,
obtaining a very striking similarity, meaning that thesgegivalues control the forma-
tion of the synchronized communities. We also plot, for ctatipn, the dendogram of
the synchronization process (Fig. 9¢): In this picture wanshow the groups merge ac-
cording to the synchronization dynamics along time (vaftaxis). Finally we also plot
(d) the relative time to achieve synchronization for eacin phoscillators. This syn-
chronization is understood as a correlation being largam gome threshold value. The
characterization is completely independent of the threklas is shown in [91], since
it only changes the absolute time scale not the relative Npees are ordered in the
same way than in the picture of the dendogram just to get tbghéhose nodes that
synchronize earlier.

In this way we have been able to relate topology, in terms@gtigenvalue spectrum
of the Laplacian matrix, with dynamics, in terms of the appeae of synchronized
groups of oscillators. Topologically these groups coroespto the communities, but
there can be some cases where communities are not so wekdiefml this informa-
tions keep being useful. There can be some occasions whecarsyized groups of
oscillators do not fit exactly with topological communiti&ynchronization is a global
dynamical process that can identify the relevant strust(perhaps hierarchical) along
its evolution. Also the effect of hubs in the dynamical etwn is interesting, since hubs
are sometimes above the community structure.

For more information on this issue the reader is pointed 10 $2] and to the website
http://ww. ffn.ub.es/al bert/synchro.htm .

7. CONCLUSIONS AND OPEN PROBLEMS

Complex patterns of interactions are so often found in artyurag technological or

social environment that it has been widely accepted thattoeVs are needed. From
Statistical Physics, many valuable existing tools havenlagplied to this new emergent
field. Researchers in many different subjects are genegratnv repositories of data,
very large networks are generated and these tools need n@enmantations. A network
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FIGURE 9. Synchronization process in a network with a homogeneoustiifion of communities. a)
the network structure; b) eigenvalue spectrum; ¢) dendogfathe community merging; d) time needed
for each pair of oscillators to synchronize. Red for shditees, blue for larger times.

is not just a collection of nodes and binary relationshigs/ken those nodes. Nodes and
links can be anything, depending on the considered dataydmgs can have weights,
links can have weights as well, and hence new theories haesaagd to deal with this
additional degree of complexity.

Usually, networks are characterized either from the mmwpg level or from the
macroscopic level. From a microscopic point of view we aréntganterested in node
properties: degree, different measures of centralitysteling, and so. However, from
a macroscopic point of view we deal with statistical projsrtof the set of nodes
and/or links; which are the distributions of connectiati®f load, of distances, and
how the different measures are, on average, correlategeldteracterizations enable
to classify the networks into different universality classwhich is quite common in



physics grounds. We also know that in many problems in pBysi have descriptions
that are scale invariant and hence we can move from the nempdasto the macroscopic
scale. Here we have reviewed some concepts and methodsimdheaediate scale, the
mesoscale, where the definition and identification of comtiasor functional groups

play a crucial role. Up to now, there has been a large amoumnook on methods of

community identification. Which are the most efficient innbsrof accuracy or which

are the more economic in terms of computer resources ne&tlede properties have
also turned out to show some degree of universality.

Nevertheless, this identification based solely on topaligproperties needs to be
related with the exact relations between the nodes of tHerdift groups. Nodes can
belong topologically to a given group but their functiotglcan be quite different.
Understanding these relations, why topological commesidire or are not related with
functional groups, social communities, or some sort of thgenclusters, is still one
of the open problems related with the mesoscale propeAiasther interesting point
that needs more clarification is the community structureitd¢rént scales, why are
they ordered in some kind of hierarchical or nested way aed tielation again with
some ordering in this scales that can be related with somandipal properties of the
processes taking place on the network. This hierarchinattsire goes far beyond many
of the current methods to identify community partitions etwiorks; all this methods
try to find the optimal value of a kind of cost function, callegdularity, which is a
property of the network and of the partition, then the besitzn is that with the highest
modularity, but there can be partitions that, even with @higlue of modularity, are
very unlikely from a physical point of view. Hence a propedarstanding of the precise
location and the neighboring areas in the partition spaspetial configurations can be
of great help in understanding the functionality of netvwgork

But, at the same time, networks are not formed by static ¢tdyjaodes (social agents,
computers, companies, ...) evolve in time and they can @trejr status and this evo-
lution is strongly correlated with the evolution of the Isksocial relationships, hard
rewirings, new business strategies, ...), All these newew, rewiring, updating, grow-
ing, removing, ... open many new problems that will be faceithé next future. Also, as
stated in the previous paragraph, we need a proper undeirsgaof the topologies and
its relation with the dynamics of the node properties. Weehanesented here just two
examples on how the topological structure affects dynankicst, a problem of trans-
port in which the nodes are agents that process and delieemation that has to arrive
to the right destination. Here we have found the charatiesisf the optimal network
depending on the external load. Second, the time evolufisgrchronized populations
of oscillators shows a striking degree of community ordgthnat reflects the topological
structure; furthermore, we have highlighted the relatioetsveen topological properties
of the connectivity matrix with dynamical properties of henchronization. This is just
to get a glance on the wide applicability of these ideas irspia}, economical, social,
biological, or even engineering problems.

In any case, we are dealing with a subject, Complex Netwdhed,is very young,
but that in such a short period of time has given so many ratex@ntributions (in the
form of reviews, technical books, popularization books) that we have to think that
the future has just started and many new players are welcothe ground.



ACKNOWLEDGMENTS

The author gratefully acknowledges fruitful and enlightgndiscussions with L.A.N.
Amaral, A. Arenas, M. Bogufia, L. Danon, J. Duch, X. Guardi®aGuimera, M. Llas,
C.J. Perez-Vicente. | would like also to thank L. Danon aridukh for providing some
of the data and figures.

NouhrwhpE

©

10.
11.
13.
14.
15.
16.

17.
18.

20.
21.
22.

23.
24,
25.
26.
28.
29.
30.
31.
32.

33.

REFERENCES

D. J. Watts, and S. Strogdsature 393, 440—442 (1998).

A. L. Barabasi, and R. Alber&cience 286, 509-512 (1999).

S. H. StrogatzNature 410, 268—-276 (2001).

A. L. Barabasi, and R. AlberReview of Modern Physics 74, 47-97 (2002).

S. Dorogovtsev, and J. F. F. Mend&dyancesin Physics 51, 1079-1187 (2002).

M. E. J. NewmanS AM Review 45, 167-256 (2003).

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-UWvatg,Physics Reports 424, 175-308
(2006).

S. Bornholdt, and H. G. Schuster, editdiandbook of Graphs and Networks - From the Genome to
the Internet, Wiley-VCH, Berlin, 2002.

R. Pastor-Satorras, M. Rubi, and A. Diaz-Guilera, esljt8atistical Mechanics of Complex Net-
works, Springer, 2003.

L. Amaral, A. Scala, M. Barthelemy, and H. Stanl®ypceedings of the National Academy of
Sciences, USA 97, 11149-11152 (2000).

G. F. Davis, M. Yoo, and W. E. Bakgeprint, University of Michigan Business School (2001).

M. E. J. Newman, S. Strogatz, and D. J. Watsysical Review E 64, 026118 (2001).

M. E. J. NewmarPhysical Review E 64, 016132 (2001).

M. E. J. NewmarRroceedings of the National Academy of Sciences, USA 98, 404—409 (2001).

A. Arenas, L. Danon, A. Diaz-Guilera, P. M. Gleiser, and3RimeraEuropean Physical Journal B
38, 373-380 (2004).

R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, and AeAas,Physical Review E 68, 065103
(2003).

H. Ebel, L. I. Mielsch, and S. Bornhold®hysical Review E 66, 035103 (2002).

M. E. J. Newman, S. Forrest, and J. Balthf@pysical Review E 66, 035101 (2002).

F. Lilieros, C. R. Edling, and L. A. N. Amaralicrobes and Infections 5, 189-196 (2003).

F. Lilieros, C. Edling, L. A. N. Amaral, H. E. Stanley, aMdAberg,Nature 411, 907-908 (2001).
P. Gleiser, and L. DanoAgvancesin Complex Systems 6, 565-573 (2003).

X. Guardiola, R. Guimera, A. Arenas, A. Diaz-GuileraSireib, and L. Amarabreprint pp. cond—
mat/0206240 (2002).

R. Albert, H. Jeong, and A.-L. B.Nature 401, 130 (1999).

S. Rednelturopean Physical Journal B 4, 131-134 (1998).

S. N. Dorogovtsev, and J. F. F. Mend@sjceedings of the Royal Society, London B 268, 2603—-2608
(2001).

R. F. i Cancho, and R. Soléroceedings of the Royal Society London B 268 2261—-2265 (2001).
M. Faloutsos, P. Faloutsos, and C. FaloutSosyp. Comm. Rev. 29, 251-262 (1999).

M. E. J. NewmarPhysical Review E 67, 026126 (2003).

S. Valverde, R. F. i Cancho, and R. S&érophysics Letters 60, 512-517 (2002).

R. F.i Cancho, C. Janssen, and R. Selgsical Review E 64, 046119 (2001).

R. Guimera, S. Mossa, A. Turtschi, and L. A. N. AmaRibceedings of the National Academy of
Sciences, USA 102, 7794-7799 (2005).

V. Colizza, A. Barrat, M. Barthelemy, and A. Vespigndprioceedings of the National Academy of
Sciences, USA 103 2015 (2006).

P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. &fjgd) and S. S. MannBhysical Review
E 67, 036106 (2003).



34.
. S. M. Gomez, S. H. Lo, and A. Rzhetslgenetics 159, 1291-1298 (2001).
36.
37.
38.

40.

41,
42,
. S. WuchtyProteomics 2, 1715-23 (2002).
44,

45,
. S. Morita, K. Oshio, Y. Osana, Y. Funabashi, K. Oka, an&K, Physica A 298 553—-61 (2001).
47,
48.

49.
51.
52.
53.
54,
55.
56.
57.
58.
60.
61.
62.

63.
64.

65.

67.
68.

69.
70.
71.
72.

73.
74.
75.
76.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Baésai,Nature 407, 651-654 (2000).

O. Ebenhoh, and R. HeinricBulletin of Mathematical Biology 65, 323-57 (2003).

S. Schuster, T. Pfeiffer, F. M. |. Koch, and T. Dandel&ininformatics 18, 351fi61 (2002).

A. Wagner, and D. A. FelRroceedings of the Royal Society London B 268 1803-10 (2001).

H. Jeong, S. Mason, A. L. Barabasi, and Z. N. OltMaiture 411, 41-42 (2001).

D. S. Goldberg, and F. P. RofProceedings of the National Academy of Sciences, USA 100, 4372—-76
(2003).

M. Vendruscolo, N. V. Dokholyan, E. Paci, and M. KarplBkysical Review E 65, 061910 (2002).
A. WagnerMolecular Biology and Evolution 18, 1283—-92 (2001).

J. A. Dunne, R. J. Williams, and N. D. Martinéxpceedings of the National Academy of Sciences,
USA 99, 12917-22 (2002).
J. M. Montoya, and R. V. Soldpurnal of Theoretical Biology 214, 405-12 (2002).

O. Shefi, I. Golding, R. Segev, E. B.-J. E, and A. Ayahysical Review E 66, 021905 (2002).

V. M. Eguiluz, D. Chialvo, G. Cecchi, M. Baliki, and A. Apkian,Physical Review Letters 92,
028102 (2005).

A. Bhan, D. J. Galas, and T. G. DewBywpinformatics 18, 1486—1493 (2002).

N. Guelzim, S. Bottani, P. Bourgine, and F. Kepdature Genetics 31, 60-63 (2002).

L. A. N. Amaral, A. Diaz-Guilera, A. A. Moreira, A. L. Golietrger, and L. A. LipsitzProceedings
of the National Academy of Science 101, 15551-15555 (2004).

A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A.pigsani, Proceedings of the National
Academy of Science 101, 3747 (2004).

R. Guimera, L. Danon, A. Arenas, A. Diaz-Guilera, andiFal Journal of Economic Behavior and
Organization (2007).

S. Wasserman, and K. FauStcial Network Analysis, Methods and Applications, Cambridge Uni-
versity Press, 1994,

R. Guimera, A. Diaz-Guilera, F. Vega-Redondo, A. Camand A. Arena®hysical Review Letters
89, 248701 (2002).

B. Tadic, G. Rodgers, and S. Thurreprint (2006).

P. Erdos, and A. RenyRubl. Math. Debrecen 6, 290-297 (1959).

R. Albert, H. Jeong, and A.-L. Barabaature 406, 378 (2000).

R. Cohen, K. Erez, D. ben Avraham, and S. Ha\Hinysical Review Letters 85, 4626 (2000).

H. Zhou, and R. Lipowskyreprint (2005).

G. W. Flake, S. Lawrence, C. L. Giles, and F. M. CoetHeEE Computer 35, 66 — 71 (2002).
J.-P. Eckmann, and E. Mos@soceedings of the National Academy of Sciences, USA 99, 5825-5829
(2002).

M. E. J. Newmarturopean Physical Journal B 38, 321-330 (2004).

L. Danon, J. Duch, A. Arenas, and A. Diaz-GuileZ&SIN project, World Scientific, 2005, chap.
Community structure identification.

M. E. J. NewmarPhysical Review E 69, 066133 (2004).

L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenasstat. Mech p. P09008 (2005).

M. E. J. Newman, and M. GirvaRhysical Review E 69, 026113 (2004).

M. Girvan, and M. E. J. NewmaRyoceedings of the National Academy of Sciences USA 99, 7821—
7826 (2002).

R. Pastor-Satorras, and A. Vespign&ysical Review Letters 86, 3200-3203 (2001).

D. H. ZanettePhysical Review E 64, 050901 (2001).

L. Donetti, P. I. Hurtado, and M. A. MufoRhysical Review Letters 95, 188701 (2005).

F. A. Rodrigues, and L. da F. Costaternational Journal of Modern Physics C 16, 1785-1792
(2005).

K. Klemm, V. M. Eguiluz, R. Toral, and M. San Miguéhysical Review E 67, 026120 (2003).

M. Llas, P. M. Gleiser, A. Diaz-Guilera, and C. J. PéR¥gsica A 326, 567-577 (2003).

H. Ebel, and S. Bornhold®hysical Review E 66, 056118 (2002).

L. F. Lago-Fernandez, R. Huerta, F. Corbacho, and J. glieBiza,Physical Review Letters 84,
2758-2761 (2000).



M. Aldana, and H. Larrald®hysical Review E 70, 066130 (2004).
T. Ohira, and R. SawataRhysical Review E 58, 193 (1998).

M. Barthelemy, and A. Flammini, Optimal traffic netwo(2906).
L. C. Freemarociometry 40, 35—41 (1977).

M. E. J. NewmarPhysical Review E 64, 016133 (2001).

. O. Allen,Prabability, Statistics and Queueing Theory with Computer Science Application, Academic

Press, New York, 2nd edition,, 1990.

. A. Arenas, A. Diaz-Guilera, and R. GuimeRhysical Review Letters 86, 3196-3199 (2001).

R. Sole, and S. Valverdehysica A 289, 595—-605 (2001).

. C. Tsallis, and D. A. Stariol@nnual Rev. Comp. Phys. |1, World Sci. Singapore, 1994.
. A. Winfree,The geometry of biological time, Springer, 2001.

. S. H. Strogatz5ync: The Emerging Science of Spontaneous Order, Hyperion, 2003.

. Y. KuramotoChemical oscillations, waves, and turbulence, Dover, 2003.

F. M. Atay, T. Biyikoglu, and J. JostEEE Trans. Circuits and Systems 53 (2006).
J. A. Acebrén, L. L. Bonilla, C. J. Pérez Vicente, F. Ritand R. SpiglerReviews of Modern Physics
77,137-185 (2005).

. A. Arenas, A. Diaz-Guilera, and C. J. Perez-ViceRt®/sical Review Letters 96, 114102 (2006).
. A. Arenas, A. Diaz-Guilera, and C. J. Perez-ViceRtg/sica D 96, (submitted) (2007).



