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Chapter 1

Introduction

This Chapter reviews the background of the research presented in this thesis and
summarises its purpose.

1.1 Background of research

The conventional view of science holds knowledge to be specific and, thus, more
knowledge may be gained by providing more details of the system under study.
This view has lead to professional specialisation, with the outcome that the indi-
vidual disciplines have progressively become more and more isolated from one
another. This conception of science has recently been challenged by a paradig-
matic shift taking place in the natural sciences. As a consequence, scientific en-
quiry is becoming increasingly holistic, more focused on system-level behaviour
rather than system constituents, but also increasingly multidisciplinary as the ex-
istence of potential synergies across different fields is being acknowledged (10).
The study of complex systems in a unified framework has recently become re-
cognised as a new discipline, breaking barriers not only between physics, chem-
istry and biology, but also between these disciplines and some of the so-called
softer sciences, including economics, sociology, and psychology. There are three
primary reasons for the emergence of the complex systems approach: (1) large
electronically recorded sets of data on these systems have become available, (2)
advances in computing power enable simulation and analysis of these systems,
and (3) enough mathematical machinery exists for tackling these problems. The
increasing availability of data and computer power have enabled scientists to
search for regularities and patterns in different complex systems, which can be
seen as manifestations of the underlying laws governing their dynamics (11).
Computational capacity is crucial because theoretical research typically involves
large-scale numerical simulations, and computers are also needed in the analysis
and interpretation of data, whether obtained from empirical observations or from
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Figure 1.1: Different conceptions of science. According to the conventional view of
science (left panel), different disciplines are progressively separating in order to gain
knowledge. The complex systems view suggests that all complex systems have universal
properties (right panel), and by considering them one can approach the specifics of partic-
ular complex systems both from the top of the sphere as well as from the bottom. Figure
adapted from (10).

simulations. The relevant mathematical developments have mostly taken place
in statistical mechanics, non-linear dynamics, and in the physics of complex net-
works (12; 13). Indeed, many complex systems are amenable to the complex
network paradigm in which spectacular developments have been made in the past
few years (Section BJ). In this framework we learn about a complex system by
studying its network representation. The approach is possible because the inter-
action topology of the underlying system, captured by the network, is related to
its function and dynamics.

This thesis deals with two different complex systems, broadly classified as
financial and social systems, from the perspective of complex networks. Loosely
defined, complex systems consist of a large number of elements capable of in-
teracting with each other and with their environment, resulting in the system be-
coming organised without any external organising principle being applied. The
consequence of this, which is also a characteristic of complex systems, is that de-
composing the system and studying its subparts in isolation does not contribute
to our understanding of how it works. Putting the two concepts together, we can
identify complex systems by what they do (organisation or emergence), and also
by how they may or may not be analysed (decomposition) (11; 14). It may seem
that almost any system could be classified as a complex system. While a more
precise definition of complex systems reveals that this is not the case, it is also
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true that numerous systems can be studied from the complex systems perspective.
The complex systems approach is, therefore, better distinguished from alternat-
ive approaches by the type of questions asked, rather than the specific systems
studied.

It is undeniable that there exists a dichotomy between universality and spe-
cificity. Put differently, there is always the danger that the universalist will step on
the specifist’s toes. However, a study of universal principles does not and should
not replace a detailed description of a particular complex system. Indeed, there
is no reason to view universality and specificity as mutually exclusive approaches
(Figurd.T). The view of the field of complex systems suggests that instead of
science separating into disparate disciplines, it may also be fruitful to consider the
common properties of complex systems. This system level understanding may
then guide us and simplify our enquiries into the study of the specifics (10). While
one should always view every mode of scientific enquiry with some scepticism, it
appears that at least physicist Stephen Hawking has faith in the approach: “I think
the next century will be the century of complexity” (15). Let us hope that he is
right or, at the very least, that in pursuing this approach we will not step on his
toes.

1.2 Purpose of research

One of the key success factors of the complex networks approach is the wide
applicability of relatively simple techniques across various fields. The purpose of
the research presented in this thesis is to contribute to this overall approach in two
ways by showing how a problem may be formulated as a network problem and
how the resulting network may be analysed. More specifically, on the one hand
we show how a general problem dealing with correlated actors can be recast as
a network problem (financial systems), and also how a model can be developed
to capture the imposed or hypothesised structure of actors (social systems). On
the other hand, we show how to develop generalisable methods and measures for
network characterisation. These measures should not be too application specific,
such that they can be transferred to disparate complex systems not studied here,
hopefully leading to cross-fertilisation of ideas.

Financial and social systems were chosen because they are data rich systems
and thus enable the concepts developed to be thoroughly tested, but also because
there are a wealth of potential applications for them. Further, financial systems
arise from interactions between people, firms, cities, or nations, and these can be
seen as coarse-grained social actors embedded in their own social network. This
is to say that financial and social systems are not completely separate systems, but
that every financial system also reflects an underlying social system (1€).

In the context of the financial market, the purpose is to construct a network
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representation of the system aimed at characterising the top-level structure and dy-
namics of a large number of interacting elements. Instead of looking at the inter-
actions directly, our perspective is a little more abstract, focusing on correlations
of interactions. The methods are applicable, at least in principle, to any complex
system in which interactions are reflected in temporal correlations of some relev-
ant quantity attached to each node, and serve the general need of identifying the
core or backbone of the system. The resulting simplified system is more amenable
to analysis and a number of different measures may be developed to characterise
it further.

Another important line of research in this thesis has to do with augmenting
the motif framework to incorporate link weights. The motivation for this has to
do with the nature of the coupling between interaction strengths and local network
topology. It not only appears that the nature of this coupling is not universal, but
also that the coupling might be related to the function of the network (17). Con-
sequently, augmenting the motif framework can improve our understanding of
networked systems, enabling us to go beyond topology. In addition to conceptual
developments, the aim has been to provide practical tools for making measure-
ments of weighted motifs.

While the study of complex systems has to start from empirical observations
using real life data, the natural next step is to build network models. Using the rate
equation approach, we develop a simple phenomenological model that mimics the
structure of various kinds of social networks. We have followed the principle of
parsimony in developing the model, as inclusion of too many parameters and pro-
cesses will only obscure qualitative understanding. Also, the purpose of the model
is not to build perfectly realistic social networks per se. Instead, it is intended for
future system-level study of processes unfolding on social networks and how they
are affected by the network’s structural properties, such as the existence of com-
munities, and the coupling between network topology and interaction strengths.



Chapter 2

Overview of complex systems

This Chapter provides a brief overview of complex systems. It then introduces the
two complex systems studied in this thesis, namely, the financial market and the
network of social acquaintances, reviewing very briefly some of the elementary
background of these systems.

2.1 Complex systems

The dictionary definition of complex is (1) consisting of interconnected or inter-
woven parts, and (2) not easy to understand. Of these, definition (1) is closely
related to the definition of a complex system meant here, although it has to be
admitted that no succinct definition exists. Some of the prominent characteristics
of complex systems are: (a) they contain a large number of interacting elements
(e.g., molecules, neurons, individuals, stocks), (b) the interactions are stochastic,
and (c) the topology of interactions is sparse. Based on the number of elements
these systems contain, they are considered to be within the mesoscopic or meso-
scale domain, although theoretical approaches often assume the size of the system
to be infinite. The sparsity of interactions indicates that the system is not homo-
geneous in structure, suggesting that complex systems can be characterised by the
topology of their interactions.

Some often cited examples of complex systems are the economy, social sys-
tems, food webs, ecosystems, the Internet, traffic, animal flocks, intracellular
systems, and the brain. As this diverse list makes clear, the complex systems
paradigm has more to do with how something is studied than what is studied.
Here lies the key to understanding complex systems: we must understand not
only the behaviour of the parts but how they act together to form the behaviour of
the whole. In practice, it is often not possible to treat these systems analytically
and, therefore, computer simulations play a key role in their study (14; 11).

It is instructive to distinguish between simple, complex, and complicated sys-
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tems (11;114). Simple systems typically have a small number of components which
act according to well-understood laws. For example, the pendulum consists of
just one part, and its behaviour can be described using Newton’s equations of mo-
tion. An oscillator, spinning wheel, and orbiting planet serve as other examples of
simple systems. Complicated systems, on the other hand, have a large number of
components which have well-defined roles and are governed by well-understood
rules. Importantly, the pieces in complicated systems can be understood well in
isolation, and the whole can be assembled from its parts. For example, a Boeing
747-400 has some 3 x 108 parts, which all have to work in unison to accomplish
a function, to make the plane fly. One defect in a key part can bring the system to
a halt (18).

Complex systems typically also have a large number of components. In con-
trast to complicated systems, the common characteristic is that they display organ-
isation without any external organising principle being applied. The complexity
of the system emerges from the behaviours of the numerous interacting simple
parts, and the behaviour of the small part is different in isolation from when it is
part of the larger system. This is usually referred to as emergence of complexity.
Because of emergence, decomposing the system and studying its subparts in isol-
ation does not contribute to our understanding of how it works. This separates it
from a complicated system. Indeed, it appears that the emergent properties are
unpredictable from the properties of the component parts. This insight questions
some of the commonly held expectations about, for example, economics. Is it
realistic to assume that we can derive macroeconomics from microeconomics? If
not, then we must surely fail to predict the behaviour of global economy from
the behaviour of nations. Applied to social systems, we can ask if the notion of
emergent properties imply that societal behaviour cannot be adequately described
by any practically achievable integration across the behaviour of individuals (12)?
If this is the case, even if we knew everything that we feasibly can know about
the behaviour of individuals in a group, we still would not be able to describe
the behaviour of the individuals as a group. Based on the above, it is clear that
the categories of simple and complex systems differ greatly in size and diversity,
and that there are, indeed, many complex systems around us. The late mathem-
atician Stanislaus Ulam put this into perspective by commenting that research on
complex systems might be compared to the study of non-elephants (19).

To study a complex system one must focus on the right level of description to
catch the phenomena of interest. This means that one needs to course-grain the
system, omitting the details, until one arrives at the desired level of abstraction.
For example, if we try to simulate protein dynamics by following each small part
of the molecule, nothing biologically interesting can happen on the time scale
allowed for by this level of detail. This is because a successful description of the
small-scale structure may be irrelevant for the large-scale structure. This is even
more obvious if we consider a higher level system, such as a social system. While
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it is true that every system is fundamentally a physical system, it does not mean
that every system should be modelled as such (20).

One of the core assumptions in the study of complex systems is the existence
of universality across different complex systems. The idea is, as examples from
statistical mechanics demonstrate, that the fine details do not matter for the beha-
viour of the whole. Consequently, some aspects of complex behaviour are anticip-
ated in many different systems consisting of a large number of interacting agents.
However, unlike for simple systems, it may be that there are no general laws for
complex systems valid for all times and places. Instead, one might need to reach
for lessons that may be learnt in one system and applied in another (2d). Also,
what has traditionally constituted a scientific result may need to be re-evaluated.
For example, network analysis has revealed the structure of metabolic networks,
and this fact alone gives rise to a number of questions and avenues of enquiry that
otherwise may not have occurred (18).

2.2 Financial systems

Financial markets are often characterised as evolving complex systems (I16; 21
22). The evolution is a reflection of the changing power structure in the market
and it manifests the passing of different products and product generations, new
technologies, management teams, alliances and partnerships, among many other
factors (4). Financial markets are possibly the largest and the most data-rich real-
world complex system and, as such, are an excellent empirical test-bed for tools
and theories. Indeed, one of the major challenges facing complex systems re-
search is the real-world validation of any theoretical concept. Fortunately, the
benefits of an improved understanding of financial markets are not limited to the
academia, but have potential for several applications, including better risk hedging
schemes.

Choosing the appropriate variables for studying the financial market is not
a trivial task. Mantegna and Stanley characterise this difficulty in the following
way (23): "The scales used are often given in units (currencies) that are them-
selves fluctuating in time and transactions occur at random times with random
intensities.” While price and volume can be called the fundamental observables
in the system, there are some other quantities that often are of interest.

Price P;(t). For publicly traded stocks the stock (share) price is a security’s
last reported sale price on an exchange and it is determined on the market by
buyers and sellers. Closing price is the price of the last transaction for a given
security at the end of a trading session, which for stock i at time ¢ is denoted by
Pi (‘L’)

Logarithmic return r;(t). Absolute prices are seldom used in studies since
the investors obviously work in terms of relative returns, i.e., in terms of potential
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gain or loss in proportion to the invested sum. Logarithmic returns are most com-
monly used, since they incorporate an average correction of scale changes and
simply lump inflation together with other sources of steady compound growth.
The daily logarithmic return of stock i is given by ri(t) = In P (t) — In P (zr — 1).

Volume V; (t). Trading volume is the number of shares traded during a given
time period for a security or an entire exchange. Sometimes the word activity is
used interchangeably with volume. Aggregate daily volume, i.e., the cumulative
volume over a trading day for stock i at time z, is denoted with V; ().

Relative change in volume Vi (7). Volume is not always a suitable variable
because, just like price, its absolute level is arbitrary.> Therefore, in some cases
it is more informative to use relative changes in volume, defined as Vi(r) =
Vi(t)/Vi(r — 1). Relative volume changes can be used, for example, to study
whether trading activities of different stocks are correlated. Absolute volumes
may be misleading, for the aforementioned reasons, but also because large (valu-
able) companies have a larger absolute number of outstanding shares than small
ones and, therefore, are expected to have larger absolute trading volumes as well.

Flow of capital C;(r). Sometimes the term dollar volume is used to indicate
the dollar amount of shares traded during a given period, but it can be more gen-
erally called monetary volume. It can be used to characterise either an individual
security or an entire stock exchange. For a stock i itbecomes Ci(t) = P; (t)V; (7).
It is important to note that actual closing prices must be used together with actual
volumes, or split-adjusted prices with split-adjusted volumes, but raw and split-
adjusted data obviously cannot be combined.

Relative change in flow of capital C;(r). Itis also natural to make the capital
flows independent of scale, and the most obvious way to do this is to study its
relative change. Analogously to the relative change in volume, this can be defined
as Ci(r) = Ci(r)/Ci(r — 1) = R (n)Vi(1)/[Pi(r = DHVi(r = D].

In general, the processes that influence the performance of stocks can be di-
vided roughly into endogenous and exogenous processes. Endogenous processes
are those that result from the internal dynamics of the financial market, such as
competition amongst investors, while exogenous processes are those that influ-
ence the performance of the market or individual stocks from outside the system,
such as changes in the global economic environment. Different stocks are prone
to changes in different external factors, e.g., a company in the energy business

1When a company is incorporated, it is formed into a legal corporation by completing the re-
quired procedures. The articles of incorporation state how many shares are authorised and can be
issued. When some proportion of the shares is sold to the public, for example via an initial public
offering (IPO), the initial IPO price range is adjusted to match the volume of outstanding shares,
i.e., the shares of a corporation’s stock that have been issued and are in the hands of the public (24).
Another way to look at this is through market capitalisation, which refers to a company’s market
price, calculated by multiplying the number of shares outstanding by the price of a share. Thus price
and volume are related through market capitalisation but, apart from this constraint, their absolute
values are arbitrary.



2.2 Financial systems 9

® Basic Materials
® Capital Goods
¢ Conglomerates
Consumer/Cyclical « Health-care
Consumer/Non-Cyclical ~ *
Energy

Financial

Healthcare

Services

Technology
Transportation

Utilities

Utilities

. <>

* 4> e u e

»
+
ekper
Aa,

Technology 08

& eot
"
- v[v Aae :‘r’u
A

A 0.6

v

Figure 2.1: Example of a small financial network (asset tree) from (4). The markers
correspond to stocks, and the business sectors assigned by Forbes are indicated by the
type of markers used. The colour of the link reflects a distance between the stocks and it
is scaled on the [0, 2] interval.

is likely to be affected by changes in the world market price of oil regardless of
whether it is actually directly involved with the oil business, as its competitors still
might be. This is one of the reasons why there is structure in the return correla-
tions of the market (Figure 1)), contributing to non-systematic or stock-specific
risk. This is the part of the risk that may be diversified by holding a portfolio of
stocks, subject to the assumption that the stock prices of different stocks are not
fully correlated, an assumption that is well justified in practice.?

The financial market can also be viewed as a multi-agent game, in which
traders repeatedly compete for limited resources. The resulting interactions between
different market participants influence the performance of stocks, which is com-
pactly characterised by a single number, the stock price. Although the exact nature
of these interactions is not known, their manifestations in the market are visible.
This is indeed the underlying rationale for the complex systems approach to finan-
cial markets: the fluctuations observed in financial time-series should reflect the

2The part of the risk that cannot be diversified away and needs to be accepted by the investor
as the price of potential future returns is called the systematic risk associated with the market as a
whole (24).
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interactions, feedback, and adaptation of the market participants. Constructing a
portfolio is an active market event as the stocks in the portfolio need to be pur-
chased from the market. If a large fraction of investors decides to acquire the same
portfolio, the demand for the portfolio stocks will increase and, consequently, so
will their prices. This sequence of events will induce some correlations in the
stock prices, resulting from correlated market actions. More generally, variations
in the supply and demand of stocks, regardless of their origin, tend to introduce
some correlated structure in the market. This endogenous structure can be seen to
be superimposed with the exogenous structure.

So what does the structure of the market look like? How does it evolve? How
robust is it? To answer these and other questions we consider a network rep-
resentation of the market in which the nodes correspond to stocks and links to
return correlation based distances between them (Section B2)). The purpose is to
grasp the essence of the market without drowning in the abundance of inform-
ation, which requires pruning the system. In the complex networks framework,
interactions have typically been considered to be binary in nature, meaning that
two nodes either interact (are connected) or they do not (are not connected). In
many cases imposing a binary interaction requires setting a threshold value for
interaction strengths, such that interactions falling below the threshold are dis-
carded. Although suitable as a first approach, thresholding can lead to a loss of
information. Consequently, a natural step forward is to assign correlation based
weights to the links, to reflect the strength of interaction, an approach pursued in
this thesis.

The problem of portfolio optimisation is central to financial theory. The task
is to find portfolio weights w; for stocks, corresponding to the value invested in
stock i out of the overall value of the portfolio, such that the portfolio risk is min-
imised for a given portfolio return. In the classic Markowitz portfolio optimisation
scheme risk is quantified by the standard deviation of returns (25), but other al-
ternatives also exist (26). The expected mean and variance of portfolio return rp
can be written as

N
up = E(p) zzwim
i=1

o2 = Var(rp) = Var(wiry+---+wyry)

p
N N N
=Zwi20i2+z Z wj wj oj oj Pij , (21)
i=1

j=1i=1i#j

where u; is the expected return of stock i, r; and aiz denote the return and standard
deviation of return of stock i, respectively, and p;; denotes the correlation of re-
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turns r; and rj. In fact, the above holds as an identity for any random variables r;,
but the Markowitz framework gives this expression an interpretation in the port-
folio context: since variance can be identified with risk, the higher the variance
of portfolio returns, the riskier the portfolio. We see in the above equation that
the variance of portfolio returns depends on the correlation structure of the mar-
ket, making understanding this structure extremely important. Even if one does
not use variance as a measure of risk and ignores the Markowitz framework, one
may still wish to characterise the portfolio return distribution by its variance, or
characterise interdependencies on the market using correlations. These considera-
tions underline the importance of understanding market correlations. Against this
background one might expect that networks constructed from correlation based
interactions might have a relation to Markowitz portfolio optimisation. This is
indeed the case, as the results of Publications (1;4) show (Section H).

2.3 Social systems

Social science attempts to explore and analyse the relation between the character-
istics of individuals and the characteristics of the social systems they comprise.
Its aim is both to understand how individual behaviours translate into large-scale
social systems as well as how large-scale observation can be used to understand
the behaviour of individuals (27). Social structures can be studied using social
networks analysis, which is an important technique in modern sociology, anthro-
pology, social psychology, and organisational studies. According to the network
paradigm, the social world consists of a web of interactions and relationships
channelling information and resources of various kinds among social actors. Thus,
social life consists of the flow and exchange of norms, values, ideas, and other so-
cial and cultural resources (28). In this paradigm, social action and outcomes are
affected by the structure of the relationship network (29).

Social network analysis has been used since the mid-1930s to advance re-
search in the social and behavioural sciences, although their progress was relat-
ively slow (30). The coining of the social networks concept is credited to J. Barnes
in the 1950s (31). Activity in this field increased among social scientists in about
1990 when the use of social network methodology began to grow at a more rapid
rate. This was related to the understanding in behavioural sciences that the social
contexts of actions matter. For example, epidemiologists realised that epidemics
do not progress uniformly through populations, sex researchers started consider-
ing sexual networks, and organisational studies were recognised as being at the
heart of management research (30). Perhaps most importantly, network mod-
els have helped to understand how individual behaviours and interactions trans-
late into macro-level social systems. Some of the classic notions of sociology
in network theory include the six-degrees of separation and the strength of weak
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ties (32; 33). Nowadays there are several extensive reference texts available on
social network theory (34; 135; 130).

Towards the end of the 1990s physicists also started taking an interest in so-
cial networks. Much of the interest was sparked by the so-called small-world
network model which captured clustering and short path lengths, considered to
be the two key structural characteristics of social networks (36). The key in-
sight behind the small-world model was that empirically found networks inter-
polate between two extremes, order and randomness. This seminal paper was
released at the time when a solid theoretical framework for dealing with very
large networks in general, and very large social networks in particular, was rap-
idly being developed. More recently, network scientists have have studied the
structure of different social networks based on scientific co-citation and collabor-
ation (37; 38; 39; 140), email traffic (41; 42), and human sexual activity (43), and
there have been efforts to uncover the underlying community structure of social
networks (44). Some simple models have been developed to mimic the structure
of social networks (45; 46; |47; 148; 19), address network searchability in terms of
identities (49), and find the mechanisms responsible for the structure of collabor-
ation networks in creative enterprises (50).

Social networks can be viewed at many different levels of coarse-graining,
from individuals to nations (Figure 2Z2). Here we consider networks in which
nodes correspond to individuals and links correspond to social familiarities or
social interactions between them. These are characterised by a set of properties,
covered in Section (1) the connectivity distribution shows a broad, power-
law like tail, (2) clustering is high, (3) assortativity (highly connected individuals
tend to be connected to other highly connected individuals and vice versa) at least
up to some saturation connectivity, and (4) the average shortest paths connecting
individuals in the networks are relatively short.

While the study of social networks has to start from empirical observations
using real life data, the natural next step is to model both processes responsible
for constructing the networks themselves and the processes taking place on them.
A simple phenomenological model that mimics the structure of different kinds of
social networks is presented in Publication (). While this is a good starting point,
it is necessary in the future to go beyond phenomenology and consider the actual
microscopic mechanisms that give rise to the kinds of social networks we see in
reality. Although there is variation between the behaviour and social preferences
of individuals, it should, in principle, be possible to capture the essential elements
which determine the connectivity patterns of individuals and their social groups
in mathematical terms.

While the last few years have witnessed a surge of activity in studies related
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Figure 2.2: Human civilisation as a complex system. Figure from the website of New
England Complex Systems Institute (NECSI) at www. necsi . or g.

to the structure of different networks, relatively little work has been done on pro-
cesses unfolding on networks. This is understandable as we simply have not had
large-scale data available, nor the computational power required for studying these
systems. Examples of dynamic processes taking place on social networks are so-
cial diffusion, i.e., the spreading of rumours and information, opinion formation
models, and models of cultural invasion (Eb. In general, the structural properties
of the network strongly influence the dynamics of processes unfolding on it. The
role of topology on network dynamics may be further enhanced if the dynamic
process is sensitive to interaction strengths, which in the case of social networks
may be partially driven by the network structure around the tie (Iﬂ).

An excellent popular level account of the application of tools and concepts
from modern physics to understanding collective human behaviour is given in the
acclaimed book by Ball (@). He demonstrates how the application of physics
models can yield very reliable predictions for large-group outcomes without neg-
ating the individual’s free will.
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Chapter 3

Analysis and modelling methods

Physics knows many phenomena in which the whole can be described by describ-
ing the parts. For example, we understand from statistical mechanics how mag-
netism emerges from the collective behaviour of millions of microscopic magnets,
or spins. One of the reasons why this approach has been so successful lies in the
simplicity of interactions. In physical systems, there is no ambiguity as to what
interacts with what, and the interaction strength is uniquely determined by the
physical distance (53). In complex systems this is not the case, and this ambigu-
ity makes them more difficult to analyse than physical systems. This Chapter first
gives an overview of the complex network approach to complex systems, and then
reviews some of the methods developed and used in the Publications.

3.1 Complex networks

Background

Complex networks are a powerful fairly recent framework for describing, ana-
lysing, and modelling several complex systems found in nature and society. In
the network representation of a complex system one focuses only on the essen-
tials, namely, the elements represented by nodes (vertices), and the interactions
between the elements represented by links (edges). For example, the cell can be
described as a complex network of chemicals connected by chemical reactions,
the Internet as a complex network of routers and computers linked together by
physical connections, and society as a network of individuals connected by vari-
ous kinds of social relationships. Some networks, such as highways and neural
networks, are embedded in a metric space, whereas others, such as collaboration,
social, and correlation networks, are defined in an abstract space.

Perhaps the key reason for the success of the complex networks approach lies
in its simplicity; one has to omit the complicated details and focus on an abstract
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system-level description by identifying the parts and describing the interactions
between them. This often entails coarse-graining the system and forces one to ad-
opt a perspective that is likely to be fruitful in the study of such systems. However,
what is the greatest strength of the complex networks approach to complex sys-
tems might also be its greatest weakness: once one adopts the complex networks
approach, almost everything starts to look like a network. This may be a problem
because, although many systems look like networks, the network approach will
not necessarily be fruitful in studying them. This is exacerbated by the fact that
some ideas in the complex network literature seem deceptively simple, although
looking below the surface proves otherwise. But this is not perhaps so much a
problem of the paradigm itself but that of the practitioner who decides to apply
the paradigm to a certain problem. Therefore, adopting the network view calls for
a critical evaluation of the problem and the ability of the framework to contribute
to it. The reason for vocalising this criticism is not to downplay the complex net-
work paradigm nor the remarkable results that have been obtained with it. Instead,
it is intended to promote critical discussion on the scope of complex networks in
the study of complex systems.

This thesis studies financial and social systems from the perspective of com-
plex networks. Since we are interested in universal aspects of these systems, the
specific questions covered do not have to be the issues of current importance in the
study of these specific systems®. Rather, the purpose is to motivate a question of
interest in the context of a particular complex system, and then step back and see
if the method of study has relevance to other complex systems (10). It turns out
that this is indeed the case. For example, the machinery for dealing with weighted
motifs can be developed in the context of biological networks and then brought to
the context of social networks.

Complex networks have traditionally been the domain of graph theory, a branch
of discrete mathematics. The birth of graph theory is usually accredited to the
Swiss mathematician Leonhard Euler who in 1736 published the solution to the
famous Koenigsberg bridge problem. Initially, graph theory focused on the prop-
erties of regular (non-random) graphs and had contributions from several well-
known mathematicians. An important development in the history of graph theory
took place in the 1950s when the Hungarian mathematicians Paul Erdés and Al-
fred Rényi initiated the study of random graphs, giving rise to the Erdds-Reényi
(ER) model (54; 55). In the model one starts with N nodes, connecting every pair
of nodes with probability p, which creates a graph that has on average pN(N —
1)/2 edges distributed randomly. This deceptively simple model was studied ana-
Iytically, first by Erdds and Rényi with the main goal of determining the con-
nection probability p at which a particular property of the graph will most likely

IHaving said that, as this work has progressed practitioners from both financial and social sys-
tems have taken an interest in it, and also found it to be of contemporary importance.
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arise. Since Erdds and Rényi, the model has been most notably studied by Bol-
lobas (5€), and the basic results of the model are included in many graph theory
textbooks (56; 57; 58; 59).

The increased computing power and computerisation of data acquisition lead
to increased availability of data on complex systems, giving rise to a revived in-
terest in networks in the late 1990s. This surge of interest was driven predom-
inantly by physicists, leading to the paradigm of complex networks. Although
social scientists had used networks for describing social systems for a long time
(34), physicists provided a significant conceptual and theoretical augmentation
and formalisation of the framework, relying on tools from statistical mechanics,
and started using networks not only for characterising social networks but for
studying complex systems in general. The flurry of activity from the physics
community was triggered by two seminal papers. The first one, on small-world
networks by Watts and Strogatz, was published in Nature in 1998 (3€), followed
by another on scale-free networks by Barabasi and Albert, published in Science
a year later (60) 2. Since then, interest in complex networks has grown phenom-
enally and has produced a large body of knowledge on both empirical and model
networks and has made significant theoretical and conceptual advances. It is out
of the scope of this thesis to cover these developments and that would hardly be
meaningful since there are some excellent review articles on complex networks
that, in combination, more or less cover the field (53; 61; 62; 63; 164), as well
as some books intended for the professional (65; 66; 67) and nonprofessional
audience (68; 69; [7G; [71). The remaining part of this Section will provide an
elementary level introduction to some of the most important concepts and charac-
teristics used in the study of complex networks, but will only touch the surface of
this incredibly interesting field.

Basic characteristics

Comparative analysis of networks from different fields has yielded unexpected
and, in some cases, dramatic results. The conclusion always seemed to be the
same: the networks found in nature are not ER random networks. The empir-
ical networks were characterised using some elementary concepts from traditional
graph theory but, as the need for differentiating between different networks be-
came evident, additional characteristics were developed to better capture some
of the more subtle structural properties of networks. The following discussion
outlines some of the main structural properties for studying real networks. The
position of the ER model with respect to these characteristics is addressed and,
even though the model does not capture the properties of real networks, it is still

2According to ISI Web of Knowledge, at the time of writing on April 7th, 2006, these papers
had 1466 and 1274 citations, respectively.
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often used as a basic reference, or null hypothesis, in judging how far a particu-
lar network is from randomness. The list below can also be seen as a “wish list”
or motivation for the properties that could be incorporated in more realistic and
advanced networks models. In a sense the list also entails one of the main res-
ults of complex network theory, namely, that using the framework it is possible to
identify some unifying principles and structural properties common to most real
networks, but it also gives an indication of what may be missed in using a network
description of complex systems.

Degree distribution P (k). Node degree k; is defined as the number of links
adjacent to node v;. For an ER graph with N nodes and n links, the degree dis-
tribution is a Poisson distribution of the form P (k) = e~® (k)%/k!, where the
average degree is given by (k) = 2n/N = p(N — 1) ~ pN. In contrast, in
many empirical networks the degree distribution either follows a power-law or
has a power-law tail of the form P (k) ~ k=Y, thus very different from the Pois-
son distribution (53). The average degree is now given by (k) ~ kil , where the
maximum degree kmax < N. Perhaps the best known power-law degree distribu-
tion is that of the World Wide Web, in which the nodes are the documents and the
links are the hyperlinks between them. Here the scaling holds for several orders of
magnitude with two different exponents yin ~ 2.1 and yout &~ 2.45 for incoming
and outgoing links, respectively (72).

Degree-degree correlations P (k, k’). Degree correlations refer to the idea
that the probability that a node of degree k is connected to another node of degree
k’ depends on the value of k or, put differently, the degrees of two adjacent nodes
are not independent. In principle, this phenomenon is completely described by
the joint probability distribution P (k, k"), giving the probability that a node of
degree k is connected to a node of degree k’. However, the empirical evaluation of
P (k, k") is cumbersome due to limited data and often yields noisy results. Hence,
it is more practical to define the average nearest neighbours degree of a node v;
as knni = %Zj N () Kj, where N"(v;) denotes the neighbourhood of v;. From
this one can calculate the average degree of nearest neighbours with degree k
denoted with knn(k), which corresponds to 37, kP (k’|k) (73). ER graphs have
no degree-degree correlations, but many real networks do. The network is said to
exhibit assortative mixing if kn, (k) increases as a function of k and disassortative
mixing if it decreases as a function of k. Social networks are usually found to be
assortatively mixed (74).

Clustering coefficient C. The clustering coefficient for a node v; quanti-
fies the local cliquishness of its immediate (nearest) neighbourhood, defined as
C(v) = 2t /[ki (ki — 1)1, where t; is the number of triangles attached to the node
vi and k; is its degree (36). In words, the clustering coefficient is the number of
existing connections between the k; neighbours of v; divided by the maximum
possible number of connections that could exist between them, normalising the
clustering coefficient between 0 and 1. In an ER graph the probability for two
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neighbours of a node to be connected is the same as the probability of any two ar-
bitrarily chosen nodes to be connected and, consequently, Cer = p = (k)/N. If
we keep the average degree (k) fixed, we see that in ER networks C/(k) scales as
1/N so that the ratio decreases as N increases. If we plot this ratio for empirical
networks, it appears to be independent of N, which clearly deviates from the ER
graph prediction. Most complex networks have higher average clustering coeffi-
cient than ER graphs. A good example of clustering is found in social networks,
which is the context in which the coefficient was initially proposed (13€;34).

Network motifs. Network motifs were introduced as elementary structures
that are repeated frequently throughout the network, and they are considered to
have some elementary function for the system. The standard approach to mo-
tifs considers them merely as topological building blocks (75; [76; [77). The au-
thor of the thesis, together with collaborators, were the first to augment the motif
framework to incorporate interaction strengths instead of considering all interac-
tions homogeneous. The motif framework can be seen as a generalisation of the
concept of clustering, whereas communities can be seen as a generalisation of mo-
tifs. Communities are important for the function of systems and identifying them
may help us understand the function of networks. For example, communities in
the social network correspond to circles of friends, in the WWW communities
correspond to pages on the same or closely related topic, and communities in cel-
lular and genetic networks are related to functional modules. The way motifs are
defined in (€) allows a generalisation of the clustering coefficient into a weighted
clustering coefficient, and the concepts of intensity and coherence are immediately
applicable to communities as well. Motifs will be covered in Section For now
it suffices to say that some motifs are also created by chance in ER graphs, but in
real networks some motifs can be several orders of magnitude more frequent than
in a comparable ER graph.

Path length ¢£. Most complex networks exhibit the small-world property, i.e.,
the shortest path between any two nodes is relatively short. The path length can
be seen as characterising the global topology of the network or, more specifically,
how spread out the network is. In ER graphs the typical distance between any two
nodes scales as the logarithm of the number of nodes so that £gg ~ In(N)/ In({(k))
and, in fact, path lengths in real networks are close to that of ER graphs of the same
size. Thus, most empirical networks seem to exhibit the small-world property.
Regular lattices are, in a sense, the opposite of small-world networks since, for
example, for a d-dimensional hypercubic lattice the average node-node distance
scales as N/9, which increases much faster than In(N). However, introducing a
small number of shortcuts, either by rewiring part of the lattice or by adding some
links to it, dramatically decreases path lengths while leaving clustering close to its
high initial value. This has the implication that a transition from a regular lattice
to a small-world is not visible locally to the nodes of the network in terms of the
clustering coefficient; this is one of beautiful ideas introduced in (36).
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Role of network models

Measurements of the above characteristics in empirical networks convinced net-
work scientists time after time that ER graphs were not adequate for capturing the
prominent structural properties of real networks. This lead to a revitalisation of
network modelling with the aim of mimicking the formation mechanisms of em-
pirical networks in order to reproduce their structural properties. The underlying
philosophy of this approach is based on the assumption that the observed network
structure is the result of some evolutionary mechanisms. Therefore, modelling
networks might reveal what these mechanisms are and lead to a better under-
standing of not only their structure but also their function.

It is illustrative to consider the modelling philosophy through a simple ex-
ample. It is possible to construct scale-free networks or, for that matter, networks
with completely arbitrary degree distributions purely phenomenologically using a
suitable algorithm or a generalised random graph model (78). We then obtain a
realisation of the network with the desired degree distribution, but this does not get
us any closer to understanding how scale-free networks might emerge in nature.
The success of the Barabasi-Albert (BA) model (60) in producing scale-free net-
works was rooted in the realisation that two generic mechanisms are required sim-
ultaneously for these networks to emerge, and they are generally considered to be
the principal mechanisms responsible for the ubiquity of scale-free networks. The
mechanisms are (1) growth and (2) preferential attachment. Here (1) refers to the
idea that a new node is added at each time step to the network, and (2) states that
the probability for a new node to connect to an existing node v; depends on the de-
gree ki as T1(kj) = ki/Z,— Kj. An inspection of the latter mechanism reveals that
the preferential attachment contains two assumptions. First, that TT(k) depends
on k unlike for, say, ER graphs that have IT(k) = p and, second, that the func-
tional form of T1(k) is linear in k. We can write the probability more generally as
IT(k) ~ k% and it turns out that non-linear preferential attachment (o # 1) des-
troys the scale-free nature of the topology, and the resulting topology is different
for the sublinear (¢« < 1) and superlinear (@ > 1) cases. In the case of scale-
free networks identification of these two evolutionary mechanisms (growth and
preferential attachment) increases our understanding of how such networks might
be generated in nature. However, the mechanisms may not be universally valid
as the assumption of global preferential attachment is questionable in some cases,
such as in the context of social networks. In this case a more plausible mechanism
might be one based on short local random walks. This process does not explicitly
incorporate linear global preferential attachment but it follows implicitly from the
random walk itself (79; 180). This beautiful idea is really just a formalisation of
the old saying “all roads lead to Rome”. In this context all links eventually lead
to hubs and, therefore, walking on a network leads to preferential attachment.
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Beyond topology

The above discussion has focused on topological characterisation of networks.
Topology is relevant because it is related to the function and dynamics of the net-
work and affects the ability of the network to perform its function. For example,
topology is crucial for network robustness and how it responds to external per-
turbations, such as random failures and targeted attacks on nodes (81;82; 183; 84;
85; 186; 187). Network topology also plays an important role in determining the
emergence and nature of collective dynamics, such as the behaviour of different
spreading processes that use the network as a platform, whether it be the spread of
epidemics, information, or rumours (88; 89; 90; 91; 92; 93; 194). Network struc-
ture matters also from the point of view of synchronisation. For instance, there
is evidence supporting the notion that some brain diseases result from abnormal
synchronisation of a large number of neural populations, placing investigation of
the network mechanisms involved in the generation, maintenance, and propaga-
tion of epileptic disorders at the forefront of neuroscience (64). Synchronisation is
also relevant, in sociology and social psychology, in understanding the emergence
of collective social behaviour such as the emergence of new habits, fashions, or
leading opinions (64).

As the complex network paradigm has matured in the past few years, the view
that the framework should be augmented beyond topological considerations has
been increasingly voiced. One such augmentation is the movement from binary to
weighted networks that allow the heterogeneity of links to be taken into account.
One of the motivations for this development comes from social networks, where
it is believed that weak and strong ties have functionally different roles in the
network (33; [17). Some other motivations are discussed in Section All the
Publications included in this thesis except for (9) deal with weighted networks.
The tools developed in Publications (6; [7) augment the framework of clustering
and motifs to weighted networks, and may be applied to the study of communities
as well, representing another major and fairly new focal point of research in the
field. The role of communities is also addressed in Publication (<) in which a
model mimicking social networks is introduced. The mechanism for generating
communities also suggests how they could be identified in real complex networks
using manageable and fast algorithms, giving rise to a line of research that is
pursued further elsewhere (17;195). Fortuitously, the measures introduced in Pub-
lication (€) are immediately generalisable to weighted communities.

Navigation in the absence of information on the global network structure is
currently also an important topic. The social network model introduced in Pub-
lication (9) paves the way for this type of research by establishing a platform
on which different social navigation processes may easily be studied. Also, the
effect of inaccurate or even erroneous information on navigation can be studied
using the model. Further, the model enables the study of synchronisation and
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spreading processes with a realistic network topology, and it can be complemen-
ted with insights gained from studies dealing with empirical social networks (17).
Finally, there is growing interest in the network community in evolving and adapt-
ing networks, such that the topology is not fixed but evolves in time. Examples of
such networks are genetic regulatory networks, ecosystems and so-called ad-hoc
networks. Networks describing the structural evolution of the financial market
are yet another example of adapting networks, and are the topic of Publications
;12;13; 4; 5).

3.2 Exploratory analysisusing trees and graphs

This Section deals with methods aimed at characterising the top-level structure
and dynamics of interacting systems consisting of a large number of elements.
Instead of looking at the interactions directly, our perspective is a bit more abstract
in focusing on the correlation patterns of interactions. The methods presented here
were developed in the context of the financial market to study the hierarchy of
stocks, to classify them into categories, and to monitor the evolution of the market.
However, the methods are applicable, at least in principle, to any complex system
in which the interactions are reflected in temporal correlations of some relevant
quantity attached to each node. In a sense, the process of constructing tree or
graph representations can be seen as a non-linear transformation of the underlying
correlations that filters out the irrelevant parts. The resulting simplified system is
more amenable to analysis, and a number of different measures may be developed
to characterise it.

This type of filtering is especially important for correlation-based networks,
which use correlation coefficients as a simple measure of linear coupling. Un-
fortunately, as studies based on random matrix theory (RMT) have shown, the
information content of such matrices is limited due to noise (96; 97). The main
finding is that 94% of eigenvalues of correlation matrices computed from logar-
ithmic returns of stocks lie within the predictions of the RMT and, thus, would be
reproduced by a random matrix without any structure embedded in it. This leaves
only 6% of eigenvalues standing out from randomness, suggesting that only 6% of
eigenvalues may carry information. This example, based on one particular applic-
ation, demonstrates the need for developing methods for separating the important
from the unimportant in such systems.

Assume that vertex vj has some quantity x;(t) attached to it, and that this
quantity fluctuates as a function of time. To characterise the synchronous time
evolution of the system, we use the equal time correlation coefficients between
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vertices v; and v; defined as

(xixt)y = (xFy(x}) ’ (3.1)

JIE) = xH2I0xi?) = (x1)2)

where the vector X! = [x;(1), ..., x;(T)] contains the values of the observables
for vertex v; in a time window of width T, the superscript in x! corresponds to
the index of the window, and (-) indicates a time average over the elements in the
vectors. For the purpose of constructing trees and graphs, we define a correlation-
based distance d;; that is associated with the edge connecting vertices v; and v;
and reflects the level at which the quantities x; (t) and x; (t) are correlated. We use

a simple non-linear transformation d; = /2(1 — pj;) to obtain distances with the

property 2 > d;; > 0, forming an N x N symmetric distance matrix D*. Now two
alternative approaches may be adopted. The first one leads to trees and the second
one to graphs. In both approaches the trees (or graphs) for different time win-
dows may not be independent of each other, but form a sequence of trees (graphs)
through time. Consequently, this multitude of trees (graphs) is interpreted as a
series of evolutionary steps of a single tree (graph).

Tree approach. In this approach we construct a tree according to the method
introduced by Mantegna in studying the taxonomy of the financial market (98).
The approach requires an additional hypothesis about the topology of the met-
ric space, the so-called ultrametricity hypothesis. In practice, it leads to determ-
ining the minimum spanning tree (MST) of the distances, denoted by T!. The
spanning tree is a simply connected acyclic (no cycles) graph that connects all N
nodes (stocks) with N — 1 edges such that the sum of the included edge weights
Zditj <t dj; is minimum. We refer to the minimum spanning tree at time t by the

notation T' = (V, E'), where V is a set of vertices and E' is a corresponding
set of edges. Since the spanning tree criterion requires all N nodes to be always
present, the set of vertices V is time independent, which is why the time super-
script has been dropped from the notation. The set of edges E', however, does
depend on time, as it is expected that edge lengths in the matrix D! evolve over
time and, thus, different edges are included in the tree at different times. The
resulting tree is called an asset tree in the Publications included in this thesis.
Graph approach. In this approach we construct graphs by extracting the
N(N — 1)/2 distinct distance elements from the upper (or lower) triangular part
of the distance matrix D' and obtain a sequence of edges d, d, ..., dy_1)2:
where we have used a single index notation. The edges are then sorted in a non-
decreasing order and form an ordered sequence d(;), dy), . .., diy_1)/2- Since
we require the graph to be representative of the market, a natural heuristic is to
build the graph by including only the strongest connections. The number of edges
to be included is arbitrary. Here we include only N — 1 shortest edges in the

t
pij =
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graph, thus giving E' = {d{y,, d(,, ..., d{y_y,}. This is motivated by the fact that
the tree also consists of N — 1 edges, and this choice renders the two method-
ologies comparable, and possibly even similar to one another. This method of
constructing graphs defines them uniquely and, consequently, no additional hy-
potheses about a metric is required. It is important to note that both the set of
vertices V! and the set of edges E! are time dependent, and thus we denote the
graph with G = (V', E'). Now even a small set of vertices may be strongly
inter-connected and, thus, may use up many of the available edges, which may
lead to the formation of cycles in the graph. The resulting graph is called an asset
graph in the Publications included in this thesis.

Instead of fixing the number of links n at N — 1, we can consider it a parameter
and increase it all the way upton = N(N — 1)/2, resulting in a fully connec-
ted graph. If d, is the last added edge, wheren = 1,2,..., N(N — 1)/2, we
can quantify the degree of graph completeness by p = n/[N(N — 1)/2], where
p € [0, 1]. Contrasting this with ER graphs with n edges chosen out of the pos-
sible N(N — 1)/2, we can view p as the probability of connecting two randomly
chosen vertices or, alternatively, as the probability of a given link being present
in the network. Therefore, a natural reference for the graph approach is to con-
sider the corresponding ER graph with p = n/[N(N — 1)/2], where n is, again,
the number of links in the empirical graph. Obviously, the value of p is arbit-
rary and varying its value will yield different kinds of networks. This mapping
between graph completeness and the ER connection probability suggests that one
could compare not just two graphs at a fixed value of p, but instead vary p over
a range of values from 0 to 1 and compare the empirical graph to the correspond-
ing ER graph (or an ensemble of such graphs) with the same p-value (8). In the
mathematical literature, constructing a random graph from a set of isolated ver-
tices by successive additions of links is called graph evolution. The same process
done for a weighted network, following the graph approach as described above, is
called thresholding. Section 241 demonstrates how differences in growth patterns
as p = 0 — 1 are informative about the structure of the system.

The method for constructing trees and graphs is presented schematically in
Figure BJland examples based on financial data from S&P 500 are shown in Fig-
ure for which we used x;(t) = ri(t), i.e., the daily logarithmic return. The
tree criterion suppresses the formation of loops and clustering and, based on these
plots, it seems that important structural properties may be lost. In this sense the
tree approach can be seen as a very drastic filtering of correlation-based networks.
Indeed, the tree approach has been expanded by incorporating the idea that graphs
with different degrees of complexity can be constructed by iteratively linking the
most strongly connected nodes under the constraint that the resulting graph can
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Figure 3.1: Schematic presentation of the tree and graph approach. Both use the fully
connected graph (top) as a starting point, from which a large fraction of links are typically
pruned. The graph approach (bottom left) may leave some nodes isolated and allows
the formation of loops. The tree approach (bottom right) guarantees that all nodes are
connected but, by virtue of being a tree, does not allow loops.
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Figure 3.2: Example of the tree and graph approach (left and right, respectively). Both
contain N = 116 nodes and N — 1 = 115 links, but the configuration of links is clearly
very different in the two.
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be embedded on a surface of a given genus (99). This method is therefore similar
to the graph approach above, except that it produces a connected network, which
rarely happens with the graph approach. Whether this is a desirable property or
not is unclear. Indeed, the graph approach, in its extreme simplicity, is very trans-
parent, whereas it is not so transparent what mapping a network on the surface
of a genus really does. As a final remark, the methods presented here can also
be viewed as exploratory data analysis tools for visualising and uncovering the
structure of high dimensional data and, in this sense, serve the same purpose as
principal component analysis (PCA) and self-organising maps (SOM) (100; 101).

3.3 Network characterisation with weighted motifs

Unweighted motifs

The study of structural properties of networks usually starts from global network
characteristics, such as degree distribution p(k) and average shortest path length
(€). Global characteristics are useful because they can be employed for classi-
fying networks in broad terms. If it turns out, for example, that a network has
scale-free topology, we immediately have some idea about its error and attack tol-
erance. Similarly, if the network exhibits the small-world property, we know that
spreading and diffusion processes will cover ground easily.

In some cases it is desirable to go beyond these global characteristics towards
a more detailed and local analysis of the network. This can be accomplished us-
ing motifs. The concept of a motif was originally introduced to denote “patterns
of interconnections occurring in complex networks at numbers that are signific-
antly higher than those in randomised networks” (75). Put differently, motifs are
elementary structures that are repeated frequently throughout the network and are
considered to have some some elementary function for the system. An example
of this is found in sensory transcription networks that control gene expression in
bacteria and yeast in response to external stimuli. Here the nodes represent genes
or operons and the edges represent direct transcriptional regulation. In such net-
works a motif termed “feed-forward loop” is repeated frequently, and it has been
shown, theoretically and experimentally, to perform signal-processing tasks, such
as pulse generation (75).

Not all subgraphs are informative, as some will be created just by chance (Sec-
tion[3:4). Consequently, a measure that takes this into account is needed. To study
the frequency of subgraphs, one counts the number of times a given subgraph,
such as a triangle, appears in the network. The absolute counts are meaning-
less as such, however, since they will depend, among other things, on the size of
the network. To draw statistical conclusions about the appearance frequency of
subgraphs, one needs to specify a random reference, which, in the language of
statistical hypothesis testing, can be seen as setting up a null hypothesis Hp. One
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can now compare the appearance frequency of a given subgraph in the empirical
and the random reference. In practice, one will need to consider an ensemble of
random networks, not just a single realisation. A suitable test statistic for studying
the statistical significance of unweighted motifs was defined in (77) as

nE — (nR
2y = Miéw (32)
oM
where nf is the number of subgraphs M in the empirical network, and (n{)
and o7 are the expectation and standard deviation, respectively, of the number of
subgraphs M in the reference ensemble.

The results will, of course, depend on what kind of reference system is chosen.
Usually, in the case of unweighted motifs, one carries out a random topological re-
wiring of the network, which removes all structural correlations while conserving
the degree distribution. The rationale of this approach is to keep the global con-
nectivity unchanged and see what type of local configurations will be produced
in the random ensemble. In principle, one could set additional global criteria for
the reference system and require, for example, that the clustering spectrum c(k)
be conserved. As one sets tighter conditions for different global characteristics,
the number of possible local configurations gets smaller and smaller. In practice,
however, it is difficult to implement reference ensembles that meet a number of
different conditions. One approach is to define a Hamiltonian, an energy function,
for the system and use Monte Carlo methods by iteratively generating a large num-
ber of trial configurations and accepting only those that decrease the energy of the
system (75). Although this would be computationally heavy for large systems, it
is a feasible alternative for small systems.

Irrespective of the practical implementation of the reference ensemble, this
line of thought presents a conceptual advance and an analogy to statistical physics.
The ensemble theory of statistical mechanics considers microcanonical, canon-
ical, and grand canonical ensembles. In the microcanonical ensemble all mem-
bers of the ensemble have the same energy, to within a small tolerance, and the
number of particles is fixed. By relaxing the requirement that the energy be fixed
and allowing the system to exchange energy with a heat reservoir, we arrive at the
canonical ensemble. The grand canonical ensemble is built upon the canonical
ensemble by relaxing the restriction to a definite number of particles (102). This
means that in moving from microcanonical to grand canonical ensemble we are
increasing the degrees of freedom in the system and thus allowing a larger num-
ber of microscopic states. Expressed differently, the system occupies a greater
volume in its phase space. In the case of complex networks, by fixing the de-
gree distribution we are imposing a limit on the possible “microstates” accessible
to the system and, by introducing additional restrictions, we further decrease the
number of possible states.
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How the reference ensemble is specified is not just a theoretical curiosity,
because it affects the strength of conclusions that may be drawn from the study.
For example, if one were to set the null hypothesis that the network is an ER
random graph, then one could, at most, conclude that the empirical network is
or is not an ER graph. This may serve a purpose in cases in which there is no a
priori information about the topological organisation of the system. However, if
we know, to begin with, that the empirical network is far from an ER graph, the
results of such comparisons have little scientific value.

Weighted motifs

The motifs in the above discussion were considered topological building blocks
of networks, without any regard for the link weights within them. In what fol-
lows we augment the motif framework to incorporate weights reflecting interac-
tion strengths between the constituent elements. The motivation for this has to do
with the nature of the coupling between links weights and local network topology.
If there existed a universal coupling between weights and topology, including
weights in the analysis of networked systems would not provide us with any ad-
ditional insight. For example, if every triangle in every network was always made
up of strong links, adding weights to the analysis would make little difference.
Fortunately, the increasing availability of weighted data sets enables us to study
the coupling between interaction topology and interaction strengths, and this pic-
ture can be complemented with some insights emerging from theoretical work.
It appears not only that the nature of this coupling is not universal, but also that
the coupling is related to the function of the network. Consequently, augment-
ing the motif framework by incorporating interaction strengths can improve our
understanding of networked systems, and is a worthwhile pursuit. In addition to
developing the theoretical framework, the aim has been to provide practical tools
for characterising weighted motifs (@).

Let us make the discussion more concrete with an example. There exists some
empirical and theoretical work supporting the notion that link weights in trans-
portation networks, reflecting their capacity for transmission, are proportional to
the betweenness centrality of links, defined as the number (or fraction) of shortest
paths in the network passing through a given link (103;87). In such a global trans-
portation network we would expect few triangles and the existing ones should
have low weights. At the other extreme we have systems like social networks,
in which the link weights are inversely proportional to the betweenness centrality
of links, and the system appears to be better suited to efficient local information
processing than global information transmission (L7). This is confirmed by some
studies in sociology (104; [105; 133) as well as common experience: if A has two
very close friends B and C, then B and C are also likely to know each other, and
are perhaps also close. In a network description of a social system we would,
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therefore, expect triangles to be abundant, and many of them should consist of
strong weights. A network based on mobile phone calls might have a dual role:
on the one hand it serves as a social network and, on the other, as a conduit for
information transfer. In this case, inclusion of link weights can provide substan-
tial new information about the system, most importantly about its function, and
also places some constraints on the dynamical processes that may unfold on the
network (17).

The following repeats some parts of the material in Publications (8; [7) in
order to present it in a broader context and to augment some of the introduced
ideas. We suggested the following definition for a motif in Publication (€): a
motif is a set of topologically equivalent subgraphs in a network. Now consider
a weighted (directed or undirected) network where the weight w;; between v; and
vj is assumed non-negative. We introduced in (€) the intensity iy of subgraph g
with vertices vg and links £4 as the geometric mean of its weights:

1/1¢g]
ig=1 [ wi , (3.3)
(e ¢

where |£g] is the number of links in g. Note that the subgraph g can be, but
does not have to be, a small fully connected graph. For example, one could take
g as a fully connected graph of order 3, equivalent to a “closed triangle” (leftmost
graph in Figure B4), or one could take g to be an “open triangle” (rightmost graph
in Figure Z4). With the above definition the units of intensity are the same as the
units of the weights.

Due to the nature of the geometric mean, the subgraph intensity iy may be low
because one of the weights is very low, or it may result from all of the weights
being low. In order to distinguish between these two extremes, we introduce sub-

graph coherence gq as the ratio of the geometric to the arithmetic mean of the
weights as

dg = 11gl/ D wi. (3.4)
(ij)e £g
Here g € [0, 1] and it is close to unity only if the subgraph weights do not differ
much, i.e., are internally coherent.

The total intensity Iy of a motif M in the network is the sum of its subgraph
intensities Iy = > ..y ig. For certain weighted directed motifs, the total intens-
ities can be computed using matrix operations. Let the N x N weight matrix W
describe the network weights. Analogously, let A represent the underlying N x N
adjacency matrix such that a;; = 1if wj; > 0, and a;;j = 0 if w;;j = 0. In an



30 Analysis and modelling methods

Coherence

A

Intensity

<
EI N\
AN
N\

Figure3.3: Schematic illustration of intensity and coherence for a subgraph with 4 nodes
and 5 links, demonstrating why both intensity and coherence are needed for describing
the distribution of weights within a subgraph. Here intensity increases to the top and
coherence increases to the left. In the top row, the subgraph on the left has both high
intensity and high coherence, whereas the one on the right has somewhat lower intensity
and considerably lower coherence. The low coherence value suggests that the signific-
antly weaker diagonal link may be due to noise. In the case of this high intensity—low
coherence subgraph the issue of double counting (see text) is particularly relevant, be-
cause within this subgraph one should perhaps be looking for the subgraph with higher
coherence. So instead of forcing a decision on, say, whether to consider this subgraph
a loop or, alternatively, a loop with a diagonal link, one can do both, i.e., double count
the nodes and links making up the loop. In practice, this means computing the intensity
and coherence for both the loop and the loop with the diagonal link. If the subgraph is
regarded a loop, its coherence will be considerably higher than if it is regarded a loop
with a diagonal link. Although the subgraph in the bottom left corner has low intensity,

its coherence is still high because all the links are consistently weak as quantified by the
high coherence value.
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unweighted network, the number of directed paths returning to the starting node
after k steps can be written as

N(k) = Z Ha.x har = Z iy, iyis - - Qiiy = THAY), (3.5)

where the summation goes over all possible sites and i1 = i1 (53). Let W/
represent a matrix obtained from W = [wj;] by taking the k-th root of its indi-
vidual elements such that W&/% = [wl/ “]. The total intensity of motif M in the
network is

‘ 17k
Im = awm Z (Hwix,iXH)

— am Z wil S wil € wi = au Tr (W Rk, (3.6)

where ay is a combinatorial factor ensuring that each subgraph is counted only
once. A change in the direction of a link can be taken into account using the
matrix transpose. In some cases additional block matrices are needed when the
motifs are not cyclical (6). The benefit of the matrix formulation is that it enables
very straight-forward computation of intensities for certain motifs. For example,
for the non-frustrated triangle the total intensity becomes 1, = 3Tr{(W®¥/®)3},
which can be computed in Matlab with 1/ 3*t race( (W ~(1/3))"3).

In the case of unweighted motifs, the reference system is established by rewir-
ing the network while conserving its degree distribution as explained above. The
idea behind this topological reference is to remove local structural correlations
present in the original network. In the framework of weighted motifs we have
the additional issue of weight correlations, and the easiest way to remove them
is simply to shuffle the weights. This weight permuted reference removes weight
correlations while leaving the network topology unaltered. In principle, one can
use either topological, weight permuted, or mixed reference, in which one both
rewires the topology and shuffles the weights. However, since the motivation be-
hind the weighted motif framework is to study the nature of the coupling between
link weights and local network topology, it is meaningful to compare the empir-
ical network to a weight permuted reference. Using this reference, any deviation
in motif intensities between the empirical and reference system has a straightfor-
ward interpretation: the local organisation of weights in the empirical network is
not random. In practice it may be difficult to establish a topological reference for
a weighted network without distorting the node strength distribution, where node
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strength s; is defined as si = > ; ;o) wij (106;4;1107).
Equation B2) can be generalised to weighted motifs. Replacing the number
of subgraphs by their intensities gives the motif intensity score as

|E_ |R
7y = 2~ ) G&E ), (3.7)

where |7 is the total intensity of motif M in one realisation of the reference sys-
tem and o\ = /(12 — (1})2 Itis clear that Eqs. 2) and @) coincide for
binary weights, implying that Z — z in the limit, so that we obtain the unweighted
z-score as a special case in this limit. Overall, the intensity-coherence framework
suggests a shift in perspective from regarding subgraphs as discrete objects that
either exist or not to a continuum of subgraph intensities, where zero or very low
intensity values imply that the subgraph in question does not exist or exists at a
practically insignificant intensity level. The motifs showing statistically signific-
ant deviation from some reference system can then be called high or low intensity
(coherence) motifs.

A shortcoming of the z-score framework, whether unweighted or Weighted, is
that it it based on just one number from the empirical network (either ng or15)
and two numbers characterising the reference distribution ((n{) or (1}) and o).
Especially in the case of weighted motifs, a lot of mformatlon is lost by adopt-
ing this approach. A better way is to compare the intensity distribution P E(iq)
for subgraphs g in the empirical network to the intensity distribution P R(ig) in
the random ensemble. Now the problem becomes one of comparing two distribu-
tions with one another, for which several tools are available, such as the standard
Kolmogorov-Smirnov test, for which the null hypothesis is that the two distribu-
tions, or samples, PE(ig) and PR(ig) are drawn from the same continuous dis-
tribution. A more information theoretic approach can be based on the Kullback-
Leibler divergence, which measures the distance from a probability distribution P
representing the empirical intensity distribution, the observations, to an arbitrary
probability distribution Q, representing the reference distribution generated under
the chosen null hypothesis model (108).

An important technical detail related to both the unweighted and weighted
motif framework has to do with what is called double counting in Publication (€).
For example, one could be interested in studying the motif statistics for “open
triangles” (a node and its adjacent links) and “closed triangles” in the network,
corresponding to subgraphs g; and g, respectively. In this case the open triangle
g: is a subgraph of the closed triangle g,. The double counting dilemma is now the
following: should every instance of g, be also counted as an instance (or, actually,
three instances) of g,? Earlier studies have indeed counted an open triangle if and
only if it is not a subgraph of a closed triangle. It is precisely for this reason, i.e.,
compatibility with earlier work, that we introduced the block matrix in Publica-
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tion (@), which prevents us from double counting subgraphs. Applying the block
matrix "blocks™ or prevents us from counting an open triangle if the open triangle
is part of a closed triangle.

However, double counting is not a true problem as long as the same method
of counting is applied to both the empirical and random networks. If we allow
for double counting in the above example of triangles, we end up counting three
open triangles every time we count a closed triangle. This increases the number
of open triangles, but does it exactly in the same way for the empirical and ran-
dom networks. If we still wish to avoid double counting after we have obtained
the results, we can always subtract the counts in the end. However, disallowing
double counting does become a true problem as one needs to specify an arbitrary
upper limit as to what is counted. For example, one could decide to count closed
triangles but not open triangles, or equally well count only squares with a diag-
onal (equivalent to two triangles sharing an edge), but not closed triangles and so
on. This is particularly problematic if we have measurement noise in the system.
Then, in the worst case, we can have a fully connected graph where most of the
edges have a very small weight e corresponding to the noise. We could now end
up with closed triangles where one or more edges have weight €. If we disallow
double counting and specify an arbitrary upper limit, we will only count the closed
triangles that may have resulted purely from noise, but would not count the open
triangles that could have considerably higher intensity. This argument shows that
although double counting can be avoided, perhaps it should not be.

Triangles are among the most important nontrivial motifs and they play an im-
portant role as one of the basic quantities of network characterisation in defining
the clustering coefficient C; (Section B.])) at node i as

2t;
C=—
"k — 1)

where t; is the number of triangles attached to the node v; and k; is its degree (36).
This quantity is normalised between 0 and 1, and it characterises the tendency of
the nearest neighbours of node v; to be interconnected. Replacing the number of
triangles t; in Eq. (38) with the sum of triangle intensities yields the weighted
clustering coefficient as

(3.8)

~ 2

C = e 2 i D), (39)

.k
where we use weights scaled by the largest weight in the network given by w;; =
wij / max;j (wij). This definition fulfils the requirement that 5, — C; as the
weights become binary. This, and several other requirements that lead to the above
formulation of weighted clustering coefficient, are elaborated in Publication ((7).
We can relate the unweighted and weighted clustering coefficients through the
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Figure 3.4: A schematic illustration of the weighted clustering coefficient C; for vertex

vi. The weight wjk is gradually decreased from left to right. The value of C; decreases as

G ~ wj1|£3, tending smoothly to zero in the limit.

average intensity of triangles at node i defined as I; = %demvi) I (9), where
N (v;) denotes the neighbourhood of v;, and this allows us to write the weighted
clustering coefficient as

Ci = iiCi. (3.10)

This equation gives a plausible interpretation of the weighted clustering coeffi-
cient: it is the unweighted (topological) clustering coefficient renormalised by the
average intensity. Alternative formulations of weighted clustering coefficient are
given in (107;109).

3.4 Percolation on networks

Percolation theory addresses some of the same questions as random graph theory
does, offering a different perspective on the same problem. Therefore, under-
standing some of its basic predictions related to networks is important for a more
complete understanding of networks. The standard introduction to percolation
theory is the book by Stauffer and Aharony (110), and some background in the
theory of phase transition is also helpful for understanding it (111).

According to random graph theory, it is known that there exist critical, sys-
tem size dependent, connectivity probabilities pc(N) marking the appearance of
certain kinds of subgraphs (56). The probability that a graph with N nodes and
connection probability p(N) has property Q satisfies

0 if 2N — 0
- (3.12)

N“m PN,p(Q) =
—00 Pc(N) — OO

In other words, if the connectivity probability p = p(N) grows faster than the
critical probability p.(N), the considered subgraph will be present, otherwise it
will not. The critical probability at which almost every graph contains a subgraph
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with k nodes and I links is pc(N) ~ N~*! where the definition of almost every
graph containing Q means that the probability of having property Q approaches
las N — oco. As an important special case, for cycles the number of nodes and
links is the same, thus k = I, and the critical probability of having a cycle of any
order is pc(N) = cN~1, where ¢ is a constant.

Assume that the connectivity probability scales as p(N) ~ NZ, with the tun-
able parameter z € (—oo, 0]. When z passes through —1, the asymptotic probab-
ility of cycles of all orders jumps from 0 to 1. This is to say, for example, that in
an ER network with N nodes and n = N, we have p(N) = n/[N(N — 1)/2] =
2/(N — 1) ~ Nt and, consequently, would expect to see cycles. In fact, for the
case of z = —1 the topological properties of the graph depend on the value of the
average degree (k). If 0 < (k) < 1, almost surely all clusters are either trees or
clusters containing exactly one cycle. The largest cluster is a tree and its size is
proportional to InN. As (k) = (k). = 1, the structure of the graph changes ab-
ruptly. Now the largest structure takes on a complicated structure, its size scales
as N2/3, and a finite fraction of nodes belong to it. Except for this giant cluster, all
other clusters are small. As (k) increases further, the small clusters coalesce and
join the giant cluster (53).

The formation of a giant cluster at a critical probability is very similar to a
percolation transition. Consider a regular d-dimensional (triangular, honeycomb,
hypercubic) lattice. In percolation the nodes of the lattice are usually called sites
and the links of the lattice are called bonds. There are two different basic types of
percolation. In site percolation all the bonds are present and each site is randomly
occupied with probability p and empty with probability 1— p. A cluster is defined
as a group of occupied neighbouring sites, and the size of the cluster is simply the
number of occupied sites belonging to the cluster. In bond percolation each site
is considered occupied and a bond is open (link present) with probability p and
closed (link not present) with probability 1 — p. A cluster is a group of sites
connected by open bonds, and when referring to its size one has to define whether
one counts the number of sites or the number of bonds. In short, percolation
theory deals with the properties of these clusters (110).

The basic concepts of percolation are easiest to understand through site per-
colation. Here the probability of an arbitrary site being occupied, p, is sometimes
called the concentration. At the percolation threshold p. a percolating cluster
connecting two opposing sides of the lattice emerges. The percolation transition
gives the position of a phase transition at which the system changes its qualitative
behaviour for one particular value of a continuously varying control parameter. In
the case of percolation, the control parameter is the concentration p, and there is
no percolating cluster for p < pc but at least one percolating cluster for p > pc.
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Figure 3.5: Illustration of a modified percolation problem. Here the blue cluster percol-
ates through the system. Figure from www. mat h. cor nel | . edu.

To determine the phase the system is in, one uses an order parameter, which
is a quantity that provides a signature of order in the system. It is zero in the
unordered phase (p < pc) and non-zero in the ordered (p > pc) phase. Although
in general the choice of the order parameter is not unique for a given physical
system, one usually uses the percolation probability P defined as the probability
of an arbitrary site to belong to the infinite network, the giant cluster, and P is also
known as the strength of the infinite network. For percolation the order parameter
goes to zero continuously as one approaches the critical point from above (p >
Pe), qualifying it as a continuous or second-order phase transition. At precisely
p = pc a path connects the top and bottom of the lattice. Although p. is only
defined in the infinite system size limit, one can use finite size scaling (FSS) to
extrapolate a system of finite size N to the limit N — oo.

The percolation probability P mentioned above is one of the quantities of
interest in percolation. Using a general equation valid for all site percolation
problems, it can be related to the concentration p through

P+) ns=p, (3.12)
S

where the sum runs over all finite clusters s (thus excluding the infinite cluster)
and ngs is the probability that a site belongs to a cluster of size s, where ng is
known as the normalised cluster number. This equation simply states that all
occupied sites (probability p) either belong to the infinite cluster with probability
P or to one of the finite clusters with probability ) . nss. In addition to P, one
can characterise a system using the mean cluster size

s=%" nss® (3.13)
o Y Nss’ '

which gives the average size of a randomly chosen cluster. Last, the system can be
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quantified through the cluster size distribution and, according to percolation the-
ory, near the percolation threshold p. even the most general percolation problem
in any dimension obeys a scaling relation of the form

sTTf_(Ip — pcl™?s) ifp < pc (3.14)

ns(p) = i st (lp— pc|1/”S) if p> pe,

where the precise form of the smooth scaling functions f_(z) and f,.(z) onz €
[0, oo) have to be determined, in most cases numerically, and o and ¢ are known
as the critical exponents. Thus, what different percolation problems have in com-
mon is that their cluster size distributions follow a power law. As an example,
one can show that this expression contains the Cayley tree, a type of lattice, as a
special case with 7 =5/2,0 = 1/2,and f.(z) = f_(z2) = e~ %

Other quantities of interest also diverge near the percolation transition and this
asymptotic divergence can be described by simple power-laws and their associated
critical exponents can all be derived from the values of ¢ and o. For example, the
critical exponent of the percolation probability g is defined through the scaling
relation P (p) ~ (p— p¢)? with B = (1 —2)/o. Thus for p = p. the strength P =
0 and it increases for p > p. as B is a positive power. The critical exponent y of
the average cluster size is defined from (s(p))* ~ |p— pc|~Y withy = (3—1) /0.
Finally, the correlation length &, which can be shown to be proportional to a
typical cluster diameter, is defined as £(p) ~ |p — pc|~" withv = (r — 1)/(do),
where d is the dimensionality of the system d (110).

Traditionally percolation theory has dealt with regular d-dimensional lattices
whereas random graph theory deals with irregular N-dimensional graphs. Since
random graph theory investigates the N — oo regime, in the limit the graphs
are considered to be infinite dimensional as they are not embedded in a metric
space. It turns out that percolation and random graph theory meet in the infinite-
dimensional limit of percolation as d — oo. This also demonstrates that, concep-
tually, percolation theory is applicable in such systems.

The study in Publication (5) is really just bond percolation with the additional
ingredient that, in the case of the empirical network, the links are inserted in a
certain order (either ascending or descending) based on their weight w;i;. One
can then compare different characteristics, such as cluster growth types, against
some reference system as a function of the control parameter p, the fraction of
included links, or the probability for an arbitrary link to be present (i.e., bond
to be open). The idea is that the behaviour of these curves carries information
about the structure of the network, and one can compare the curves obtained from
different networks to learn about their structural similarity. Naturally, one could
also determine the critical exponents for different networks, but this might be
difficult in practice, especially for small networks.
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3.5 Rateequation approach to network models

The historical developments of complex networks covered in Section Bl inspired
and still inspire the development of parsimonious models able to reproduce and
explain the properties exhibited by real complex networks. The ER-model is a
static model, meaning that it is defined for a fixed system size, i.e., a fixed number
of vertices. A change in the perspective of network modelling took place after the
introduction of the Barabasi-Albert (BA) model (60), which lead to the idea that
complex networks are the result of growth processes, and that the placement of
new links is not random but follows preferential attachment. The class of growing
network models, to which the BA model also belongs, became important because
of its explanatory power with respect to scale-free networks. In addition, networks
based on human interactions, including transportation systems, electrical distribu-
tion systems, biological systems, and the Internet are also continuously growing
(112;1113; 1114; 115). Growing networks are also important because, in practice,
many networks are generated using a growth algorithm, i.e, an algorithm that in-
creases the size of the network on each time step. Thus, growing networks are
an important class of networks, both from the theoretical and practical perspect-
ive. This leads to the need for developing methods for solving growing network
models analytically with the aim of understanding their structure and time evol-
ution. Standard probabilistic techniques (56) and the generating function formal-
ism (116; [78) are often very difficult and limited in their applicability. Two other
methods are the master equation approach, the basic idea of which is explained
below, and the rate equation approach, which is covered in more detail and applied
to the study of the social network model in Publication (9).

The master equation is one of the most important equations in statistical phys-
ics because of its wide applicability. It has been applied to problems in bio-
logy, population dynamics, laser physics, fluids, semiconductors, and many other
systems. As a system of stochastic variables evolves in time, transitions occur
between various realisations of the stochastic variables. In deriving the master
equation one assumes that the probability of each transition depends only on the
preceding step (117). The master equation is a differential equation describing the
time-evolution of the probability of a system to occupy each one of a discrete set
of states. If P(n, t) denotes the probability density that the stochastic variable X
has value n at time t, i.e., the probability density that the system is in state x, the
master equation can be written as

oP(n,t)

M
= 2P Duwna® = P(, Dwnm(®)], (3.15)

m=1

where wp, , is the transition probability rate, i.e., the probability of a transition
from state m to state n during the differential time interval. This equation gives
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the rate of change of the probability P (n, t) due to transitions into the state n from
all other states (first term) and due to transitions out of state n into all other states
(second term). Because of these transitions, the probability of finding the system
in a given state changes until the system reaches a final steady state in which
transitions cannot cause further changes in the probability distribution (117).

When applied to solving the degree distribution of a growing network model,
one writes an equation for the changes in the density p(k) of vertices of degree
k as function of time and looks for stationary solutions, i.e., solutions for which
the density does not change anymore, corresponding to an infinite network size.
For example, for the BA-model the degree distribution is obtained as P (k) =
2m(m + 1) /[k(k + 1)(k + 2)] (118). Other examples of using the master equation
approach in solving growing network models include finding the exact form of
the stationary distribution of the number of incoming links of sites in the limit
of long times for a generalised BA model (11€), and the derivation of the exact
solution of the time-dependent cluster size distributions for a preferential growth
model (119). Although the master equation approach is conceptually very simple,
the calculations can become very involved, in practice.

Rate equations are commonly used, for example, in chemical kinetics to link
the rate of a reaction to each reactant. In the context of complex networks, the rate
equation approach was fist introduced for deriving, in the continuous degree ap-
proximation, the degree distribution for the BA model yielding P (k) ~ 2m?2k—3,
together with the introduction of the mean-field theory for scale-free networks, a
prerequisite for the rate equation approach (120;60). The rate equation formalism
was later applied to finding the clustering spectrum of growing network models
with preferential attachment (121;1122). The rate equation approach has also been
extended to a general model for the evolution of weighted networks that couples
the topology and dynamical evolution of weights (123), and augmented by consid-
ering two point correlations (degree-degree correlations) for finding the average
nearest neighbour degree (124). The basic formulation of the rate equation for
finding the degree distribution P (k) and the clustering spectrum C(k) are given
below.

Degree distribution P (k). The details of the rate equation approach to solv-
ing the degree distribution P (k) depend on the model, but the starting point is to
identify the microscopic mechanisms responsible for increasing the degree of a
chosen vertex v; (Figure B8). The rate equation for the degree of vertex v; de-
scribes how its degree changes on average during one time step of the network
growth. This can be written as

ok;
a—t' = R(k;, IT), (3.16)
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Figure 3.6: Illustration of the microscopic mechanisms in the model introduced in Pub-
lication (). The new vertex v links to one or more randomly chosen initial contacts (here
i and j) and possibly to some of their neighbours (here k and I).

where R(k;, IT) is the overall rate at which v; gets new links (or loses them if
rewiring and deletion of links are allowed). The rate R(k;, IT) can be written as a
R(ki, IT) = ), P 8ki, where the sum is taken over the microscopic mechanisms
I, P is the probability for mechanism | to take place, and §k; is the average change
in the value of k (mean field approximation) resulting from a realisation of mech-
anism |. Often it may be necessary to neglect structural correlations, such as the
dependence of k; on the degree of its (nearest) neighbours. Integrating the above
rate equation yields an expression for k; (t), known as the degree evolution equa-
tion, which describes how the degree of a vertex grows as a function of time t.
From k; (t) one can calculate the degree distribution p(k) by forming the cumulat-
ive distribution F (k) and differentiating this with respect to k. Since in the mean
field approximation the degree k; (t) of a vertex v; increases strictly monotonously
from time t; the vertex is initially added to the network, the fraction of vertices
whose degree is less than k;(t) at time t is equivalent to the fraction of vertices
that were introduced after time tj. Since t is evenly distributed, this fraction is
(t — tj)/t. This leads to the cumulative distribution

F(ki)=P(Rfki)=P(thi)=%(t_ti)- (3.17)

Differentiating F (k;) with respect to k; gives the probability density distribution
P (k) for the degree k.

Clustering spectrum C(k). The rate equation approach to the clustering
spectrum C (k) also starts from identifying the microscopic mechanisms respons-
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ible for increasing clustering at a vertex vj. Since the clustering coefficient is a
normalised number of triangles around a node, it is more natural to consider the
total number of triangles around the node, which is equivalent to the number of
links n; amongst the nodes in the immediate neighbourhood of v;. We can write
the rate equation for number of triangles n; around vertex v; as

M Rk ) 3" Rikn, D, (3.18)

at neN(vj)

where R(k;, IT) is again the rate at which v; gets new links. Again, we allow
the rate R(k;, IT) to depend on both the degree k; of the node in question and
a set of parameters IT. Expressed in words, the above equation says that the
rate of change of the average number of connected neighbours of vertex v; is
the product of two factors: the rate at which v; gets new links and the rate at
which the neighbourhood of v; gets new links. In general, the complications in
solving a rate equation like Eq. (8I8) arise from structural correlations, i.e., the
correlations that are embedded between the degree of vertex v; and the properties
(such as degree) of the vertices in its neighbourhood. Depending on the model,
it may or may not be possible to ignore some of these correlations and still get
a satisfactory solution. Integrating Eq. (8I8) gives the time evolution equation
n; (t) for the number of triangles around vj. In order to express n;(t) as a function
of vertex degree k as opposed to time t, we can use the degree evolution equation
for k; (t), which relates degree k and time t, yielding n; (k). Since the clustering
coefficient c; (ki) = 2n;(ki)/ki (ki — 1), we obtain the clustering coefficient as a
function of degree k, which is the desired clustering spectrum.
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Chapter 4

Summary of results

The financial market was studied using the minimum spanning tree (MST) ap-
proach in Publications (1; 2; 4). The tree was constructed from correlations of
logarithmic returns between stocks and it was referred to as the “asset tree”. It
was observed to have a hierarchical structure associated with it, such that differ-
ent branches correspond to companies functioning in the same or closely related
businesses. In general, this hierarchy matched well with third party business sec-
tor classification of stocks, and the observed deviations were to be expected and
could be accounted for (4). Stocks were differentiated from one another also based
on their vertex degree, the distribution of which was found to have a power-law
tail of the form P (k) ~ k=¥ with y = 2.1 4+ 0.1. The outliers of this distribution
are the hubs, or central nodes, of the tree and while the number of companies in
Publications (1; i2; 4) is too small for making conclusions about scale invariance
of the tree, the existence of hubs from which the hierarchical structure is built up
supports this notion. Degree and strength-based criteria for identifying the central
node yielded almost identical outcomes and, quite remarkably, it appeared that
there is a dominant hub in the network that persists for most of the studied period
of 20 years.

The topology of the tree evolves over time reflecting changes in the market.
These changes in tree topology were characterised at the level of links using the
single- and multi-step survival ratios. The former measure revealed that during a
crash, identified as Black Monday, the topology undergoes a significant reconfig-
uration. The latter measure was used for defining tree half-life, a characteristic
time for the network in which half of the links have become rewired. This is
almost twice as long for the empirical tree than for the reference obtained by
sampling empirical return distributions and disregarding the underlying correla-
tion structure, demonstrating that there is considerable and fairly stable structure
in the market correlations (t;, ~ 0.37 and t), ~ 0.21 for empirical and reference
tree, respectively, using T = 4 years and 6T = 1/12 year (125)). The stability
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of the central node enabled its use as a reference point for the occupation layer
concept, measuring how spread out the tree is at a given time. The value of the
mean occupation layer fell at the time of the market crisis, offering another per-
spective on the change in tree topology during the crash. The position of stocks
within the tree was shown to have a connection to portfolio optimisation: the
stocks included in the minimum risk Markowitz portfolio tend to be located on
the outskirts of the tree.

The graph approach to the financial market was introduced in (3) and studied
further, primarily in Publication (8), and the resulting network was referred to as
the “asset graph”. The graph was used as an example of a weighted complex net-
work in Publications (€; [7). The approach was motivated by the desire to unravel
the clustering and interconnected nature of the financial market not captured by
the tree approach. It turns out that the trees and graphs share on average 25% of
links, and it is the remaining links that cause them to exhibit qualitatively differ-
ent behaviour. In general, the graph incorporates links corresponding to very high
levels of correlation. The graph thus captures well the clusters with their dense
internal connections in the market, indicating that some important correlations are
missed by the tree. Since the strong links also tend to persist over time, the asset
graph exhibits higher single-step survival ratios than the asset tree (ograpn ~ 0.95
and oyee ~ 0.80 for T = 4 yearsand 6T = 1/12 year). The graphs are also more
robust in the long run, as witnessed by considerably longer half-lives (tlE/2 ~ 1.59
and tls/2 ~ (.25 for empirical and reference graph, respectively, using T = 4 years
and 8T = 1/12 year (125)). The functional form of the vertex degree distribution
for the graph was left inconclusive.

We studied the formation of the asset graph as a function of the number of
included links, sorted by their weight, by dividing the growth processes into
four distinct classes, called growth types and, for reference, compared them to
an Erdds-Rényi graph. We found that type IV growth, responsible for creating
cycles, sets in much earlier for the asset graph, reflecting the strong interconnec-
tedness of the market. Also, the number of clusters was found to be an order of
magnitude lower in the asset graph than in the reference, implying that the fin-
ancial market encompasses relatively few clusters. We also studied the average
clustering coefficient as a function of the number of included links and found that
the asset graph is essentially clustered after only 10% of the strongest links are
included, in contrast to the 60% of links required for the corresponding ER graph.
This means that, in the empirical network, the remaining 90% of links probably
connect nodes that are not part of the same cluster of stocks. This lead us to con-
jecture that these 90% of links correspond to sporadic correlations and, as such,
may not carry genuine information about the structure of the market.

The concepts of subgraph intensity and coherence were introduced in Public-
ation (€) and reviewed in (), in which the criteria leading to the chosen formula-
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tion of the weighted clustering coefficient C were also presented. To demonstrate
the ability of C to capture simultaneous changes in topology and link weights,
we applied it to an undirected network known to undergo both types of changes,
namely, the asset graph under a market crash. Monitoring the average clustering
coefficient as a function of time, we showed that, in entering the market crash,
the topological clustering coefficient (3€) and an alternative weighted clustering
coefficient (107) both increase 5%. In contrast, C increased 39%, demonstrating
that it captures also the non-topological aspects of the sudden network adaptation.

Intensity and coherence also allow a natural generalisation of the z-score to
the motif intensity score Z, suggesting a shift in perspective from subgraphs as
binary objects, which either exist or not, to a continuum of subgraph intensities
and coherences. We studied three simple motifs for the directed metabolic net-
work of Escherichia coli: (i) path of order 2, (ii) non-frustrated triangle, and (iii)
frustrated triangle. The motif intensity scores for the unweighted networks based
on the subgraph counts are z; = —5.4, z;; = 12.8, and z;; = —0.5, whereas
for the weighted networks we have Z; = 14.8, Zjj = 33.8, Zjjj = 9.0. These
results showed that a move from unweighted to weighted motif characteristics
can cause a change from low to high intensity (shift from under-representation to
over-representation), the intensity may become amplified (increase the extent of
over-representation), or it may increase from average to high intensity (shift from
statistically insignificant to over-representation). Bearing in mind that Z — z as
the weights become binary, these results indicate that the inclusion of weights can
considerably modify the motif statistics and, hence, the conclusions drawn from
motif studies.

Intensity and coherence were applied to study “communities of stocks” in
Publication (8), where stocks belonging to the same business sector according
to Forbes were considered to form a fully connected community. Our approach
indicates the extent to which business sector classifications are visible in market
prices, enabling us to gauge the extent of group-specific behaviour. In most cases
these stocks were tied together in the sense that intra-cluster interaction strengths
were considerably stronger than those of the market on the whole. As expec-
ted, the cluster-specific behaviour was temporarily suppressed by the crash but
resumed after the market recovered. Business sector clusters were also more co-
herent than the market with the exception of the Basic Materials cluster, which
was accounted for by the diversity of its industry composition. These results sug-
gest that tight clusters (high intensity and high coherence) behave as one entity,
like a coarse-grained “super-stock” and, therefore, offer little hope hope for diver-
sification. Instead, a small risk portfolio could be more successfully constructed
by focusing on stocks in different clusters.

A growing network model that possesses the typical topological properties
of real social networks was introduced in Publication (9). Three requirements
were imposed on the model. First, the model should reproduce the salient fea-
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tures of empirical social networks. Second, it should be possible to implement
the model with a fast algorithm to enable studying very large social systems over
large ensembles. Third, the model should be simple enough to allow analytical
derivation of the fundamental characteristics. All of these requirements were met.
The model incorporates a broad degree distribution, assortative mixing (posit-
ive degree-degree correlations), high clustering, short average path lengths (the
small-world property) and, most importantly, communities whose structure re-
sembles real social communities. The algorithm of the model is very efficient and
simple, consisting of two processes: (i) attachment to random vertices, and (ii)
attachment to their neighbourhood. Analytical expressions for the degree distri-
bution and clustering spectrum were derived and compared with simulation. The
observed minor discrepancies were shown to result from degree-degree correla-
tions that were ignored in solving the model. We also showed the model to have
prominent community structure by studying the scaling of the number of k-clique
communities (44; 126) and by visualising small networks.
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Discussion

Financial practitioners have shown some interest in using asset trees as an aid
in real life portfolio optimisation, but also in understanding trade dependencies
between countries, as indicated by the contacts initiated with the author by a
Swiss investment bank and the Bank of England. As for portfolio optimisation,
it should be admitted that although the Markowitz portfolio optimisation scheme
was considered extremely important at the time of its introduction, so much so
that it earned the Nobel Prize in economics, the methods currently used in port-
folio allocation are considerably more sophisticated. Some reasons for this are
the abundance of financial data and computer power for generating more complex
models, but another important factor is the conceptual advances made in portfolio
optimisation, of which the Value at Risk (VVaR) scheme (126), for example, focuses
on extreme losses.

Although Markowitz is no longer a buzzword in portfolio optimisation, it re-
mains the cornerstone of modern portfolio theory and offers a useful reference.
As such, one could identify the portfolio stocks based on the Markowitz and some
additional schemes and visually compare their location in the tree. The observa-
tion that the minimum risk Markowitz portfolio stocks are located on the outskirts
of the tree can be used to gauge visually the riskiness of the stocks suggested
by different schemes. In addition, portfolio optimisation is rarely based on tech-
nical analysis alone, but one usually has some subjective judgement to add, which
could lead to a preference to exclude some stocks from the portfolio. If the need
for this should arise, one could look as a first approach for suitable candidates in
the vicinity of the stock to be replaced in the tree. Once some suitable candidates
have been identified, one could approach the problem with more sophisticated
techniques.

Visualising the dependencies using correlations between, say, N = 1000 com-
panies would require knowledge of N(N — 1)/2 = 499500 correlation coeffi-
cients. Even worse, the number of correlation coefficients scales as N2, easily
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resulting in millions of correlation coefficients for a large stock exchange. With
the asset tree approach, the number of links scales as the number of stocks N, and
the problem of visualisation is considerably more manageable. Another interest-
ing idea that deserves mention is using the asset tree and asset graph to provide
a market based classification of stocks. Although there are different third party
classifications available, it might be more relevant from the perspective of port-
folio optimisation to define the classes or clusters based on return correlations.
Indeed, whenever one wishes to consider the variance of portfolio returns, the
correlations enter the equation. These clusters can be considered coarse-grained
"super-stocks" and characterised, for example, using the concepts of intensity and
coherence. The line of thought followed in Publication (8) is similar to this one,
except that the clusters were identified based on an outside classification of stocks.
The gist of the present idea is that the asset graph could be used to identify these
clusters, and then a similar analysis could be carried out for them as in Publication
@).

It is also notable that the asset graph approach has other potential applications
outside the financial market. Perhaps the best current example consists of the
correlation networks obtained from brain activity, in which the voxels in the brain
correspond to stocks, and their electrical activity to stock returns (127). This is
an encouraging example of how a completely different problem can be recast as
a network problem, using the asset graph approach. The clusters in this problem
represent brain areas that are activated at the same time. One might be interested in
studying how intense and coherent these co-activations are, and one possibility for
doing this, as suggested by the wording used, is to apply the intensity-coherence
framework. This can be easily implemented if one has the network data available
and exemplifies the transferability and general nature of the network measures
developed in the publications of this thesis. The author is also aware of an ongoing
systems biology study that uses the same framework for identifying the overall
structure of a large set of clinical data.

Further, the author has become involved in a new multidisciplinary project that
includes contributions from cognitive scientists and psychologists, with the aim
of applying some ideas used in the study of asset graphs in a completely different
context. Using laboratory experiments with human subjects, we aim to create a
network consisting of words expressing various emotions. Although linguistic
networks have been studied in the past, in an attempt to uncover the structural
properties of the vocabularies of different languages, here the point is not to study
the lexicon of emotions. Instead, by defining a distance d;; between words i and |
describing an emotional state, we aim to go beyond language and use the emerging
clusters to define a sort of emotional landscape. It is not unrealistic to expect that
the study might be able to identify subjects with the Asperger syndrome, a form
of high-functioning autism characterised with atypical or poorly developed social
skills and delayed emotional development. This approach is very similar to the
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asset graph approach, and some pruning of links will most likely be necessary
here too. Although the two problem settings are not identical; for example the
emotion graphs are static, so that time average for asset graphs is replaced by
ensemble average taken over test subjects, similar measures can still be used in
their characterisation.

The social network model introduced in Publication (9) should be seen as a
starting point of the some of the research work envisioned in Section The
greatest strength of the model is probably its ability to produce communities that
resemble real-life communities (17), whose details can be fine-tuned by varying
the parameters of the model. Since there is heterogeneity in social relations, in
the near future the model should be updated to incorporate interaction strengths.
This is likely to have important consequences for dynamic processes unfolding
on the network, as many processes on social networks depend crucially on inter-
action strengths. For example, it is reasonable to assume that one’s opinions are
more strongly affected by those of strongly connected individuals than those of
weakly connected ones. Similarly, voting behaviour and information transmis-
sion, in general, depend on the closeness of social ties and, therefore, a study
using realistic social network structure coupled with realistic interaction strengths
would be likely to yield a more accurate picture of social system dynamics (95).

Another suggestion for future work is the incorporation of “uncertainty” in
opinion formation models. Current spin-type models have two or more possible
states or opinions, but there is no information on how strongly they are held. Yet,
common experience indicates that the opinion concerning, say, which item to pick
from the lunch menu is more prone to persuasion (“The chicken was great last
week!”) than the decision on which presidential candidate to vote for. However,
augmenting the standard opinion formation paradigm is meaningless unless we
first have a functioning model for both the topology and the interaction strengths;
there is no point trying to run before you can walk. Fortunately, such a model can
now be relatively easily constructed combining the topological model of Publica-
tion (9) with lessons learnt on the coupling of topology and interaction strengths
in empirical social networks (17). Although speculation is premature, the out-
come of this type of study will, in the least, be interesting, but it also has potential
for unravelling the dynamics of different social phenomena at a level of realism
and scale not possible in the past. The lessons learnt from this endeavour are not
limited to understanding human societies, but may be applicable to other systems
as well, thereby contributing to the complex systems paradigm itself.
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