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Modeling Genetic Networks and Their Evolution:
A Complex Dynamical Systems Perspective

esting model systems are currently being studied where
first genome-wide expression analyses provide a com-
plementary view on gene functioning, well beyond the
one-gene-one-protein perspective. Furthermore, detailed
studies of separable genetic subcircuits as functional
modules of genomes are successfully performed with a
number of model organisms.

However, a full understanding of genome dynamics on
a larger scale is not as easily available and will probably
require a much bigger effort. Not only experimentalists,
but also the theoretical sciences feel challenged by this
problem. They study possible approaches to an under-
standing of genome dynamics and how a theorist can
contribute to the toolbox of molecular biology and bioin-
formatics. One such approach is a systems scale view of
the genome as a complex interacting system of many
components. Indeed, mathematical and physical sci-
ences have found ways to approach complex dynamic
systems in various branches of science, and one may ask
whether such approaches could be applicable to the
genome and the new challenges of data-driven branches
of the biosciences. For example, comparing the basic
mechanism of transcriptional regulators to that of simple
switches makes approaches applicable to basic ques-
tions in gene regulation that study complex dynamic sys-
tems and use tools from theoretical physics. An interest-
ing question is what could be in principle the dynamics of
large systems of interconnected (genetic) switches?
While currently experimentally inaccessible in the regula-
tory circuit of a genome, such a question can well be an-
swered in theoretical model systems of many switches.
One possible approach to such questions by modeling
artificial genetic networks will be sketched in this paper.
One question studied in such models directly addresses
the dynamics of networks of regulatory genes, as ob-
served in cell control and differentiation. A second com-
plex of questions addresses evolutionary genomics and
how gene regulation interacts with biological evolution,
as for example seen in speciation in the face of a strong
requirement of stability of genetic networks.

In this article, two such studies will be described and
their implications for an understanding of genome-wide
gene regulation is discussed. First, a brief review of
current developments in genome-wide expression stud-
ies is given, followed by a brief overview of current bio-
informatics approaches to genetic network recon-
struction.Then theoretical problems connected to the
dynamics of genome-wide gene regulation are discussed
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After finishing the sequence of the human genome, a
functional understanding of genome dynamics is the
next major step on the agenda of the biosciences.
New approaches, such as microarray techniques,
and new methods of bioinformatics provide powerful
tools aiming in this direction. In the last few years, im-
portant parts of genome organization and dynamics
in a number of model organisms have been deter-
mined. However, an integrated view of gene regula-
tion on a genomic scale is still lacking. Here, genome
function is discussed from a complex dynamical sys-
tems perspective: which dynamical properties can a
large genomic system exhibit in principle, given the
local mechanisms governing the small subsystems
that we know today? Models of artificial genetic net-
works are used to explore dynamical principles and
possible emergent dynamical phenomena in net-
works of genetic switches. One observes evolution of
robustness and dynamical self-organization in large
networks of artificial regulators that are based on the
dynamic mechanism of transcriptional regulators as
observed in biological gene regulation. Possible bio-
logical observables and ways of experimental testing
of global phenomena in genome function and dynam-
ics are discussed. Models of artificial genetic net-
works provide a tool to address questions in genome
dynamics and their evolution and allow simulation
studies in evolutionary genomics.
Key words: Complex systems /Evolutionary genomics /
Functional genomics /Genetic networks /Genome-wide
modeling /Simulation studies /Self-organization.

Introduction

While the completed sequence of the human genome as
today’s largely unreadable Rosetta stone awaits deci-
phering, the first milestones have been passed in the ad-
venture of deciphering genome function. Examples are
the development of microarray techniques that currently
revolutionize gene expression studies on up to genome-
wide scales, as well as advanced data analysis tools to
reconstruct gene regulatory interactions. Several inter-



before embarking on simulation studies addressing two
of these questions.

Genome-Wide Gene Expression Data

Let us briefly review some of the data of genome-wide
expression studies that provide information about the
building blocks of global genome organization. For a
number of model organisms, microarray techniques pro-
vide genome-wide expression analyses, for example in
yeast, where the expression pattern of the entire genome
can be monitored over time (DeRisi et al., 1997). A com-
prehensive analysis in yeast (Saccharomyces cerevisiae)
shows that about 250 regulators interact with the tran-
scription and expression of over 6000 genes (Holstege et
al., 1998). By gene deletions or via temperature sensitive
genes one obtains differential snapshots that provide
functional information about correlated activity of genes.
In the nematode C. elegans, about two thirds of the
genes can be assayed (Kim, 2000) and even in Drosophi-
la expression analyses reaches a near genome-wide
scale with about half the genome (White et al., 1999).

One observation generally made in such studies is the
highly coordinated expression of genes which can often
be classified in groups of co-expressed genes that share
a common (and often complex) temporal expression pat-
tern (synexpression groups). Moreover, such groups of
genes can often be tied to a specific function as, for ex-
ample, in the cell cycle, metabolism, protein biosynthesis
or others (Niehrs and Pollet, 1999). The observed abun-
dant modular organization of genetic networks, which
could be said to act as subroutines of biological pro-
grams, is a remarkable feature of genome organization.

While reminiscent of the prokaryote operon, co-regulat-
ed genes in these groups often are located on different
chromosomes, which is another interesting observation
concerning genetic network organization. Other than the
cis-regulated operon, groups of co-regulated genes in eu-
karyotes are more likely to be regulated by one or more
common trans-regulators. Indeed, such common regula-
tors can be traced by genome-wide expression analysis. A
powerful technique is a combination with upstream DNA
motif search for all member genes of a group to identify
known as well as unknown regulatory elements of this
group (Tavazoie et al., 1999). Also vice versa, for a given
regulator, all genes regulated by this factor can be found by
genome-wide analysis (Ren et al., 2000). Beyond simple
wiring, such analyses are able to reveal hierarchies in gene
regulation as in the case of high level regulators that control
large parts of gene expression, as for example a regulator
that controls large parts of a bacterial cell cycle (Laub et al.,
2000). From the perspective of theory, these are exactly the
basic steps needed for the inference for causal relation-
ships between genes (whereas plain expression analysis
always can only provide correlation). However, simple
combinatorial arguments set strong limits for the size of
sub-networks that can be reconstructed by this method.

A further remarkable observation in genome-wide
analysis is the recent estimate of the total number of
genes in humans of 35 000 (Ewing and Green, 2000).
Since this is only about half the number than has been as-
sumed earlier and not even twice the number of genes
found in the nematode C. elegans, the larger physiologi-
cal complexity of a human cannot be attributed to addi-
tional genes to the same extent as has been common
view until recently. Instead, the role of regulatory combi-
natorics and the diversification of genetic networks
seems to play a much larger role than thought before.
This is one reason for a further study of possible dynam-
ic processes in large regulatory networks.

Reconstruction of Global Genetic Network
Properties

Bioinformatics algorithms for gene expression modeling
face considerable difficulties, from the high quantitative
error of expression experiments to an insufficient number
of data points when aimed at genetic network recon-
struction. For genetic subnetworks that are mostly mod-
ular and only loosely connected to the rest of the
genome, modeling works quite well, in particular cluster-
ing of expression data into groups of co-expressed
genes (Wen et al., 1998; Basset et al., 1999) as also the
above examples show. In networks where data are not as
well separated, however, clustering often is ambiguous.
Also, clustering relies on strictly linear gene-gene interac-
tions (Bittner et al., 1999).

Beyond clustering co-expressed genes from array
data, we finally are faced with the underlying complexity
of genome-wide function. In a simple toy model at least,
one finds that this problem may finally not persist in the
experiment: a simple estimate of the number of required
experiments for a full reconstruction of a network shows
that only about K log(N) microarray experiments would
be necessary for an approximate reconstruction of a full
network, where K is the average number of regulatory
genes that affect a given gene and N is the overall num-
ber of genes (Hertz, 1998). While this is clearly more than
currently available datasets can offer, experiments of this
size are not inconceivable in the future. How this problem
scales for real genetic networks and in the face of noisy
data is, however, quite open today.

A conceptual problem in the reconstruction of genetic
networks from raw expression data that remains un-
solved is the trivial fact that measuring correlation in gen-
eral is not sufficient to infer causality between genes.
Here, a combination of algorithms that closely interact
with experimental data could obtain causal information
(D’haeseleer et al., 2000).

As predictive genetic network models will be out of
reach for quite some time it will be worthwhile to ask
some more basic questions about what principle dynam-
ical properties such model networks can exhibit. For
such an approach we will use types of networks that are
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also used in the above reconstruction approaches and
their basic assumptions about transcriptional regulation.

A Systems Science View on Complex Biological
Networks

What can we learn from other complex dynamical sys-
tems about gene regulation in the genome? One interest-
ing dynamical property often observed in complex inter-
acting networks is their ability to self-organize to an
emergent dynamical state that is not easily derived from
their local interaction and binding constants. One exam-
ple is the observed robustness in bacterial chemotaxis
which is maintained by a network of interacting proteins
(Alon et al., 1999). The achieved adaptation is maintained
at a very precise level, which proves to be largely inde-
pendent of individual protein concentrations. Biochemi-
cal reaction networks fulfill all requirements for complex
emergent properties as, for example, information storage
and learning (Bhalla and Iyengar, 1999).

Let us pose the question of how such emergent phe-
nomena stabilize in complex networks and how such
networks themselves emerge from evolution in a more
general setting. What can we learn from the general the-
ory of complex dynamical networks (Strogatz, 2001)?
Complexity in network structures can be manifold: the
nodes of the network may be different and diverse, as
also the interaction links between the nodes may be.
Structural complexity of a network shows up in a com-
plex wiring diagram. Furthermore, dynamical complexity
may show up in the dynamics of the network, for exam-
ple when nodes interact in complicated ways. But also
the network may evolve over time (as genetic networks
do on evolutionary time scales) and if this is coupled to
the network dynamics itself, a quite complicated overall
complex network results. This is about the level of com-
plexity of a biological genetic network.

Tools for treating such complex dynamical networks
have been developed in the fields of graph theory and
statistical physics with a tradition of modeling complex
neural networks. Several remarkable global properties of
networks are known in this context. In some types of net-
works phase transitions between regimes of ordered and
disordered dynamics have been described that may be
relevant to biological systems (Kauffman, 1993). Another
theoretical concept is percolation theory which is useful
for describing how information spreads over a network
(Stauffer and Aharony, 1995). An important question is
the robustness of the dynamics of networks against dis-
turbing their dynamics or architecture.

In the following I will discuss how specific properties of
genetic networks could result from biological evolution.
An interesting set of questions is how the complex net-
work of genetic interactions influences the dynamics of
macroevolution and whether it generates boundary con-
ditions on evolution and speciation. As we know from the
evolution of homeobox genes, basic features of high lev-

el genetic networks evolve at an astonishingly slow
speed (Pennisi and Roush, 1997; Knoll and Caroll, 1999).
Also, their structure allows single gene mutations to in-
troduce major innovations, and it exhibits a modular
structure, presumably to preserve the major part of the
genome against mutations. A long-term stability of a
gene cluster is observed in the Hox complex which ex-
hibits an extremely tight binding over evolutionary times
(Patel and Prince, 2000). In general, groups of co-regulat-
ed genes, as observed in many expression studies, also
pose questions on the evolutionary scale: what is the se-
lective pressure that promotes this type of genetic organ-
ization? Again, the modular organization of function may
be advantageous in the face of evolution and major func-
tional innovations may be linked to changes in a single
gene, as is discussed for the expression of digits at the
same time in hand and foot (Niehrs and Pollet, 1999).
These and other issues are possible questions to address
when modeling the evolution of artificial genetic net-
works.

For this purpose, let us discuss models of artificial ge-
netic networks and simulation studies of their evolution.
One of the first simulation approaches from the statistical
physics perspective has been formulated by Wagner
(1996) who modeled a network of transcriptional ele-
ments in a spin glass or neural network-type model. The
model genes mutually regulate each other and produce
stable gene expression patterns. In this model, the stabil-
ity of the epigenetic system to mutations is studied. For
this purpose, populations of small model networks
(N=4..10) are evolved in the presence of a fitness func-
tion, that selects for a maximal overlap with a given mas-
ter expression pattern, serving as a given optimal expres-
sion pattern. The expression patterns for simplicity are
chosen to be fixed points of the dynamics (while other
models consider limit cycle attractors representing dy-
namical expression patterns). One advantage of the prin-
cipal approach of such models ist that one can study
general situations in a statistical sense, i. e. consider en-
sembles of systems that give an estimate of what an av-
erage behavior of systems would be, without knowing
their specificities. Here, one considers ensembles of ran-
dom networks, yielding the average behavior of networks
sharing the same general features. This makes the results
more applicable to real natural systems. After an evolu-
tion process of a few hundred generations, this model
finds enhanced mutational stability of the evolved net-
works in the sense that the expression patterns of the
networks are more robust against mutations and less fre-
quently destroyed by a mutation as compared with ran-
dom networks. Partly, this is accounted for by shorter ex-
pression patterns, but one also observes an additional
inherent stability for evolved networks when compared to
random nets with the same length of expression pat-
terns. This phenomenon is termed epigenetic neutrality
as opposed to molecular neutrality denoting molecular
stability against sequence mutations. One interesting as-
pect of this phenomenon is its possible influence on the
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maximum rate of evolution. A second interpretation of
this work is that the increased stability of the regulatory
network may buffer the phenotype against mutations. In
this sense, epigenetic stability is enhanced: a mutation of
the gene regulatory circuit will affect its expression pat-
tern less often in the evolved networks than in random
networks. Of course, any such event would be most like-
ly deleterious or fatal if it occurs during development of a
such regulated organism.

While this work is based on the definition of an artificial
fitness, one may step back and ask what the correspon-
ding force in a biological system would be. Moreover,
macroevolution as a whole may not operate on a fitness
landscape at all. Clearly, fitness is a common concept in
evolution (Wright, 1982), and often evolution is simply
viewed as hill climbing and with jumps between fitness
maxima (Newman, 1985; Lande, 1985). Nevertheless, fit-
ness landscapes implicitly assume that fitness obeys a
well-defined metric in genomic space. This is only the
case if single point mutations were a driving force and
obviously would require the absence of gene regulation.
However, significant genome rearrangements are already
observed in real-time evolution experiments of E. coli cul-
tures (Papadopoulos et al., 1999). Genomic rearrange-
ments such as deletions or insertions destroy the simple
metric generated by one-point mutations, which usually
underlies the intuition of evolution on landscapes. As a
consequence the combinatorial distance for moving from
one genome to another may very well be different from
the distance of the opposite move as, for example, a
deletion is easily made, but hard to recover once lost.
Thus, although fitness landscapes have a well defined
meaning for the small scale adjustments associated to
fine-tuning of binding constants, it is an unjustified con-
cept for evolutionary changes on the macroevolutionary
scale of speciation events.

Modeling Genetic Network Evolution Without
Fitness

A computer study of artificial neutral genetic network
evolution without any explicit definition of a fitness func-
tion which explores further this viewpoint has first been
published in (Bornholdt and Sneppen, 1998, 2000). It will
be recapitulated in this section. An observation that chal-
lenges the role often ascribed to fitness in evolution is the
fact that one often observes different phenotypes for the
same genotype, as enabled by gene regulation and ob-
served in such diverse examples as cell differentiation,
metamorphosis, and other epigenetic phenomena. An
important non-trivial mechanism for evolution may thus
be the exposure of the same species to different environ-
ments. The species then faces a variable selection crite-
rion, with the consequence that what is phenotypically
neutral at some instant may not be phenotypically neutral
at later instants. Thus, in contrast to the molecular neu-
trality where many RNA genotypes have the same phe-

notype (Schuster, 1997), in genetic network neutrality
more than one phenotype for each genotype may occur.

In the following, a class of model systems is studied
that exhibits epigenetics as a simple model for transcrip-
tional regulation. It is represented by logical networks,
where nodes in the network take values on or off, as a
function of the output of specified other nodes. In terms
of these models it is natural to define genotypes in form
of the topology and rules of the nodes in the network. The
phenotypes are similarly associated to the dynamical ex-
pression patterns of the network. As a prerequisite a
model for evolution should fulfill the requirement of ro-
bustness. Robustness is defined as the ability to function
in spite of substantial change in components (Savageau,
1971; Hartwell, 1997; Alon et al., 1999; Little et al., 1999).
Robustness is an important ingredient in simple molecu-
lar networks and probably also an important feature of
gene regulation on both, small and large scale. In the
framework of an evolutionary model based on logical net-
works, robustness is implemented by requiring that mu-
tations of the regulatory network do not change expres-
sion patterns.

Network types that exhibit epigenetics are Boolean
networks (Kauffman, 1969), and a subset of those are the
threshold networks (Kürten, 1988a, b). In these networks
each node takes on one of two discrete values, σi = ±1,
that at each time step is a function of the value of some
fixed set of other nodes. The links that provide input to
node i are denoted by {wij} with wij = ±1. A crucial struc-
tural parameter of the network is its connectivity K, de-
fined as the average number of incoming (non-zero)
weights per node. The updating rule for the dynamics on
the network is defined as follows: For the threshold net-
work case it is additive:

σi = 1 iƒ ∑
j∈ {wi}

wijσj ≥ 0 (1)

σi = – 1 iƒ ∑
j∈ {wi}

wijσj < 0 (2)

The threshold networks are well known as a type of neu-
ral networks, where a certain number of input firings are
necessary to induce firing in a given neuron (Kürten,
1988a, b). Boolean networks are mostly discussed in
connection with genetic networks, as the specificity of
protein binding in principle enables the implementation of
more detailed logical functions. On the other hand,
threshold networks to a good approximation represent
the basic principle of transcriptional regulation (Wagner,
1996). The basic property of logical networks is a dynam-
ics of the state vector {σi} characterized by transients that
lead to subsequent attractors, the periodic activity pat-
tern to which the network dynamics converges. The at-
tractor length depends on the topology of the network.
Below a critical connectivity Kc ~ 2 (Derrida and Pomeau,
1986; Kauffman, 1993) the network decouples into many
disconnected regions, i. e., the corresponding genome
expression would become modular, with essentially inde-
pendent gene activities. Above Kc any local damage will
initiate an avalanche of activity that may propagate
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throughout most of the system. For any K above Kc the
attractor period diverges exponentially with respect to
the number of nodes N, and in some interval above Kc the
period length in fact also increases nearly exponentially
with connectivity K (Bastola and Parisi, 1996). Note that
here the critical connectivity (or coordination number)
equals 2, compared to unity in usual random graphs
(Erdös and Renyi, 1960; Bollobas, 1985), due to the
Boolean logic. Criticality means that a change at a node
in the network spreads marginally throughout the net-
work. This picture is particularly simple for Boolean net-
works where any activity change of a node has the prob-
ability 1/2 to propagate along any link for random
Boolean rules, so that an average of 2 links have to leave
each node to create the critical state. For threshold net-
works similar arguments apply.

The evolution of the network topology is defined as a
change in the wiring {wij} → {w’ij} that takes place on a
much slower time scale than the {σj} updating. The evolu-
tion of such networks represents the extended degree of
genetic network engineering that seems to be needed to
account for the large differences in the structure of
species genomes (Shapiro, 1998), given the slow and
steady speed of single protein evolution (Kimura, 1983).
The model will extend neutral evolution on the molecular
scale to neutral evolution on the regulatory level, and
demonstrate that neutrality in itself enforces constraints
on the evolved graphs.

First it has been proposed to evolve Boolean networks
with the sole constraint of continuity in expression pat-
tern (Bornholdt and Sneppen, 1998). Later this model has
been simplified to transcriptional regulators combined
with a simple test of damage spreading (Bornholdt and
Sneppen, 2000): the model evolves a new single network
from an old network by accepting rewiring mutations with
a rate determined by expression overlap. This is a mini-
mal constraint scenario with no outside fitness imposed.
Furthermore, the model tends to select for networks
which have high overlap with neighbor mutant networks,
thus securing robustness. The model is defined as fol-
lows: consider a threshold network with N nodes. To
each of these a logical variable σi = – 1 or + 1 is assigned.
The states {σi} of the N nodes are simultaneously updat-
ed according to (1, 2) where the links wij are specified by
a matrix. The entry value of the connectivity matrix wij

may take the values – 1 and +1 in case of a link between i
and j, and the value 0 if i is not connected to j. The system
that is evolved is the set of couplings wij in a single net-
work. One evolutionary time step of the network is:

(1) create a daughter network by (a) adding, (b) remov-
ing, or (c) adding and removing a weight in the coupling
matrix wij at random, each option occurring with proba-
bility p = 1/3. This means turning a wij = 0 to a randomly
chosen ±1 or vice versa.

(2) Select a random input state {σi}. Iterate simultane-
ously both the mother and the daughter system from this
state until they either have reached and completed the
same attractor cycle, or until a time where {σi} differs be-

tween the two networks. In case their dynamics is identi-
cal then replace the mother with the daughter network. In
case their dynamics differs, keep the mother network.

Thus, the dynamics looks for mutations which are phe-
notypically silent, i. e., they are neutrally inherited under
at least some external condition. Note that adding a link
involves selecting a new wij, thus changing the rule on the
same time scale as the network connectivity. Iterating
these steps represents an evolution which proceeds by
checking overlap in expression pattern between net-
works. If there are many states {σi} that give the same ex-
pression of the two networks, then transitions between
them are fast. On the other hand, if there are only very few
states {σi} which result in the same expression for the two
networks, then the transition rate from one network to the
other is small. If this is true for all its neighbors then the
evolutionary process will be hugely slowed down. Inter-
estingly, other than in existing concepts of selective neu-
trality (Schuster 1997), these transition rates are not con-
stant in this model of regulatory neutrality. In particular,
they are a function of the evolving connectivity K of the
network instead.

In Figure 1 the basic elements of the model are
shown: only mutations of the regulatory network are ac-
cepted that do not change the present expression pat-
tern. In the resulting evolution one observes that in par-
ticular for highly interconnected networks the system
may stay a long time at a particular network before an al-
lowed mutation leads to punctuations of the stasis. This
waiting time until a successful mutation occurs is a char-
acteristic quantity of the evolutionary process. The over-
all distribution of waiting times is ~1/t 2±0.2 on the evolu-
tionary time scale of the model where t counts the
complete iteration cycles of the model. The wide variety
of time scales implied by the 1/t 2 distribution reflects the
different time scales that are associated with networks
of different connectivity K. Thus, any particular network
will have a characteristic time scale with exponentially
distributed waiting time. The 1/t 2 distribution originates
from integration over this broad range of time scales, re-
flecting that the probability of accepting a mutation de-
creases exponentially with K, whereas the probability
per attempt to add a specific link equals the probability
to remove it again.

One important feature of the evolution is the structure
of the evolved networks, which can be quantified by the
average length of expression patterns (attractors) for the
generated networks. This is shown in Figure 2, where
they are compared with attractor lengths for random net-
works at the same connectivity. One observes that the
evolved networks have much shorter attractors than the
random ones, thus the evolution favors simplicity of ex-
pression. To examine further the expression behavior of
the networks consider the size of frozen components as
introduced by Kauffman (1990) for Boolean networks. A
frozen component is the set of nodes connected to a giv-
en attractor that does not change at any time when you it-
erate along the attractor, i. e., a frozen component repre-
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sents the fraction of genes which are silent under a given
attractor/initial conditions. In Figure 3 it can be seen that
the frozen component for the evolved network typically
involves half the system, and thus is much larger than the
typical frozen component associated to attractors of ran-
domly generated threshold networks. Also random one-
mutant neighbors of the selected networks have huge
frozen components. Finally, the active part of the network
and the complexity of its expression pattern is an inter-
esting observation. As a quite large fraction of the nodes
may belong to the frozen component of the network, the
remaining active part of the nodes may behave different-

ly from the average dynamics of the whole network. One
possible measure is the number of times each non-frozen
node switches its state during the dynamical attractor. In
Figure 4 this quantity is shown for random networks as
well as evolved networks. One observes that the active
part of the evolved networks exhibits a much simpler ex-
pression pattern than that of a random network of com-
parable connectivity.

To summarize, the results of this genetic network evo-
lution model, implementing robustness as an evolution-
ary criterion, has observable consequences for both, the
temporal evolution pattern, and for confining possible
genetic network architectures to the ones with simple ex-
pression patterns.
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Fig. 1 A Schematic View of the Evolution Model as Defined by Bornholdt and Sneppen (2000).
Only mutations of the regulatory network are accepted that do not change the current expression pattern.

Fig. 2 Average Length of Expression Patterns (Periodic Attrac-
tors) for Evolved and for Random Networks.
Also the periods of the unsuccessful mutations in the presence
of newly chosen random initial conditions are shown, demon-
strating that selection of networks is indeed operating on net-
work structure and the specific input configuration in the event
of selection does not play a major role.

Fig. 3 Average Size of Frozen Components as a Function of
Connectivity for Evolved and Random Networks.
The frozen component is the set of all genes that are not part of
the current expression pattern. One observes that the robust-
ness constraint in evolution favors a larger frozen component.



Self-Organization of Genetic Networks from
Local Adaptations

Let us now turn to a second model of evolving genetic
networks where instead of observing global expression
patterns we concentrate on local functional changes of
single genes and their influence on global network archi-
tecture and dynamics. This model has been first pub-
lished by Bornholdt and Rohlf (2000) and will be summa-
rized in the following. Again, logical threshold networks
will be considered as a model for transcriptional regula-
tion. In these networks one in general observes a phase
transition at a critical average connectivity Kc with
lengths of transients and attractors (limit cycles) diverg-
ing exponentially with system size for an average con-
nectivity larger than Kc. Combinatorial as well as numeri-
cal methods provide a quite detailed picture about their
dynamical properties and correspondence with Boolean
Networks (Derrida and Pomeau, 1986; Kürten, 1988a, b;
Bastolla and Parisi, 1996; 1998). While basic dynamical
properties of interaction networks with fixed architecture
have been studied with such models, the origin of specif-
ic structural properties of networks in natural systems is
often unknown. For genetic networks Kaufmann postu-
lated that gene regulatory networks may exhibit proper-
ties of dynamic networks near criticality (Kauffman, 1969,
1993). However, this postulate does not provide a mech-
anism able to generate an average connectivity near the
critical point. An interesting question is whether connec-
tivity may be driven toward a critical point by some dy-
namic mechanism. In the following such an approach will
be sketched in a setting of an explicit evolution of the
connectivity of networks.

Let us consider again a network of N randomly inter-
connected binary elements as defined above. The dy-

namics of the network states is again obtained by iterat-
ing the threshold rule starting from a random initial condi-
tion, eventually reaching a periodic attractor (limit cycle
or fixed point).

Then the following local rewiring rule is applied to a
randomly selected node i of the network: if node i does
not change its state during the attractor, it receives a new
non-zero link cij from a random node j. If it changes its
state at least once during the attractor, it loses one of its
non-zero links cij. Iterating this process leads to a self-or-
ganization of the average connectivity of the network. To
be specific, define the average activity A (i) of a site i as

1
A(i ) = –––––––

T2
∑

t = T1

σi(t) (3)
T2 – T1

where the sum is taken over the dynamical attractor of
the network defined by T1 and T2. The algorithm then iter-
ates the following steps:

(1) Choose a random network with an average connec-
tivity Kini.

(2) Choose a random initial state vector σ→ (0) =
(σ1(0),...,σN (0)).

(3) Calculate the new system states σ→(t), t = 1,...,T ac-
cording to eq. (2), using parallel update of the N sites.

(4) Once a previous state reappears (a dynamical at-
tractor is reached) or otherwise after Tmax updates the
simulation is stopped. Then change the topology of the
network according to the following local rewiring rule:

(5) A site i is chosen at random and its average activity
A(i) is determined.

(6) If |A(i)|=1, i receives a new link cij from a site j select-
ed at random, choosing cij =+1 or – 1 with equal probabil-
ity. If |A(i)|<1, one of the existing non-zero links of site i is
set to zero.

(7) Go to step number 2 and iterate.
The basic mechanism of the model is further shown in

Figure 5. The typical dynamics arising from the model as
defined above is shown in Figure 6 for a system of size N =
1024. Independent of the initial connectivity, the system
evolves toward a statistically stationary state with an av-
erage connectivity Kev (N = 1024) = 2.55 ± 0.04. In the large
system size limit N → ∞ the networks evolve to a value
close to the critical connectivity of the network Kc ≈ 2.

The self-organization toward criticality observed in this
model is different from currently known mechanisms ex-
hibiting the general phenomenon of self-organized criti-
cality (SOC) (Bak et al., 1987; Bak and Sneppen, 1993).
This model introduces a new type of mechanism by which
a system self-organizes toward criticality, here K → Kc. In
particular, it exhibits considerable robustness against
noise in the system. The main mechanism here is based
on a topological phase transition in dynamical networks.
To see this consider the statistical properties of the aver-
age activity A(i) of a site i for a random network. It is close-
ly related to the frozen component C(K) of the network,
defined as the fraction of nodes that do not change their
state along the attractor. The average activity A(i) of a
frozen site i thus obeys |A(i)|=1. In the limit of large N, C(K)
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Fig. 4 Average Number of Flips per Gene in the Non-Frozen
Part of the Network as a Function of Connectivity for Evolved
and for Random Networks.
The evolved networks show a reduced activity in the non-frozen
genes resulting in simple expression patterns as compared to
those of random networks of same connectivities. Note that the
number counts off-on and on-off transitions of the genes as sep-
arate events.



undergoes a transition at Kc vanishing for larger K. With
respect to the average activity of a node, C(K) equals the
probability that a random site i in the network has |A(i)|=1.
Note that this is the quantity which is checked stochasti-
cally by the local update rule in the above algorithm. The
frozen component C(K,N) is shown for random networks
of two different system sizes N in Figure 7. One finds that
C(K,N) can be approximated by

1
C(K,N) = – {1 + tanh [–α(N) · (K – K0(N))]}. (4)

2

This describes the transition of C(K,N) at an average
connectivity K0(N) which depends only on the system
size N. One finds that in the thermodynamic limit N → ∞
the transition from the frozen to the chaotic phase be-
comes a sharp transition near the critical connectivity Kc.
These considerations apply well to the evolving networks
in the rewiring algorithm.

In addition to the rewiring algorithm above a number of
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Fig. 5 A Schematic View of the Evolution Model as Defined by Bornholdt and Rohlf (2000).
Interaction strengths between regulatory genes are mutated locally, observing the constraint that a gene never loses all his functions,
but may lose some of its functionality if it is dynamically very active. This selective pressure, active at the one gene level, leads to a
genome-wide self-organization of the network to a dynamical regime between order and chaos.

Fig. 6 Evolution of the Average Connectivity for N = 1024 and
Two Different Initial Connectivities (Kini =1.5 and Kini =3.0).
Independent of initial conditions the networks evolve to an aver-
age connectivity Kev = 2.55. The plot shows the time series and
the corresponding cumulative means for Kev. The evolutionary
time t is discrete, each time step representing a dynamical run
on the evolved topology.

Fig. 7 The Frozen Component C(K,N) of Random Threshold
Networks as a Function of the Networks’ Average Connectivities
K.
One observes a transition near the critical connectivity of the
network.



different versions of the model work as well. Including the
transient in the measurement of the average activity A(i)
results in a similar overall behavior (where we allowed a
few time steps for the transient to decouple from initial
conditions). Another version succeeds using the correla-
tion between two sites instead of A(i) as a mutation crite-
rion. In addition, this version was further changed allow-
ing different locations of mutated links, both, between the
tested sites or just at one of the nodes. All these different
realizations exhibit the same basic behavior as found for
the model above. Thus, the mechanism exhibits consid-
erable robustness, a prerequisite for applicability to bio-
logical systems.

Genetic Network Models and Experiment

Let us briefly discuss results and implications of the evo-
lution scenarios for artificial transcriptional regulation
networks which have been studied in the two previous
sections. What do we learn from such simulation ap-
proaches to genetic network evolution and dynamics?
Let us review possible implications for biological sys-
tems.

For the neutral evolution scenario, a link to macroevo-
lution can be drawn as the intermittent evolution of the
networks is reminiscent of punctuated equilibrium as ob-
served for species in the fossil record (Gould and El-
dredge, 1993).Quantitatively, the 1/t2 distribution of life-
times for single networks that one finds for this model, as
well as for the earlier version (Bornholdt and Sneppen,
1998), compares well with similar scaling observed for
the statistics of birth and death of individual species in
the evolutionary record (Bak and Sneppen, 1993). In fact,
the analogy can even be fine-grained into a sum of char-
acteristic lifetimes, each associated to a given structural
feature of the networks (Bornholdt and Sneppen, 1998).
A similar decomposition is known from the fossil record
(VanValen, 1973), where groups of related species dis-
play Poisson-distributed lifetimes and, therefore, similar
evolutionary stability.

Testing the models at the molecular level of gene regu-
lation can be based either on direct probing of genetic
networks, but also on evolution experiments of fast-lived
organisms such as E. coli (Papadopoulos et al., 1999). In-
formation on the overall organization of these genetic
networks is obtained from correlated gene knock-out ex-
periments. A quantitative estimate for the overall degree
of connectivity in the genome can be deduced from Ele-
na and Lenski’s experiments (1999) on double mutants,
which demonstrated that about 30 – 60% of these (de-
pendent on interpretation) change their fitness in a coop-
erative manner. In terms of the artificial network models,
one should expect a coupled genetic expression for
about half of the of pairs of genes. Although the evolved
networks can give such correlations for current connec-
tivity estimates, the uncertainty is still so large that ran-
dom networks also are in accordance with data. Further

one should keep in mind that the E. coli genome is large
and not well represented by threshold dynamics of all
nodes, and also that only between 45 and 178 of the E.
coli’s 4290 genes are likely to mediate regulatory func-
tions (Blattner, 2000). Thus, most of the detected gene-
gene correlations presumably involve genes which are
not even regulatory, but instead metabolic and their ef-
fect on each other more indirect than in the case of the
regulatory ones. One would obtain stronger elements of
both, coupling and correlation, if one specialized on reg-
ulatory genes. Thus one may wish to perform experi-
ments where one- and two-point mutations are per-
formed in regulatory genes only. A more direct test of the
hypothesis of robustness in form of damage control as a
selection criterion may be obtained from careful analysis
of the evolution of gene regulation in evolving E. coli cul-
tures.

A further recent experimental approach is the study of
the divergence of duplicate genes and the divergence of
their expression patterns. In a study in yeast (Wagner,
2000a) it was observed that the expression patterns of
duplicate genes diverge at speeds almost uncorrelated
to the divergence of the original sequence, pointing to a
high flexibility on the genetic network level. Again, for the
computer experiments discussed here only coupled
knock-out experiments would be conclusive, which
would be particularly interesting in duplicate genes.

Another interesting experimental observation is the
simplicity of biological expression patterns. For example
as observed in yeast many genes are only active one or
two times during the expression cycle (Cho et al., 1998),
thus switching from off to on or on to off occurs for each
gene in this system only a few times during expression.
For random dynamic networks of comparable size one
would expect a much higher activity. Thus surprisingly
simple expression patterns are observed in biological
gene regulatory circuits. This bears resemblance with the
first model’s observation where simplicity of expression
patterns emerges as a result of a the evolutionary con-
straint of robustness.

A common observation of the models discussed above
is the emergence of networks that are mutationally robust
compared to random networks. A similar observation is
made experimentally in yeast where the robustness of the
gene regulation networks against single gene mutations
has been tested (Wagner, 2000b). A main observation is
that single gene mutations are often phenotypically silent,
possibly due to a buffering of the intact gene regulation
circuit for this single error. Wagner’s study seems to indi-
cate that quite unrelated genes are major agents in this
buffering, rather than quasi-redundant copies of the mu-
tated genes in the form of closely related genes. As an ef-
fect, this might be an evolved response of the global ge-
netic network to stabilizing selection.

A further key observation is the estimated average
connectivity K of 2 → 3 in the E. coli genome (Thieffry et
al., 1998). The second model of genetic network evolu-
tion by local adaptations demonstrates how such an in-
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termediate connectivity of a regulatory network may
emerge by self-organization. With respect to genetic net-
works one may discuss whether biological evolution ex-
erts selection pressure on the single gene level, that re-
sults in a selection rule similar to that model. Namely, for
a frozen regulatory gene which is practically non-func-
tional to obtain a new function (obtain a new link), as well
as for a highly active gene to reduce functionality (remove
a link). It is interesting to note that the robust self-organ-
izing algorithm described here provides a mechanism
that in principle predicts a value in the observed range.

Summary and Outlook

In this article, approaches to an understanding of global
genome organization have been reviewed, including the
current state of experimental approaches and an empha-
sis on computer simulations of evolving artificial genetic
networks. While a complete functional mapping of whole
genomes is largely out of reach, a combination of theo-
retical modeling and new experimental tools may offer a
new path to knowledge about global genomic organiza-
tion. Here, two computer models were described that of-
fer observables that are in principle testable through mi-
croarray expression studies.

One approach is based on the assumption that the
evolution of gene regulatory circuits is governed by the
requirement of robustness only.The resulting dynamics
evolve networks which have a very large fraction of silent
genes and short attractors. Thus they evolve to an or-
dered structure that counteracts the increasing chaos
when networks become densely connected. The evolved
architecture is characterized by simplicity of expression
pattern and increased robustness to permanent muta-
tional fluctuations in the network architecture – features
that are also seen in real molecular networks. The second
approach is based on local evolution of single gene func-
tion within a broad but otherwise unspecified window of
average activity of this gene. This weak constraint of a
selectively preferred activity range leads to a self-organ-
ized global activity of the artificial genetic network near a
critical phase transition between the ordered and chaotic
regime of this network.

Both models compare well with main features of cur-
rent experimental data, but also pose new questions to
experimentation that can only partly be answered with
currently available data, but should easily be testable
with current experimental techniques. In particular, a sta-
tistical approach to gene expression experiments, while
feasible by new techniques, has only rarely been taken.
Examples of experiments are knock-out experiments of
random regulatory genes in order to test for average be-
havior as well as avalanches in changes of regulatory
gene activity. Further, knock-out of random pairs of regu-
latory genes can serve to measure their correlation and
provide important information about the global structure
and organization of the genetic network. In particular, si-

multaneous knock-outs of random regulatory genes that
belong to different co-expressed gene clusters will pro-
vide information about the hierarchical structure of the
genome. The statistical distribution of all such experi-
ments will provide new information about the global or-
ganization of gene regulation. With microarray tech-
niques, the basis for such experiments is available.
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